УДК 14.01.05

АССОЦИАЦИИ ВАРИАБЕЛЬНЫХ ЛОКУСОВ ГЕНОВ TLRS С НАРУШЕНИЯМИ УГЛЕВОДНОГО ОБМЕНА У ПАЦИЕНТОВ С ИШЕМИЧЕСКОЙ БОЛЕЗНЬЮ СЕРДЦА

О. Л. БАРБАРАШ¹, А. С. ГОЛОВКИН², А. В. ПОНАСЕНКО¹, А. Г. КУТИХИН¹, И. И. ЖИДКОВА¹, М. В. ХУТОРНАЯ¹, Л. С. БАРБАРАШ¹

¹ Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Россия

² Федеральное государственное бюджетное учреждение «Северо-Западный федеральный медицинский исследовательский центр им. В. А. Алмазова», Санкт-Петербург, Россия

Цель. Выявить ассоциации полиморфных вариантов генов *TLRs* с нарушением углеводного обмена (НУО) у пациентов с ишемической болезнью сердца (ИБС).

Материалы и методы. В исследование включено 292 пациента с ИБС с наличием НУО и без такового. Изучены вероятность наличия ассоциаций восьми полиморфных вариантов четырех генов (*TLR1* (rs5743551 и rs5743611), *TLR2* (rs3804099 и rs5743708), *TLR4* (rs4986790 и rs4986791), *TLR6* (rs3775073 и rs5743810) и развитие НУО у пациентов с ИБС.

Результаты. Аллель Т полиморфизма rs4986791 (Thr399lle) и аллель G полиморфизма rs4986790 (Asp299Gly) *TLR4* статистически значимо ассоциированы со сниженной вероятностью развития нарушений углеводного обмена; носители вариантного G аллеля полиморфизма rs5743611 *TLR1* имеют повышенный риск развития нарушений углеводного обмена.

Заключение. Выявлены ассоциации полиморфных вариантов генов *TLRs* (аллель Т полиморфизма rs4986791 и аллель G полиморфизма rs4986790 гена *TLR4*; G аллель полиморфизма rs5743611 гена *TLR1*) с HyO у пациентов с ИБС.

Ключевые слова: сахарный диабет 2-го типа, атеросклероз, липидный обмен, Toll-подобные рецепторы, ишемическая болезнь сердца, полиморфизм генов.

ASSOCIATION OF THE POLYMORPHISMS WITHIN THE GENES ENCODING TOLL-LIKE RECEPTORS WITH CARBOHYDRATE METABOLISM DISORDERS IN PATIENTS WITH CORONARY ARTERY DISEASE

O. L. BARBARASH¹, A. S. GOLOVKIN², A. V. PONASENKO¹, A. G. KUTIKHIN¹, I. I. ZHIDKOVA¹, M. V. KHUTORNAYA¹, L. S. BARBARASH¹

¹ Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia

² Federal state budgetary institution Federal North-West medical research centre named after V. A. Almazov of Ministry of healthcare of the Russian Federation, Saint Petersburg, Russia

Purpose. To reveal the association of polymorphisms within the genes encoding Toll-like receptors (*TLRs*) with carbohydrate metabolism disorders (CMDs) in patients with coronary artery disease (CAD).

Materials and methods. Study sample included 292 patients with coronary artery disease. We investigated 8 polymorphisms within 4 genes: *TLR1* (rs5743551 and rs5743611), *TLR2* (rs3804099 and rs5743708), *TLR4* (rs4986790 and rs4986791), *TLR6* (rs3775073 and rs5743810).

Results. T allele of the rs4986791 (Thr399lle) polymorphism and G allele of rs4986790 (Asp299Gly) polymorphism within *TLR4* gene are significantly associated with decreased risk of CMDs, whereas G allele of rs5743611 polymorphism within *TLR1* gene is significantly associated with higher risk of CMDs.

Conclusion. We found significant associations of the polymorphisms within the genes encoding *TLRs* (T allele of rs4986791 polymorphism and G allele of rs4986790 polymorphism within *TLR4* gene and G allele of rs5743611 polymorphism within *TLR1* gene) with CMDs in patients with CAD.

Key words: type 2 diabetes mellitus, atheroslerosis, lipid metabolism, Toll-like receptors, coronary artery disease, gene polymorphism.

Сочетание ишемической болезни сердца (ИБС) и сахарного диабета 2-го типа (СД 2-го типа) имеет неблагоприятный прогноз, так как в течении этих заболеваний отмечен ряд взаимоотягощаю-

щих особенностей: атеросклеротическое поражение коронарных артерий (КА) начинается на 8–10 лет раньше у лиц с СД 2-го типа и характеризуется быстрым прогрессированием, диффузным

поражением КА [1]; у пациентов с СД 2-го типа и ИБС по данным внутрисосудистого ультразвукового исследования в КА наблюдаются более выраженные атеросклеротические поражения [2]; риск развития ИБС у больных СД 2-го типа повышен в 3–5 раз; ИБС на фоне СД 2-го типа во многих случаях протекает бессимптомно [3]; осложнения ИБС развиваются на фоне СД 2-го типа раньше и быстрее [4]. Поэтому смертность при ИБС у мужчин и женщин с СД 2-го типа соответственно в 2–3 и 3–5 раз выше, чем у пациентов сопоставимого пола и возраста без диабета [5].

Неблагоприятный прогноз при такой коморбидности обусловлен сочетанием «классических» и связанных именно с СД 2-го типа факторов риска (ФР) развития атеросклероза: гиперинсулинемии, инсулинорезистентности (ИР), гипергликемии, а также выраженных нарушений липидного обмена у пациентов с СД 2-го типа (гипертриглицеридемии, низкого уровня холестерина липопротеинов высокой плотности (ХС ЛПВП) и преобладанием холестерина липопротеинов низкой плотности (ХС ЛПНП)). Среди множества механизмов поражения сосудов при ИБС и СД 2-го типа главным, повидимому, является дисфункция эндотелия (ДЭ).

Показано, что ДЭ при ИБС с СД 2-го типа сопряжена с повреждением и активацией воспалительных реакций в стенках сосудов [6].

Так, например, в крови больных СД 2-го типа и ИБС наблюдаются повышенные уровни одних и тех же провоспалительных медиаторов. При гипергликемии повышаются уровни С-реактивного белка (СРБ), интерлейкина-6 (IL-6) и фактора некроза опухоли- α (TNF) [7].

Таким образом, общим звеном в патогенезе СД 2-го типа и ИБС является хроническое воспаление с вовлечением в патологический процесс как врожденных, так и адаптивных иммуновоспалительных механизмов [8]. Однако роль воспалительной реакции и возможные пути ее реализации при коморбидных патологиях остаются малоизученными. Поэтому исследование рецепторов врожденного иммунитета (Toll-подобных рецепторов, Toll-like receptors, *TLRs*) и полиморфизмов связанных с ними генов является актуальным в уточнении патогенеза этих двух заболеваний.

Цель: выявить ассоциации полиморфных вариантов reнoв *TLRs* с нарушениями углеводного обмена у пациентов с ишемической болезнью сердца.

Материалы и методы

Обследовано 292 пациента с ИБС с наличием НУО и без такового. Всем было проведено коронарное шунтирование на базе ФГБНУ «НИИ

КПССЗ» г. Кемерова с 2011 по 2012 г. Все участники исследования принадлежали к одной этнической группе - русских. Решение о включении больного в исследование осуществлялось после подписания им информированного согласия. gротокол исследования одобрен Локальным этическим комитетом научно-исследовательского института. Критериями включения в исследование были: наличие верифицированного диагноза ИБС, СД 2-го типа; нарушенная толерантность к глюкозе (НТГ); принадлежность к русской национальности; проживание на территории Кемеровской области и наличие подписанного информированного согласия на проведение исследования. Критериями исключения злокачественные новообразования являлись: в анамнезе, сопутствующие аутоиммунные заболевания, острые инфекционные заболевания или обострение хронических, а также психические заболевания.

В исследование были включены 239 (81,85 %) мужчин и 53 (18,15 %) женщины; медиана возраста пациентов составила 58 (54; 63) лет (от 40 до 70 лет включительно). Среди обследуемых пациентов НУО (СД 2-го типа или НТГ) отмечалось у 87 (29,79 %). Большинство пациентов имели традиционные факторы сердечно-сосудистого риска. Артериальная гипертензия (АГ) встречалась у 262 (89,73 %) пациентов, перенесенный инфаркт миокарда (ИМ) - у 224 (76,71 %), курение в анамнезе – у 196 (67,12 %), дислипидемия – у 227 (77,74 %). Хроническая сердечная недостаточность (ХСН) функционального класса (ФК) I-II выявлена у 210 (71,90 %) человек, XCH ФК III-IV - v 82 (28,10 %). ФК ХСН определялся по классификации Нью-Йоркской ассоциации сердца (NYHA, 1964).

Диагноз ИБС устанавливали на основании национальных клинических рекомендаций ВНОК (Всероссийского научного общества кардиологов) по стабильной стенокардии (2008 г.), наличия ангинозных болей в грудной клетке, данных анамнеза, а также лабораторных и инструментальных методов обследования. Диагноз СД 2-го типа в стационаре устанавливался на основании данных анамнеза, исследования уровня глюкозы натощак и/или перорального глюкозотолерантного теста (ПГТТ) и уровня гликозилированного гемоглобина (HbA1c) в соответствии с клиническими рекомендациями по СД 2-го типа [9].

Нормальные показатели глюкозы в венозной крови натощак составили \leq 6,1 ммоль/л; через 2 часа после ПГТТ \leq 7,8 ммоль/л при установленной норме HbA1c до 6,0 % (42 ммоль/моль).

В качестве диагностического критерия СД 2-го типа был выбран уровень $HbA1c \ge 6,5 \%$ (48 ммоль/моль). При уровне глюкозы в венозной крови натощак $\ge 7,0$ ммоль/л, а также через 2 часа после ПГТТ или случайного определения уровня глюкозы в венозной крови $\ge 11,1$ ммоль/л устанавливался предварительный диагноз СД 2-го типа [9].

Концентрация глюкозы в венозной крови натощак \geq 6,1 ммоль/л, но <7,0 ммоль/л и уровень глюкозы через 2 часа после ПГТТ \geq 7,8 ммоль/л, но <11,1 ммоль/л расценивались как НТГ [9].

Первая группа без НУО состояла из 205 пациентов (177 (86,34 %) мужчин и 28 (13,66 %) женщин); медиана возраста составила 58 (53,50; 63) лет. Вторая группа с наличием НУО состояла из 87 пациентов [62 (71,26 %) мужчины и 25 (28,74 %) женщин); медиана возраста – 59 (54; 62) лет. Во вторую группу вошли 58 (66,67 %) человек с СД 2-го типа и 29 (33,33 %) с НТГ. Среди пациентов с СД 2-го типа у 10 (17,24 %) был впервые выявленный сахарный диабет. Медиана НьА1с у пациентов с СД 2-го типа составила 6,75 (5,88; 8,73) %. Дебют СД 2-го типа развился в возрасте 51 (46,75; 56) года. Длительность СД 2-го типа в среднем составила 6 (3; 9) лет; 19 % больных были на диетотерапии, 56,90 % принимали пероральные сахароснижающие препараты (препараты группы сульфонилмочевины: манинил, диабетон), 24,10 % получали комбинированную терапию (инсулинотерапию (актрапид или протафан) + пероральные сахароснижающие препараты) или инсулин. Микроальбинурия (МАУ) встречалась у 50 (86,21 %) пациентов с СД 2-го типа. Диабетическая нефропатия выявлена у 45 (77,59 %) пациентов.

Определяли уровень общего холестерина (ОХС), триглицеридов (ТГ), ХС ЛПВП в плазме крови соответственно холестеринэстеразным, колориметрическим и методом осаждения (наборами реактивов «Холестерин ФС «ДДС»», «Триглицериды ФС «ДДС»» и «Холестерин ЛПВП» ЗАО «Диакон ДС»). Концентрация ХС ЛПНП вычислялась по формуле:

$$XC$$
 ЛПНП = $OXC - T\Gamma / (2,2 - XC$ ЛПВП).

Индекс атерогенности (ИА) рассчитывался по формуле:

У всех пациентов оценивали наличие и характер основных ФР развития ИБС. Клинико-анамнестические характеристики групп пациентов приведены в таблице 1.

Таблица 1 Клинико-анамнестические характеристики групп пациентов

труни нациситов								
Показатель	Без НУО, n=205 (70,21 %)	C HYO, n=87 (29,79 %)	p					
Женщины, п (%)	28 (13,66)	25 (28,74)						
Мужчины, п (%)	177 (86,34)	62 (71,26)	0,002					
Медиана возраста,	58 (53,50; 63)	59 (54; 62)	0,69					
лет	1 1	39 (34, 02)	0,09					
Медиана ИМТ,	27,76	29,63	0,001					
(KГ/M ²)	(24,28; 31,38)	(26,99; 33,59)						
Дислипидемия, n (%)	160 (78,05)	67 (77,01)	0,88					
Медиана ОХС, ммоль/л	5 (4,20; 5,90)	5,18 (4,18; 6,00)	0,73					
Медиана XC	2,98	2,98	0.70					
ЛПНП, ммоль/л	(2,31; 3,72)	(2,24; 3,88)	0,78					
Медиана XC	1,02	0,92	0.042					
ЛПВП, моль/л	(0,84; 1,21)	(0,79; 1,11)	0,042					
Медиана ТГ,	1,68	2,00	0,012					
ммоль/л	(1,23; 2,29)	(1,41; 2,75)	0,012					
Курящие, п (%)	142 (69,27)	54 (62,10)	0,24					
OHMK, n (%)	21 (10,24)	10 (11,49)	0,75					
AΓ, n (%)	179 (87,32)	83 (95,40)	0,037					
Стенокардия ФК I–II, n (%)	103 (50,24) 50 (57,47)		0,51					
Стенокардия ФК III–IV, n (%)	102 (49,76)	2 (49,76) 37 (42,53)						
Медиана длительности ИБС, лет	2 (1;7)	3 (1; 7)	0,34					
Медиана дебюта ИБС, лет	53 (48; 58)	55 (49; 58)	0,67					
XCH (NYHA) ΦK I–II ΦK, n (%)	155 (75,61) 55 (63,22)							
XCH (NYHA) ΦK III–IV, n (%)	50 (24,39)	32 (36,78)	0,031					
ПИКС, n (%)	161 (78,54)	63 (72,41)	0,19					
МФА, n (%)	178 (86,83)	75 (86,21)	0,89					
SYNTAX SCORE ≤ 22 баллов, n (%)	130 (63,41) 50 (57,47)							
SYNTAX SCORE ≥ 23 баллов, n (%)	75 (36,59)	37 (42,53)	0,09					
Mедиана SYNTAX SCORE, балл	19,50 (18,94; 21,24)	20,50 (19,52; 23,33)	0,27					

На момент исследования имелась клиническая картина стенокардии I–II ФК у 153 (52,40 %) пациентов, III–IV ФК – у 139 (47,60 %). Оценку ФК стабильной стенокардии проводили согласно классификации Канадской ассоциации кардиологов (Сатреац L., 1976). Дебют ИБС в возрасте ранее 40 лет был выявлен у 12 (4,11 %) человек; 40–50 лет – у 74 (25,34 %) и старше 50 лет – у 206 (70,55 %). Умеренное поражение коронарного русла по шкале SYNTAX SCORE (до 22 баллов) выявлено у 180 (61,64 %) человек; тяжелое поражение коронарного русла (SYNTAX SCORE

23—32 балла) — у 86 (29,45 %); крайне тяжелое поражение коронарного русла (SYNTAX SCORE >32 баллов) — у 26 (8,90 %) [10]. Давность развития ИБС составила 3 (1; 7) года. Все пациенты на догоспитальном этапе и в условиях стационара принимали бета-адреноблокаторы, статины, ингибиторы ангиотензин-превращающего фермента, дезагреганты.

В данной работе изучалось возможное влияние восьми полиморфных вариантов четырех генов: TLR1 (rs5743551 и rs5743611), TLR2 (rs3804099 и rs5743708), TLR4 (rs4986790 и rs4986791), TLR6 (rs3775073 и rs5743810) у пациентов с ИБС на развитие НУО. Критериями для выбора однонуклеотидных полиморфизмов были распространенность в популяции (частота минорного аллеля ≥5 % в русской популяции согласно НарМар); локализация в высококонсервативных участках генов; предполагаемые или доказанные на молекулярном уровне функциональные последствия и малое количество или отсутствие исследований роли относительно сочетанного влияния данных полиморфизмов на ИБС и СД 2-го типа. Генотипирование проводили по технологии Таqman с использованием флуоресцентномеченых зондов производства Applied Biosystems (США).

Статистическая обработка количественных данных проводилась с использованием лицензионного пакета программного обеспечения Statistica® for Windows 6,0., StatSoftInc., США (серийный номер AXXR003E608729FAN10). Две независимые группы по количественному признаку сравнивались с помощью U-критерия Манна — Уитни (при распределении, отличном от нормального). Анализ различия частот в трех и более независимых группах проводился при помощи критерия χ^2 по Пирсону. Для описания признаков использовали медиану и квартили Me [Q25; Q75]. Статистически значимыми считались показатели, в которых р-уровень был меньше или равным 0,05.

Математическая обработка качественных данных проводилась при помощи программы SNPStats (Institut Català d'Oncologia; Universidad Autónoma de Barcelona, Испания). Для оценки контроля качества генотипирования для каждого полиморфизма вычислялось равновесие Харди – Вайнберга (Hardy-Weinberg equilibrium, HWE) с критическим значением вероятности отвергнуть верную нулевую гипотезу об отсутствии данного равновесия р, равным или меньше 0,01.

Результаты

Пациенты с наличием НУО и без такового не различались по возрасту, факту курения, наличию

перенесенного острого нарушения мозгового кровообращеня (ОНМК) и ИМ в анамнезе, ФК стенокардии, наличию мультифокального атеросклероза (МФА), по продолжительности анамнеза ИБС, по дебюту ИБС. Достоверно чаще у больных с НУО выявлялась АГ (р=0,037) (табл. 1). Действительно, во многих исследованиях показано, что у пациентов СД 2-го типа значительно чаще встречается АГ в анамнезе (в 60-80 % случаев) [11]. Уровни ТГ у пациентов с НУО были достоверно (р=0,012) выше, а уровни ХС ЛПВП доставерно (p=0,042) ниже, чем у пациентов без НУО. При сравнении по ФК ХСН у пациентов с НУО достоверно (р=0,031) чаще выявлялась ХСН более высоких функциональных классов (ФК III–IV) по сравнению с пациентами без НУО. Пациенты с НУО имеют большую медиану ИМТ в сравнении с пациентами без нарушения углеводного обмена (р=0,001) (табл. 1).

В нашем исследовании аллель G полиморфизма rs4986790 (Asp299Gly) и аллель T полиморфизма rs4986791 (Thr399Ile) гена *TLR4* были статистически значимо ассоциированы со сниженной вероятностью развития НУО в соответствии с логаддитивной моделью наследования (ОШ=0,41, 95% ДИ=0,19–0,90, p=0,016 и ОШ=0,46, 95% ДИ=0,22–0,96, p=0,028 соответственно). Носители вариантного аллеля G локуса rs5743611 *TLR1* имеют статистически значимо повышенный риск развития НУО в соответствии с лог-аддитивной моделью наследования (ОШ=1,54, 95% ДИ=1,01–2,34, p=0,044) (табл. 2).

Обсуждение

Одним из главных свойств иммунной системы является способность к распознаванию патогенных микроорганизмов и развитию реакций в ответ на их воздействие, которые направлены на уничтожение и элиминацию чужеродного агента [12]. Эта функция осуществляется благодаря взаимодействию приобретенного (адаптивного) и врожденного компонентов иммунитета. Механизмы врожденной защиты представляют собой разнообразные рецепторы, комплексы, которые присутствуют на разных клетках и выполняют одинаковые функции [13]. Таким образом, врожденный иммунитет обеспечивает специфическое распознавание патогенов с помощью генетически запрограммированных рецепторов, воспринимающих «образы» патогенов (pattern recognition receptors - PRRs), взаимодействующих с патогенассоциированными молекулярными «образами» (pathogen-associated molecular patterns - PAMPs), которые закодированы только в геноме микроорганизмов.

Таблица 2 Связь аллельных локусов генов TLRs с риском развития НУО у пациентов с ИБС

		,	r - r - r			
Модель наследования	Генотипы	Без НУО, n=205 (%)	С НУО, n=87 (%)	ОШ (95 % ДИ)	p	AIC
	•		n=291; HWE=0,8	35	,	,
Кодоминантная	T/T	130 (63,70)	61 (70,10)	1,00		351,40
	C/T	69 (33,80)	22 (25,30)	0,67 (0,37-1,19)	0,25	
	C/C	5 (2,50)	4 (4,60)	1,68 (0,42–6,67)	1	
Доминантная	T/T	130 (63,70)	61 (70,10)	1,00	0,27	350,90
	C/T-C/C	74 (36,30)	26 (29,90)	0,73 (0,42–1,28)		
D	T/T-C/T	199 (97,50)	83 (95,40)	1,00	0,36	351,30
Рецессивная	C/C	5 (2,50)	4 (4,60)	1,90 (0,48–7,47)		
C	T/T-C/C	135 (66,20)	65 (74,70)	1,00	0.14	349,90
Сверхдоминантная	C/T	69 (33,80)	22 (25,30)	0,65 (0,37–1,15)	0,14	
Лог-аддитивная	_	_	-	0,85 (0,53-1,37)	0,51	351,70
		TLR1 rs5743611,	n=292; HWE=0,8	37	•	1
	C/C	127 (62)	46 (52,90)	1,00		
Кодоминантная	C/G	70 (34,10)	33 (37,90)	1,34 (0,78–2,32)	0,096	350
	G/G	8 (3,90)	8 (9,20)	3,08 (1,07–8,88)		
Поличист	C/C	127 (62)	46 (52,90)	1,00	0.12	250.20
Доминантная	C/G–G/G	78 (38)	41 (47,10)	1,51 (0,90–2,54)	0,12	350,30
D	C/C-C/G	197 (96,10)	79 (90,80)	1,00	0.050	240.10
Рецессивная	G/G	8 (3,90)	8 (9,20)	2,75 (0,98–7,73)	0,058	349,10
C	C/C-G/G	135 (65,80)	54 (62,10)	1,00	0.50	252.20
Сверхдоминантная	C/G	70 (34,10)	33 (37,90)	1,20 (0,71–2,04)	0,50	352,30
Лог-аддитивная	_	_	_	1,54 (1,01–2,34)	0,044	348,70
		TLR2 rs3804099,	n=292; HWE=0,0	24	•	
	T/T	87 (42,40)	36 (41,40)	1,00		354,60
Кодоминантная	C/T	84 (41)	34 (39,10)	0,92 (0,52–1,63)	0,93	
	C/C	34 (16,60)	17 (19,50)	1,05 (0,51–2,16)		
Поличентиод	T/T	87 (42,40)	36 (41,40)	1,00	0,88	252.70
Доминантная	C/T–C/C	118 (57,60)	51 (58,60)	0,96 (0,57–1,62)		352,70
Рецессивная	T/T-C/T	171 (83,40)	70 (80,50)	1,00	0.70	352,60
	C/C	34 (16,60)	17 (19,50)	1,10 (0,57–2,13)	0,79	
Сверхдоминантная	T/T-C/C	121 (59)	53 (60,90)	1,00	0.72	352,60
	C/T	84 (41)	34 (39,10)	0,91 (0,54–1,53)	0,72	
Лог-аддитивная	_	_	_	1,01 (0,71–1,43)	0,96	352,70
		TLR2 rs5743708,	n=292; HWE=1,0	00		
_	G/G	187 (91,20)	82 (94,20)	1,00	0,33	351,80
	A/G	18 (8,80)	5 (5,80)	0,61 (0,22–1,73)		
		TLR4 rs4986790,	n=292; HWE=1,0	00		
Кодоминантная	A/A	166 (81)	79 (90,80)	1,00	0,033	347,90
	A/G	37 (18,10)	8 (9,20)	0,47 (0,21–1,07)		
	G/G	2(1)	_	0,00 (0,00-NA)		
Доминантная	A/A	166 (81)	79 (90,80)	1,00	0.027	247.00
	A/G–G/G	39 (19)	8 (9,20)	0,42 (0,18-0,95)	0,027	347,80
Рецессивная	A/A-A/G	203 (99)	87 (100)	1,00	0.072	240.50
	G/G	2(1)	_	0,00 (0,00-NA)	0,073	349,50
0	A/A-G/G	168 (82)	79 (90,80)	1,00	0.064	4 349,30
Сверхдоминантная	A/G	37 (18,10)	8 (9,20)	0,48 (0,21-1,09)	0,064	
Лог-аддитивная		_		0,41 (0,19-0,90)	0,016	346,90
	*	•		*		

Окончание табл. 2

					Окончини	c maon. 2
Модель наследования	Генотипы	Без НУО, n=205 (%)	С НУО, n=87 (%)	ОШ (95 % ДИ)	p	AIC
		TLR4 rs4986791,	n=292; HWE=1,	00		
Кодоминантная	C/C	165 (80,50)	78 (89,70)	1,00		
	C/T	38 (18,50)	9 (10,30)	0,53 (0,24–1,16)	0,05	348,70
	T/T	2(1)	_	0,00 (0,00-NA)]	
Доминантная	C/C	165 (80,50)	78 (89,70)	1,00	0,048	348,80
	C/T-T/T	40 (19,50)	9 (10,30)	0,47 (0,21-1,03)		
Dana a a a a a a a a a a a a a a a a a a	C/C-C/T	203 (99)	87 (100)	1,00	0,073	349,50
Рецессивная	T/T	2(1)	_	0,00 (0,00-NA)		
C	C/C-T/T	167 (81,50)	78 (89,70)	1,00	0,11	350,10
Сверхдоминантная	C/T	38 (18,50)	9 (10,30)	0,54 (0,24–1,18)		
Лог-аддитивная	_	_	_	0,46 (0,22-0,96)	0,028	347,90
		TLR6 rs3775073,	n=292; HWE=0,	91		•
	T/T	69 (33,70)	22 (25,30)	1,00	0,24	351,90
Кодоминантная	T/C	98 (47,80)	45 (51,70)	1,49 (0,81–2,74)		
	C/C	38 (18,50)	20 (23)	1,82 (0,87–3,82)		
	T/T	69 (33,70)	22 (25,30)	1,00	0,12	350,30
Доминантная	T/C-C/C	136 (66,30)	65 (74,70)	1,58 (0,88–2,81)		
	T/T-T/C	167 (81,50)	67 (77)	1,00	0,28	351,60
Рецессивная	C/C	38 (18,50)	20 (23)	1,42 (0,76–2,65)		
Сверхдоминантная	T/T-C/C	107 (52,20)	42 (48,30)	1,00	0,56	352,40
	T/C	98 (47,80)	45 (51,70)	1,16 (0,70–1,94)		
Лог-аддитивная	_	_	_	1,36 (0,94–1,96)	0,10	350
		TLR6 rs5743810,	n=292; HWE=0,	52		
Кодоминантная	G/G	84 (41)	39 (44,80)	1,00	0,31	352,40
	A/G	89 (43,40)	40 (46)	0,95 (0,55–1,63)		
	A/A	32 (15,60)	8 (9,20)	0,52 (0,22–1,26)		
Доминантная	G/G	84 (41)	39 (44,80)	1,00	0,50	352,30
	A/G-A/A	121 (59)	48 (55,20)	0,84 (0,50–1,40)		
Рецессивная	G/G–A/G	173 (84,40)	79 (90,80)	1,00	0,13	350,40
	A/A	32 (15,60)	8 (9,20)	0,54 (0,23–1,24)		
Сверхдоминантная	G/G-A/A	116 (56,60)	47 (54)	1,00	0,73	352,60
	A/G	89 (43,40)	40 (46)	1,09 (0,65–1,83)		
Лог-аддитивная	_	_	_	0,79 (0,54–1,15)	0,22	351,20

Наиболее изученными примерами PAMPs являются ДНК и PHK бактерий и вирусов, липополисахариды бактериальной стенки и другие [14]. *TLRs* представители сигнальных PRRs необходимы для быстрого распознания инфекционных патогенов посредством экзогенных лигандов с последующей реализацией воспалительных реакций. В результате активации *TLRs* происходят индукция синтеза медиаторов воспаления (цитокины и интерфероны) и экспрессия молекул, активирующих Т-лимфоциты (приобретенный иммунный ответ).

Доказано, что нарушение на уровне *TLRs* регуляции может способствовать развитию и прогрессированию многих воспалительных заболеваний (ССЗ, диабета, болезни Альцгеймера и рака) [15].

По данным многих исследователей, причиной воспаления при атеросклерозе является присутствие в наружной стенке артерий грамотрицательных бактерий (Chlamydia pneumonia, Helicobacter pylori); вирусов Эпштейна — Барр, вирусов иммунодефицита человека, вирусов простого герпеса, гриппа, цитомегаловируса, вирусов гепатита В и С, которые, являясь экзогенными лигандами *TLR*, способствуют секреции воспалительных молекул, участвующих в патогенезе атеросклероза [16]. *TLRs* также играют ключевую роль в патогенезе асептического воспаления посредством эндогенных лигандов [свободных жирных кислот (СЖК), модифицированных ЛПНП] [17]. В связи с этим значительный интерес представляет изучение ре-

цепторов врожденного иммунитета при данных заболеваниях.

У млекопитающих известно 13 TLR, у человека -11 [18]. Рецептор *TLR2* уникален своей способностью образовывать гетеродимеры с TLR1, TLR6 на поверхности цитоплазматической мембраны. Гомодимеры TLR1, TLR2 и TLR6 сами функционально неактивны. Гетеродимер TLR2-TLR6 распознает диацилированные липопептиды грамположительных бактерий и микоплазм, а *TLR2-TLR1* – триацилированные липопептиды грамотрицательных бактерий и микоплазм. Благодаря такой особенности рецептор TLR2 расширяет диапазон распознавания патогенассоциированных молекулярных паттернов. TLR3 распознает вирусную двухцепочечную РНК; TLR4 связывает эндотоксин липополисахарида (ЛПС) из грамотрицательных бактерий; TLR5 распознает бактериальные белки жгутиков; TLR7 и TLR9 обнаруживают патогенные нуклеиновые кислоты; TLR10 может образовывать гетеродимеры с TLR1 или TLR2; TLR11 распознает молекулы уропатогенных бактерий [19]. Таким образом, TLR2, TLR4, TLR6 функционируют в качестве основных врожденных датчиков у млекопитающих для распознавания клеточной стенки компонентов грамотрицательных бактерий [20].

Установлено, что в инсулинчувствительных тканях представлено большинство известных TLRs, среди которых TLR2 и TLR4 играют важнейшую роль в патогенезе диабета и атеросклероза [21].

Повреждение эндотелия сосудов у больных СД 2-го типа может быть связано с инициацией *TLRs*, которая приводит к активации транскрипционного ядерного фактора (NF-kB) [22]. В результате происходит секреция воспалительных ферментов, цитокинов (интерлейкинов, TNF, интерферонов, хемокинов); молекул клеточной адгезии, факторов роста, белков острой фазы; трансформация макрофагов в пенистые клетки [23]. Сохраняющийся воспалительный процесс может приводить к прогрессированию атеросклероза и способствовать еще большему повреждению сосудов эндотелия [22].

Полиморфизм генов *TLRs* при внедрении патогенов может определять различный характер течения воспалительного ответа и специфических иммунных реакций, приводить как к снижению способности распознавания соответствующих лигандов с менее выраженной активацией иммунных клеток, так и наоборот. Так, по данным одних исследователей мутантные аллели G полиморфизма Asp299Gly и T полиморфизма Thr399Ile *TLR4* снижают риск развития СД 2-го типа, по данным других – мутант-

ный аллель G полиморфизма Asp299Gly гена *TLR4* ассоциируется с повышенным риском развития СД 2-го типа, который характеризуется более тяжелым течением и быстрым развитием осложнений [24]. По результатам одних исследователей, ассоциаций мутантного аллеля G Asp299Gly *TLR4* с атеросклерозом коронарных артерий не выявлено [25], по данным других — аллель G данного полиморфизма ассоциирован с уменьшением риска развития атеросклероза сонных артерий и острых коронарных событий [26].

Таким образом, накопленные данные о полиморфных вариантах *TLR4* rs4986790 (Asp299Gly) и rs4986791 (Thr399Ile) и их связи с СД 2-го типа и атеросклероза, ИБС противоречивы. Установлено, что аллель G полиморфизма rs4986790 (Asp299Gly) *TLR4* уменьшает воспалительный ответ на патогены. Определено, что носители аллеля G данного полиморфизма имеют более низкие уровни циркулирующих провоспалительных цитокинов и других медиаторов воспаления [27].

Полученные нами результаты согласуются с данными других исследований, таких как Мапоlakis A. C. с соавторами (2011): аллели Т и G полиморфизмов гена TLR4 (rs4986791 (Thr399Ile) и rs4986790 (Asp299Gly) соответственно) были выявлены у пациентов без диабета (р<0,0001), а также связаны со сниженным риском развития НУО [24]. По нашему мнению, полиморфизмы генов рецепторов, относящихся к субсемейству TLR2 (TLR1, TLR2 и TLR6), за счет своей особенной функциональной активности играют важную роль в развитии СД 2-го типа, так как доказано, что TLR2 димеризуется с TLR1 или TLR6 при наличии СЖК, уровень которых повышен при СД 2-го типа. Кроме того, по данным многих исследований установлено, что гипергликемия при СД 2-го типа вызывает именно гетеродимеризацию TLR2-TLR6 [28]. Носители вариантного G аллеля rs5743611 TLR1 ассоциированы с увеличением в 1,5 раза риска развития нарушений углеводного обмена. Вероятно, что при СД 2-го типа на фоне повышения содержания СЖК, выступающих в качестве дополнительных лигандов TLR, трансдукция становится более эффективной.

Известно, что при активации рецепторов *TLR2* и *TLR4* нарушается функционирование внутриклеточного сигнального пути инсулина за счет инактивации молекулы субстрата рецептора к инсулину, и это приводит к угнетению действия инсулина на клетки-мишени [29]. ИР имеет место уже на стадии НТГ [30], поэтому в нашем исследовании изучались полиморфизмы рецепторов врожденного иммунитета у пациентов не только

с СД 2-го типа, но и с НТГ. Установлено, что СЖК являются естественными эндогенными лигандами TLR4 и способны вызывать развитие воспаления и ИР путем прямой активации TLR4 [31]. Поэтому их избыточное количество в условиях СД 2-го типа, получившееся в результате активации TLR4 в адипоцитах [32], приводит к хроническому воспалению жировой ткани, способствует развитию ИР [33]. Происходит усиление липолиза и выделение из клеток ТГ и СЖК, в гепатоцитах активируется гликогенолиз с высвобождением глюкозы в циркулирующую кровь и развитием гипергликемии. Таким образом, происходит усугубление имеющейся ИР на системном уровне, следствием чего являются дислипидемия и гипергликемия [34]. Доказано, что отсутствие рецептора TLR4 или его ингибирование предупреждают нарушения действия инсулина в изолированных скелетных мышцах [35]. TLR4 является одним из основных рецепторов семейства TLRs, активация которого приводит к запуску воспаления, развитию диабета и его осложнений [36].

Как известно, повышенное содержание СЖК в крови при СД 2-го типа способствует повышению синтеза в печени липопротеидов очень низкой плотности (ЛПОНП) с последующим увеличением концентрации в плазме крови аполипопротеина В, ТГ и снижением содержания антиатерогенных ЛПВП. При этом показатели ЛПНП и ОХС остаются нормальные или повышены незначительно. Данный тип дислипидемии является высоко атерогенным, значительно повышающим риск развития ССЗ [37].

Результаты настоящего исследования свидетельствуют о важной роли полиморфизмов *TLRs*, возможном развитии НУО и ИБС. По-видимому, хронический воспалительный процесс на системном уровне, реализованный через *TLRs*, является предиктором развития СД 2-го типа и прогрессирования атеросклероза. Наблюдается относительно невысокая частота встречаемости отдельных аллелей или генотипов в популяции пациентов с СД 2-го типа и ИБС, что ограничивает данное исследование. Это может быть связано с тем, что развитие заболевания у разных людей обусловлено комбинацией вариантов разных генов, каждый из которых имеет небольшой эффект.

Выводы

В настоящем исследовании у пациентов с ИБС с НУО и без такового определены достоверные различия по показателям липидного обмена, частоте выявления АГ, тяжести ФК ХСН, ИМТ, а именно: пациенты с НУО имели более высо-

кие уровни ТГ и низкие уровни ХС ЛПВП; более частое выявление АГ в анамнезе и больший ФК ХСН, более высокий показатель ИМТ. Выявлены ассоциации полиморфных вариантов генов *TLRs* с нарушениями углеводного обмена у пациентов с ишемической болезнью сердца: аллель Т полиморфизма rs4986791 (Thr399Ile) и аллель G полиморфизма rs4986790 (Asp299Gly) гена *TLR4* были статистически значимо ассоциированы со сниженным, а носители вариантного аллеля G полиморфизма rs5743611 гена *TLR1* – повышенным риском развития нарушений углеводного обмена.

СПИСОК ЛИТЕРАТУРЫ / REFERENSCES

- 1. Kolh P., Wijns W., Danchin N. et al. Guidlines on myocardial revascularization. Task Force on myocardial revascularization of the European Society Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS); European Association for Percutaneous Cardiovascular Intervention (EAPCI). Eur. J. Cardiothorac. Surg. 2010; 38: 1–52.
- 2. Nicholls S. J., Tuzcu E. M., Kalidindi S. et al. Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling: a pooled analysis of 5 intravascular ultrasound trials. J. Am. Coll. Cardiol. 2008; 52 (4): 25–262.
- 3. Лупанов В. П. Безболевая ишемия миокарда: диагностика, медикаментозное и хирургическое лечение, прогноз (обзор литературы). Consilium. Medicum. 2012; 14 (10): 36–44

Lupanov V. P. Bezbolevaya ischemiya miokarda: diagnostika, medikamentoznoe I hirurgicheskoe lechenie, prognoz (obzor literaturi). Consilium. Medicum. 2012; 14 (10): 36–44. [In Russ].

4. *Терещенко С. Н., Джаиани Н. А., Голубев А. В.* Ишемическая болезнь сердца и сахарный диабет. Consilium. Medicum. 2005; 5: 364–368.

Tereschenko S. N., Djaiani N. A., Golubev A. V. Ischemicheskaya bolezn' serdtsa i saharniy diabet. Consilium. Medicum. 2005; 5: 364–368. [In Russ].

- 5. Berry C., Tardif J.-C., Bourassa M. G. Coronary heart disease in patient with diabetes. Pt I: Recent advances in prevention and noninvasive management. J. Am. Coll. Cardiol. 2007; 49: 631–642.
- 6. Грачева С. А., Клефортова И. И., Шамхалова М. Ш. Распространенность сочетанного атеросклеротического поражения сосудов у больных сахарным диабетом. Сахарный диабет. 2012; 1: 49–55.

Gracheva S. A., *Klefortova I. I.*, *Shamkhalova M. Sh.* Rasprostranennost' sochetannogo ateroskleroticheskogo porazheniya sosudov u bol'nih s saharnim diabetom. Saharniy diabet. 2012; 1: 49–55. [In Russ].

- 7. Scirica B., Morrow D., Cannon C. et al. Clinical application of C-reactive protein across the spectrum of acute coronary syndromes. Clin. Chem. 2007; 53: 18001–18007.
- 8. *Mc. Cullough P. A.*, *Peacock F. W.*, *O'Neil B.* et al. Capturing the pathophysiology of acute coronary syndromes with circulating biomarkers. Rev. Cardiovasc. Med. 2010; 11: 31–32.
- 9. Дедов И. И., Шестакова М. В. Алгоритмы специализированной медицинской помощи больным с сахарным диабетом. М.: Информполиграф. 2013; 26.

- Dedov I. I., Shestakova M. V. Algoritmi spetsializirovannoi meditsinskoi pomoschi bol'nim s saharnim diabetom. Moscow: Informpoligraf. 2013; 26. [In Russ].
- 10. Serruys P. W., Onuma Y., Garg S. et al. Assessment of the SYNTAX score in the Syntax study. EuroInterv. 2009; 5(1): 50–56.
- 11. Дедов И. И., Шестакова М. В. Сахарный диабет и артериальная гипертензия. М.: МИА. 2006; 343.
- *Dedov I. I., Shestakova M. V.* Saharniy diabet I arterial'naya gipertensiya. Moscow: MIA. 2006; 343. [In Russ].
- 12. Clark R., Kupper T. Old meets new: the interaction between innate and adaptive immunity. J. Invest Dermatol. 2005; 125 (4): 629–637.
- 13. *Хаитов Р. М., Игнатьева Г. А., Сидорович И. Г.* Иммунология. Норма и патология: учебник. 3-е изд., перераб. и доп. М.: Медицина; 2010; 10–15.
- Khaitov R. M., Ignat'eva G. A., Sidorovich I. G. Immunologia. Norma I patologiya: Uchebnik. 3-e izd., pererab. i dop. Moscow: Meditsina; 2010; 10–15. [In Russ].
- 14. Gibson J., Gow N., Wong S. Y. Expression and Funktion of innate Pattent Recognition Receptors in T and B cells. Immun., Endoc & Metab. Agents in Med. Chem. 2010; 10: 11–20.
- 15. Virtue A., Wang H., Yang X. F. MicroRNAs and toll-like receptor/interleukin-1 receptor signalling. J. Hematol. Oncol. 2012; 5: 66.
- 16. *Harskamp R. E.* and *van Ginkel M. W.* Acute respiratory tract infections: a potential trigger for the acute coronary syndrome. Ann. Med. 2008; 40: 121–126.
- 17. *Gill R.*, *Tsung A.*, *Billiar T. R.* Linking oxidative stress to inflammation: toll-like receptors. Free Radic. Biol Med. 2010; 48: 1121–1132.
- 18. *Cario E.* Toll-like Receptors in Inflammatory Bowel Diseases: A Decade Later. Inflamm. Bowel. Dis. 2010; 16: 1583–1597.
- 19. *Brown J.*, *Wang H.*, *Hajishengallis G. N.* et al. TLR-signaling networks: an integration of adaptor molecules, kinases, and cross talk. J. Dent. Res. 2011; 90: 4174–4227.
- 20. Suzuki T., Kobayashi M., Isatsu K. et al. Mechanisms involved in apoptosis of human macrophages induced by lipopolysaccharide from Actinobacillus actinomycetemcomitans in the presence of cycloheximide. Infec.t Immun. 2007; 72: 18561–18565.
- 21. Wong F. S., Wen L. Toll-like receptors and diabetes. Ann NY Acad Sci. 2008; 1150: 123–132.
- 22. Tieri P., Termanini A., Bellavista E. et al. Charting the NF-кВ pathway interactome map. PLoS One. 2012; 7: 32678.
- 23. Ruiz-Ortega M., Esteban V., Egido J. The regulation of the inflammatory response through NF-kB pathway in cardiovascular disease. Trends Cardiovasc. Med. 2007; 17 (1): 19–25.
- 24. *Manolakis A. C.*, *Kapsoritakis A. N.*, *Tiaka E. K.* et al. *TLR4* gene polymorphisms: evidence for protection against type 2 diabetes but not for diabetes-associated ischaemic heart disease. Eur. J. Endocrinol. 2011; 165 (2): 261–267.

Для корреспонденции:

Жидкова Ирина Игоревна Адрес: 650002, г. Кемерово, Сосновый бульвар, д. 6 Тел. 8 (913) 282-44-89 E-mail: Irina04046@yandex.ru

- 25. Yang I. A., Holloway J. W., Ye S. TLR4 Asp 299Gly polymorphism is not associated with coronary artery stenosis. Atherosclerosis. 2003; 170: 187–190.
- 26. Ameziane N., Beillat T., Verpillat P. et al. Association of the Toll-like receptor 4 gene Asp299Gly polymorphism with acute coronary events. Arterioscler. Thromb. Vasc. Biol. 2003; 23: 61–64.
- 27. *Kiechl S., Lorenz E., Reindel M.* et al. Toll-like receptors 4 polymorphisms and atherogenesis. N. Engl. J. Med. 2002; 347 (3): 85–92.
- 28. Lee J. Y., Zhao L., Youn H. S. et al. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J. Biol. Chem. 2004; 279: 16971–16979.
- 29. Wolowczuk I., Verwaerde C., Viltart O. et al. Feeding Our Immune System: Impact on Metabolism. Clin. Dev. Immunol. 2008: 639803. Published online 2008 Feb 25. doi: 10.1155/2008/639803.
- 30. Груздева О. В., Барбараш О. Л., Акбашева О. Е. Взаимосвязь ингибитора активатора плазминогена и свободных жирных кислот с инсулинорезистентностью у больных инфарктом миокарда. Сахарный диабет. 2011; 4: 18–23.
- *Gruzdeva O. V.*, *Barbarash O. L.*, *Akbasheva O. E.* Vzaimosvyaz' ingibitora aktivatora plasminogena i svobodnih zhirnih kislot s insulinoresistentnost'yu u bolnih infarktom miokarda. Saharnii diabet. 2011; 4: 18–23. [In Russ].
- 31. Schaeffler A., Gross P., Buettner R. et al. Fatty acid-induced induction of Toll-like receptor-4/nuclear factor-kappaB pathway in adipocytes links nutritional signalling with innate immunity. Immunology. 2009; 126: 233–245.
- 32. Kim S. J., Choi Y., Choi Y. H. et al. Obesity activates toll-like receptor-mediated proinflammatory signaling cascades in the adipose tissue of mice. J. Nutr. Biochem. 2012; 23: 113–122.
- 33. Fresno M., Alvarez R., Cuesta N. Toll-like receptors, inflammation, metabolism and obesity. Arch Physiol. Biochem. 2011; 117: 151–164.
- 34. *Shi H.*, *Kokoeva M. V.*, *Inouye K.* et al. *TLR4* links innate immunity and fatty acid-induced insulin resistance. Journal of Clinical Investigation. 2006; 116 (11): 3015–3025.
- 35. Radin M. S., Sinha S., Bhatt B. A. et al. Inhibition or deletion of the lipopolysaccharide receptor Toll-like receptor-4 confers partial protection against lipid-induced insulin resistance in rodent skeletal muscle. Diabetologia. 2008; 51: 336–346.
- 36. *Dasu M. R.*, *Jialal I*. Amelioration of wound healing in diabetic toll-like receptor-4 knockout mice. J. Diabetes Complications. 2013; 27 (5): 417–421.
- 37. Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010; 375 (9733): 2215–2222.

Статья поступила 25.08.2015

For correspondence:

Zhidkova Irina

Address: 6, Sosnoviy blvd., Kemerovo, 650002, Russian Federation Tel. +7 (913) 282-44-89 E-mail: Irina04046@yandex.ru