УДК 616-092.6 DOI 10.17802/2306-1278-2025-14-5-210-235

**ONLINE** 

# СРАВНИТЕЛЬНЫЙ АНАЛИЗ КАЧЕСТВЕННОГО И КОЛИЧЕСТВЕННОГО СОСТАВА МОЛЕКУЛ, ВЫДЕЛЯЕМЫХ ПЕРВИЧНЫМИ ЭНДОТЕЛИАЛЬНЫМИ КЛЕТКАМИ КОРОНАРНОЙ И ВНУТРЕННЕЙ ГРУДНОЙ АРТЕРИИ ЧЕЛОВЕКА В ФИЗИОЛОГИЧЕСКОМ И ДИСФУНКЦИОНАЛЬНОМ СОСТОЯНИИ

В.Е. Маркова<sup>1</sup>, Д.К. Шишкова<sup>1</sup>, А.Д. Степанов<sup>1</sup>, А.В. Фролов<sup>1</sup>, Ю.О. Юрьева<sup>1</sup>, А.И. Лазебная<sup>1</sup>, Е.А. Репкин<sup>2</sup>, А.Г. Кутихин<sup>1</sup>

<sup>1</sup> Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», бульвар имени академика Л.С. Барбараша, стр. 6, Кемерово, Российская Федерация, 650002; <sup>2</sup> Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет», Университетская набережная, 7-9, Санкт-Петербург, Российская Федерация, 199034

### Основные положения

- Дисфункциональные эндотелиальные клетки характеризуются патологическим слущиванием рецепторных маркеров эндотелиального фенотипа, а также снижением выделения компонентов эндотелиальной базальной мембраны и субэндотелиального внеклеточного матрикса в культуральную среду.
- В сравнении с эндотелиальными клетками внутренней грудной артерии эндотелиальные клетки коронарной артерии отличаются повышенным выделением в культуральную среду интегринов и белков сигнальных путей активации и агрегации тромбоцитов, а также сниженным выделением компонентов базальной мембраны.
- В сравнении с эндотелиальными клетками коронарной артерии эндотелиальные клетки внутренней грудной артерии характеризуются более высокой устойчивостью к воздействию пусковых факторов дисфункции эндотелия.

| Цель                  | Провести сравнительный анализ содержания молекул различных функциональных классов в культуральной среде от первичных эндотелиальных клеток атерочувствительной коронарной артерии (ЭК-КА) и атерорезистентной внутренней грудной артерии (ЭК-ВГА), в том числе при их дисфункции.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Материалы<br>и методы | В исследование были включены контрольные культуры ЭК-КА (n = 6) и ЭК-ВГА (n = 6) и культуры дисфункциональных ЭК-КА (n = 6) и ЭК-ВГА (n = 6), подвергшиеся воздействию кальципротеиновых частиц в бессывороточной культуральной среде в течение 24 часов. Далее было проведено осаждение выделенных в культуральную среду ЭК-КА и ЭК-ВГА белков ацетоном, триптический гидролиз белков до пептидов (10 мкг на образец), идентификация белков высокоэффективной жидкостной хроматографией с тандемной масс-спектрометрией и биоинформатический анализ относительного содержания маркеров эндотелиального фенотипа, компонентов эндотелиальной базальной мембраны и субэндотелиального внеклеточного матрикса, белков сигнальных путей ангиогенеза, активации и агрегации тромбоцитов, ответа на окислительный и эндоплазматический стресс. Анализ концентрации провоспалительных цитокинов в культуральной среде был проведен по технологии хМАР. |
| Результаты            | Молекулярный профиль культуральной среды от дисфункциональных ЭК характеризовался повышенным содержанием растворимых форм эндотелиальных рецепторов, а также сниженным содержанием компонентов эндотелиальной базальной мембраны и субэндотелиального внеклеточного матрикса. В культуральной среде от ЭК-КА было выявлено повышенное содержание растворимых форм интегринов (свойственное для дисфункциональных ЭК) и белков сигнальных путей активации и агрегации тромбоцитов, а также сниженное содержание компонентов базальной мембраны.                                                                                                                                                                                                                                                                                                                                                                                                   |

**Для корреспонденции:** Виктория Евгеньевна Маркова, marvika97@gmail.com; адрес: бульвар им. академика Л.С. Барбараша, стр. 6, Кемерово, Российская Федерация, 650002

Corresponding author: Victoria E. Markova, marvika97@gmail.com; address: 6, Academician Barbarash blvd., Kemerovo, Russian Federation, 650002

|                | Воздействие первичных кальципротеиновых частиц индуцировало выделение 12 и 5 провоспалительных цитокинов, а вторичных — 30 и 10 провоспалительных цитокинов в ЭК-КА и ЭК-ВГА соответственно.                     |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Заключение     | Качественный и количественный состав молекул, выделяемых ЭК-КА, более схож с таковым у дисфункциональных ЭК, в то время как ЭК-ВГА обладают более высокой устойчивостью к провоспалительной активации эндотелия. |
| Ключевые слова | Эндотелиальные клетки • Коронарная артерия • Внутренняя грудная артерия • Дисфункция эндотелия • Провоспалительные цитокины • Базальная мембрана • Внеклеточный матрикс                                          |

Поступила в редакцию: 08.08.2025; поступила после доработки: 25.09.2025; принята к печати: 08.10.2025

# SECRETOME OF PRIMARY HUMAN CORONARY ARTERY AND INTRNAL THORACIC ARTERY ENDOTHELIAL CELLS AT PHYSIOLOGICAL STATE AND AT ENDOTHELIAL DYSFUNCTION

V.E. Markova<sup>1</sup>, D.K. Shishkova<sup>1</sup>, A.D. Stepanov<sup>1</sup>, A.V. Frolov<sup>1</sup>, Yu.O. Yurieva<sup>1</sup>, A.I. Lazebnaya<sup>1</sup>, E.A. Repkin<sup>2</sup>, A.G. Kutikhin<sup>1</sup>

<sup>1</sup> Federal State Budgetary Institution "Research Institute for Complex Issues of Cardiovascular Diseases", 6, Academician Barbarash blvd., Kemerovo, Russian Federation, 650002; <sup>2</sup> Saint Petersburg State University, 7-9, Universitetskaya Embankment, Saint-Petersburg, Russian Federation, 199034

# **Highlights**

- Dysfunctional endothelial cells are characterized by the pathological shedding of endothelial receptors markers and reduced release of endothelial basement membrane components and subendothelial extracellular matrix proteins into the cell culture medium.
- Primary human coronary artery endothelial cells demonstrate an elevated shedding of integrins, an increased production of platelet aggregation and activation components, and reduced release of basement membrane components into the cell culture medium as compared to human internal thoracic artery endothelial cells.
- Primary human internal thoracic artery endothelial cells have higher resistance to endothelial dysfunction triggers in comparison with human coronary artery endothelial cells.

| Aim     | To compare the secretome from intact and dysfunctional primary human coronary artery endothelial cells (HCAEC) and human internal thoracic artery endothelial cells (HITAEC).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methods | Here we investigated the secretome of HCAEC and HITAEC treated with either PBS (intact ECs, $n=6$ per EC line) or calciprotein particles (dysfunctional ECs, $n=6$ per EC line) in the serum-free medium for 24 hours. To achieve this task, we performed acetone precipitation of proteins from the cell culture supernatant, tryptic digestion of proteins to peptides (15 $\mu$ g per sample), protein identification by high-performance liquid chromatography-tandem mass-spectrometry, and bioinformatics analysis of endothelial phenotype markers, endothelial basement membrane components and subendothelial extracellular matrix proteins, angiogenesis pathways, platelet activation and aggregation pathways, and response to oxidative or endoplasmic reticulum stress. Concentration of pro-inflammatory cytokines in the cell culture supernatant was measured by multi-analyte profiling (xMAP). |
| Results | Cell culture supernatant from dysfunctional ECs had increased levels of endothelial cell receptor soluble forms and reduced quantities of endothelial basement membrane components and subendothelial extracellular matrix proteins. Cell culture supernatant from HCAEC contained increased levels of integrins (similar to dysfunctional ECs) and platelet activation and aggregation proteins, as well as reduced amount of basement membrane components. Treatment with primary calciprotein particles provoked the release of 12 and 5 pro-inflammatory cytokines, respectively. Treatment with secondary calciprotein particles induced production of 30 and 10 pro-inflammatory cytokines in HCAEC and HITAEC, respectively.                                                                                                                                                                               |

| Conclusion | Secretome of HCAEC is more similar to dysfunctional ECs whilst HITAEC have higher resistance to pro-inflammatory endothelial activation.                         |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Keywords   | Endothelial cells • Coronary artery • Internal thoracic artery • Endothelial dysfunction • Pro-inflammatory cytokines • Basement membrane • Extracellular matrix |  |

Received: 08.08.2025; received in revised form: 25.09.2025; accepted: 08.10.2025

### Список сокращений

ВГА – внутренняя грудная артерия МС – масс-спектрометрия ЭК – эндотелиальные клетки КА – коронарная артерия

## Введение

Эндотелиальные клетки (ЭК), формирующие внутреннюю выстилку кровеносных сосудов, играют незаменимую роль в профилактике тромбоза, контроле тонуса сосудов для регуляции артериального давления и поддержании базального уровня провоспалительных цитокинов крови человека [1]. Выделяя ключевые ангиокринные факторы, в том числе молекулы с вазоактивным действием (монооксид азота, простациклин, эндотелин-1, тромбоксан А2), ангиогенным и провоспалительным действием (ангиопоэтин-2, фактор привлечения моноцитов, макрофагальный и гранулоцитарный колониестимулирующие факторы, фактор ингибирования миграции макрофагов, интерлейкин-6, интерлейкин-8, интерлейкин-32 и хемокин CXCL1) и про-фибротическим действием (трансформирующий фактор роста-бета), оказывающие юкстакринное, паракринное и эндокринное действие на гладкие миоциты сосудов, перицитов и иммунных клеток, ЭК принимают активное участие в процессах ангиогенеза и регенерации (в том числе после ишемического повреждения) [1]. Недостаточность микроциркуляторного кровоснабжения, наблюдаемая при сахарном диабете [2], хронической болезни почек [3] или после ожогов III–IV степени [4] существенно замедляет восстановление биологических тканей после повреждений. Системные патологические процессы, в частности, ишемия [5], дислипидемия [6], ожирение [7], гипергликемия [8], азотемия [9], уремия [10] и гиперфосфатемия [11], распространенные у пациентов с мультифокальным атеросклерозом, сахарным диабетом и хронической болезнью почек, стимулируют патологическую активацию ЭК, которая сопровождается повышенным выделением провоспалительных цитокинов в кровоток и миграцией лейкоцитов в стенку кровеносных сосудов [1].

Провоспалительная дисфункция эндотелия способствует развитию хронического стерильного системного воспаления, патологическими последствиями чего являются: 1) артериальная гипертензия, сопровождающаяся сниженным выделением эндотелиальных вазодилататоров [12]; 2) повышение жесткости артерий путем запуска фенотипиче-

ского сдвига гладких миоцитов сосудов, что приводит к снижению сократимости артерий в сочетании с повышением синтеза коллагена и матрикс-деградирующих ферментов (матриксных металлопротеиназ, катепсинов и металлоэндопептидаз ADAM и ADAMTS) [13]; 3) синдром старческой астении, определяемый как ускорение биологического старения организма (избыточное снижение физических и когнитивных функций) в сравнении с хронологическим возрастом [14]. Специфические пусковые факторы дисфункции эндотелия (в частности, SARS-CoV-2) могут вызывать протромботическую дисфункцию эндотелия, характеризуемую повышением синтеза нерасщепленных высокомолекулярных мультимеров фактора фон Виллебранда и ингибитора активатора плазминогена в сочетании со снижением выделения урокиназного и тканевого активатора плазминогена, в совокупности вызывающую способствующую развитию тромбоза артерий, вен и сосудов микроциркуляторного русла и жизнеугрожающих тромботических осложнений [15]. Большое количество ЭК в организме человека (по различным оценкам, от 1 до 60 триллионов) и их непосредственный контакт с кровотоком подчеркивают патофизиологическую и клиническую значимость дисфункции эндотелия и необходимость своевременного изменения образа жизни и применения эффективных фармакологических подходов к ее лечению [16].

ЭК артерий, вен и сосудов микроциркуляторного русла характеризуются существенной молекулярной и функциональной гетерогенностью вследствие различных биомеханических условий (напряжение сдвига, циклическое растяжение и артериальное давление), различного парциального давления кислорода и углекислого газа в артериальной, венозной и капиллярной крови и различной жесткостью внеклеточного матрикса в различных типах сосудов [17]. Гетерогенность ЭК подразумевает использование различных линий ЭК для изучения патофизиологии соответствующих болезней системы кровообращения [17]: в частности, ЭК артерий активно применяются в исследованиях атеросклероза [18], ЭК вен – для изучения тромбоза [19], а ЭК сосудов микроциркуляторного русла –

для анализа этиологии и патогенеза нарушений микроциркуляции [20]. На фоне старения населения и повышения распространенности коморбидных состояний (сахарного диабета, хронической болезни почек и хронической обструктивной болезни легких) у пациентов с болезнями системы кровообращения [21] все более актуальной задачей также становится моделирование дисфункции эндотелия в артериях, подверженных развитию атеросклероза - к примеру, коронарной артерии (КА) и устойчивых к формированию атеросклеротических бляшек – к примеру, внутренней грудной артерии (ВГА). Предполагается, что устойчивость ВГА к развитию атеросклероза вызвана ламинарным кровотоком, исходно высоким базальным уровнем выделения вазодилататоров, устойчивостью к развитию окислительного стресса, низким уровнем провоспалительной и синтетической активности гладких миоцитов и относительно низким исходным содержанием коллагена в сосудистой стенке, что в совокупности обусловливает отсутствие атерогенной, фибротической и протеолитической активности [22].

Патологические последствия дисфункции эндотелия в значительной степени обусловлены изменением качественного и количественного состава молекул, выделяемых ЭК в микроокружение и системный кровоток [23]. По этой причине особый интерес представляет высокопроизводительное профилирование эндотелиального секретома в культуральной среде от интактных и дисфункциональных ЭК, а также от эндотелиальных клеток коронарной артерии (ЭК-КА) и внутренней грудной артерии (ЭК-ВГА). Наиболее чувствительными и специфичными методами для выполнения этой научной задачи являются ультравысокоэффективная жидкостная хроматография, совмещенная с тандемной масс-спектрометрией (УВЭЖХ-МС/ МС), позволяющая провести объективный анализ совокупности выделяемых ЭК в культуральную среду белков, и применение конъюгированных с антителами флюоресцентно меченных магнитных микросфер (технология хМАР), позволяющее провести многопараметрический количественный анализ отдельных классов молекул (к примеру, провоспалительных цитокинов) в культуральной среде. В данном исследовании сочетание данных методик было использовано сначала для оценки профиля молекул, выделяемых контрольными и дисфункциональными ЭК, а затем – ЭК-КА и ЭК-ВГА. Целью исследования стал сравнительный анализ эндотелиального секретома в физиологических и патологических условиях, а также секретома ЭК атерочувствительной и атерорезистентной артерии.

# Материалы и методы

Культивирование ЭК-КА и ЭК-ВГА Первичные культуры ЭК-КА (300K-05a, Cell

Applications) и ЭК-BГA (308K-05a, Cell Applications) культивировались во флаконах T-75 flasks (708003, Wuxi NEST Biotechnology Co., Ltd.) в соответствии с инструкциями производителя в среде EndoBoost (EB1, AppScience Products) до достижения конфлюэнтности. После этого ЭК-КА и ЭК-ВГА были рассеяны в 6-луночные планшеты (703001, Wuxi NEST Biotechnology Co., Ltd.) с использованием 0,25% раствора трипсина-ЭДТА (П043п, ПанЭко) и 10% фетальной бычьей сыворотки (1.1.6.1, Биолот) для ингибирования трипсина. Культивирование ЭК-КА и ЭК-ВГА в 6-луночных планшетах также осуществлялось в среде EndoBoost (EB1, AppScience Products) до достижения конфлюэнтности ( $\approx 0.5 \times 106$  клеток на лунку). Непосредственно перед проведением экспериментов ЭК дважды промывали теплым (≈ 37 °C) раствором фосфатно-солевого буфера по Дульбекко без кальция и магния с pH = 7,4 (ФСБД, 1.2.4.7, Биолот) среду EndoBoost заменяли на бессывороточную среду EndoLife (EL1, AppScience Products). Культивирование ЭК-КА и ЭК-ВГА осуществляли в параллели.

### Моделирование дисфункции эндотелия

Для моделирования дисфункции эндотелия с целью протеомного профилирования совокупности выделяемых ЭК в культуральную среду молекул (секретома) конфлюэнтные ( $\approx 0.5 \times 106$  клеток на лунку 6-луночного планшета) культуры ЭК-КА и ЭК-ВГА в бессывороточной питательной среде EndoLife (EL1, AppScience Products) инкубировали со 100 мкл вторичных кальципротеиновых частиц (КПЧ-И) в дозе  $0.6 \times 105$  частиц на 1 мл (25 мкг кальция на 1 мл) либо контрольного фосфатно-солевого буфера по Дульбекко (ФСБД) в течение 24 часов (n = 6 лунок на группу). После этого среду центрифугировали при 220 × g (5804R, Eppendorf) для осаждения клеток, аликвотировали, центрифугировали при 2 000 × g (MiniSpin Plus, Eppendorf) для осаждения клеточного дебриса, переносили в новые пробирки и замораживали при -80 °C.

Для моделирования дисфункции эндотелия с целью последующего мультиплексного анализа провоспалительных цитокинов конфлюэнтные ( $\approx 0.5 \times$ 106 клеток на лунку 6-луночного планшета) культуры ЭК-КА и ЭК-ВГА в бессывороточной питательной среде EndoLife (EL1, AppScience Products) инкубировали со 100 мкл первичных кальципротеиновых частиц (КПЧ-С) или вторичных кальципротеиновых частиц (КПЧ-И) в дозе 0,6 × 105 частиц на 1 мл (25 мкг кальция на 1 мл) либо контрольного фосфатно-солевого буфера по Дульбекко (ФСБД) в течение 24 часов (n = 3 лунки на группу). После этого среду центрифугировали при 220 × g (5804R, Eppendorf) для осаждения клеток, аликвотировали, центрифугировали при 2 000×g (MiniSpin Plus, Eppendorf) для осаждения клеточного дебриса, переносили в новые пробирки и замораживали при -80 °C. Синтез кальципротеиновых частиц осуществляли в соответствии с ранее опубликованным протоколом [18, 23].

Ультравысокоэффективная жидкостная хроматография, совмещенная с тандемной масс-спектрометрией (УФЭЖХ-МС/МС)

После осаждения белка ацетоном (добавление 300 мкл бессывороточной культуральной среды к 1 200 мкл ацетона, 650501, Sigma-Aldrich) осадок белка ресуспендировали в мочевине (8 моль/л, U5128, Sigma-Aldrich), разведенной в бикарбонате аммония (50 ммоль/л, 09830, Sigma-Aldrich). Концентрацию белка измеряли на флюориметре Qubit 4 (Q33238, Thermo Fisher Scientific) с использованием соответствующего набора QuDye Protein Quantification Kit (25102, Lumiprobe) в соответствии с инструкцией производителя. Образцы белка (10 мкг) инкубировали с дитиотреитолом (5 ммоль/л, D0632, Sigma-Aldrich) в течение 1 часа при 37 °C с последующей инкубацией в 2-йодацетамиде (15 ммоль/л) в течение 30 минут при комнатной температуре без доступа света (I1149, Sigma-Aldrich). Далее образцы разводили в 7 объемах бикарбоната аммония (50 ммоль/л), добавляли 200 нг трипсина (соотношение трипсина к белку 1:50, VA9000, Promega) и инкубировали в течение 16 часов при 37 °C. Затем пептиды замораживали при -80 °C на 1 час и обессоливали при помощи хроматографических наконечников (Tips-RPS-M.T2.200.96, Affinisep) в соответствии с инструкцией производителя, используя метанол (1880092500, Sigma-Aldrich), ацетонитрил (1000291000, Sigma-Aldrich) и муравьиную кислоту в концентрации 0,1% (33015, Sigma-Aldrich). Обессоленные пептиды высушивали при помощи вакуумного центрифужного концентратора (HyperVAC-LITE, Gyrozen Co., Ltd.) в течение 3 часов и растворяли в 20 мкл муравьиной кислоты в концентрации 0,1% (1000291000, Sigma-Aldrich) для последующего протеомного анализа.

Для протеомного анализа методом УВЭЖХ-МС/МС с ионной подвижностью (нанопоточный хроматограф для хроматографического разделения nanoElute и масс-спектрометр TimsToF Pro, Bruker Daltonics) использовали ≈ 500 нг пептидов. УВЭЖХ проводили с использованием хроматографической колонки Bruker FIFTEEN (С18-фаза, длина 150 мм, внутренний диаметр 0,075 мм, диаметр ложа 1,9 мкм, диаметр пор 120 Å, Bruker Daltonics, Germany) в градиенте вода/ацетонитрил в присутствии 0,1% муравьиной кислоты при температуре 50 °C со скоростью потока 400 нл/мин и температурой колонки в 50 °C (фаза А – вода с 0,1% муравьиной кислотой, фаза В – ацетонитрил с 0,1% муравьиной кислотой. До загрузки каждого образца колонку промывали ее 4 объемами. Масс-спектрометр

использовали в PASEF-режиме положительной полярности дата-зависимой тандемной масс-спектрометрии с временем PASEF-цикла 0,5 секунды. Молекулы с ионной подвижностью от 0,85 до 1,30 1/К0 аккумулировали в ячейке измерения ионной подвижности, после чего поочередно передавали в квадруполь-времяпролетный масс-спектрометр, синхронизованный с ячейкой измерения ионной подвижности, где проходила фрагментация наиболее обильных ионов в режиме автоматической тандемной масс-спектрометрии (МС/МС). Для фрагментации использовали ионы не менее чем с двумя зарядами в диапазоне m/z от 100 до 1 800.

### Биоинформатический анализ

Идентификацию белков проводили с использованием программ FragPipe (версия 21.1), MSFragger (версия 4.1), IonQuant (версия 1.10.27) и Philosopher (версия 5.1.0) с использованием операционной системы Windows 10 с версией Java 11.0.9.1 и архитектурой AMD64. Поиск проводили в соответствии с базовым техпроцессом LFQ-MBR DDA с калибровкой и оптимизацией параметров. Идентификацию проводили с использованием базы данных SwissProt (загружена 10.08.2024; 20,468 белков), отфильтрованной по белкам человека, а также с использованием исходного списка контаминантов программы FragPipe. Достоверными считали идентификации белков и пептидов со средней долей ложных отклонений гипотез (false discovery rate, FDR) < 1% и < 0.1% соответственно. Затем из анализа были исключены белки, имеющие менее 2 уникальных пептидов. После получения информации о количестве спектров, по которым была осуществлена идентификация обнаруженных белков в различных образцах, и площади соответствующих пиков проводили анализ полученных данных.

Статистический анализ масс-спектрометрических данных проводили в программной среде R (версия 4.3.2). В качестве метрики для анализа содержания белков в R была использована площади хроматографических пиков, по которым была осуществлена идентификация обнаруженных белков в различных образцах. Для обеспечения надлежащего качества данных были использованы исключительно белки, определенные не менее чем в 70% образцов. Отсутствующие данные (missing data) заполняли с использованием метода k-ближайших соседей при помощи пакета "impute" (версия 1.78.0).

После анализа совокупности белковых молекул, представленных в культуральной среде от контрольных и дисфункциональных ЭК, для анализа было выбрано 1 249 белков, экспрессированных не менее чем в 70% образцов. Далее 10% (125) белков с наибольшей кратностью изменения в каждой из этих групп были проанализированы на предмет их отношения к дифференциально экспрессированным

биоинформатическим категориям. Аналогичный анализ был проведен для ЭК-КА и ЭК-ВГА. Анализ дифференциально экспрессированных биоинформатических категорий был проведен с использованием баз данных Gene Ontology и Reactome, а также поискового инструмента DAVID (https:// david.ncifcrf.gov/tools.jsp). После удаления биоинформатических категорий с < 5 дифференциально экспрессированными белками также проводили фильтрацию по EASE score ≤ 0,05 и FDR-скорректированному значению  $p \le 0.05$ .

Измерение концентрации провоспалительных иитокинов в культуральной среде от ЭК по технологии хМАР

Для оценки концентрации провоспалительных цитокинов был использован метод их измерения посредством конъюгированных с антителами флюоресцентно меченных магнитных микросфер (так называемая технология многопараметрического анализа хМАР – Multi-Analyte Profiling). Указанный анализ был выполнен с использованием набора MILLIPLEX Human Cytokine/Chemokine Magnetic Bead Panel (HCYTMAG-60K-PX41, Merck) в соответствии с инструкцией производителя. Для анализа 41 провоспалительного цитокина было использовано по 25 мкл каждого образца бессывороточной культуральной среды.

# Результаты

Хромато-масс-спектрометрический анализ выделенных из культуральной среды белков после их триптического гидролиза позволил выделить 1 249 молекул, секретируемых контрольными и дисфункциональными ЭК. Из этих 1 249 молекул 28 были отнесены к маркерам эндотелиального фенотипа, 21 – к компонентам эндотелиальной базальной мембраны, 66 - к прочим компонентам субэндотелиального внеклеточного матрикса, 6 - к белкам метаболизма монооксида азота (NO), 48 – к белкам сигнальных путей ангиогенеза, 80 - к белкам сигнальных путей активации и агрегации тромбоцитов и свертывания крови, 16 и 17 соответственно – к белкам ответа на окислительный и эндоплазматический стресс. Для определения молекулярного профиля провоспалительной активации эндотелия в первую очередь был проведен анализ относительного уровня белковых маркеров эндотелиального фенотипа в культуральной среде от ЭК, инкубированных в стандартных условиях (контрольных ЭК) и в присутствии кальципротеиновых частиц (дисфункциональных ЭК). В качестве метрики уровня экспрессии при хромато-масс-спектрометрическом анализе было использовано среднее значение площади пика в контрольной группе (mean peak area). Повышение или снижение считалось значимым при изменении кратности изменения экспрессии в

1,5 раза (то есть с кратностью изменения экспрессии  $\geq 1,50$  или  $\leq 0,67$ ).

В культуральной среде как от контрольных, так и от дисфункциональных ЭК отмечался высокий относительный уровень (средняя площадь пика ≥ 750,000) растворимых форм фактора фон Виллебранда (VWF), рецептора к белку С (PROCR), межклеточной молекулы клеточной адгезии 2 (ІСАМ2), молекулы клеточной адгезии клеток меланомы (MCAM) и VE-кадгерина (CDH5) (табл. 1). Относительный уровень остальных растворимых

Таблица 1. Ранжирование уровней белковых маркеров эндотелиального фенотипа (отражаемых средним значением площади хроматографического пика) в культуральной среде от контрольных и дисфункциональных ЭК относительно друг друга при анализе данных высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией

Table 1. Levels of endothelial cell markers (indicated by mean chromatographic peak area at high-performance liquid chromatography-tandem mass spectrometry) in the cell culture supernatant from control and dysfunctional ECs. Head-to-head comparison of the cell culture supernatant from intact and dysfunctional ECs. Mean chromatographic peak area ranking

| Белок /<br>Protein | Средняя площадь<br>хроматографического<br>пика в контрольных<br>ЭК / Mean<br>chromatographic peak<br>area in the intact ECs | Белок /<br>Protein | Средняя площадь хроматографического пика в дисфункциональных ЭК / Mean chromatographic peak area in dysfunctional ECs |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------|
| VWF                | 1 693 335                                                                                                                   | VWF                | 1 205 888                                                                                                             |
| PROCR              | 984 319                                                                                                                     | MCAM               | 1 166 022                                                                                                             |
| ICAM2              | 981 348                                                                                                                     | PROCR              | 1 134 508                                                                                                             |
| MCAM               | 828 829                                                                                                                     | ICAM2              | 931 041                                                                                                               |
| CDH5               | 813 076                                                                                                                     | CDH5               | 775 906                                                                                                               |
| PECAM1             | 245 693                                                                                                                     | PECAM1             | 277 225                                                                                                               |
| CAVIN2             | 207 455                                                                                                                     | CAVIN2             | 225 092                                                                                                               |
| CAVIN1             | 186 650                                                                                                                     | CLEC14A            | 196 011                                                                                                               |
| TIE1               | 169 579                                                                                                                     | TIE1               | 142 454                                                                                                               |
| ESM1               | 138 302                                                                                                                     | CAVIN1             | 139 241                                                                                                               |
| CLEC14A            | 125 027                                                                                                                     | ITGB1              | 124 361                                                                                                               |
| NRP1               | 117760                                                                                                                      | BSG                | 119 219                                                                                                               |
| ESAM               | 97 464                                                                                                                      | F11R               | 118 789                                                                                                               |
| NRP2               | 95 766                                                                                                                      | ITGA5              | 116 574                                                                                                               |
| ITGB1              | 88 596                                                                                                                      | NRP1               | 103 968                                                                                                               |
| BSG                | 76 763                                                                                                                      | EDF1               | 88 327                                                                                                                |
| F11R               | 70 551                                                                                                                      | ITGA2              | 88 030                                                                                                                |
| EDF1               | 64 758                                                                                                                      | KDR                | 86 919                                                                                                                |
| ITGA2              | 62 168                                                                                                                      | ESAM               | 80 584                                                                                                                |
| TJP1               | 58 216                                                                                                                      | ENG                | 79 823                                                                                                                |
| KDR                | 57 912                                                                                                                      | TEK                | 72 489                                                                                                                |
| ITGA5              | 57 865                                                                                                                      | EPHB4              | 60 794                                                                                                                |
| ENG                | 54 140                                                                                                                      | EPHB2              | 54 173                                                                                                                |
| EPHB4              | 48 846                                                                                                                      | TJP1               | 46 992                                                                                                                |
| TEK                | 45 601                                                                                                                      | PTPRB              | 44 018                                                                                                                |
| ICAM1              | 29 896                                                                                                                      | ICAM1              | 36 531                                                                                                                |
| EPHB2              | 29 455                                                                                                                      | ESM1               | 33 071                                                                                                                |
| PTPRB              | 20 513                                                                                                                      | NRP2               | 25 251                                                                                                                |

Примечание: Здесь и далее в табл. 2, 3, 5, 6, 8, 9, 11, 12, 14, 16, 17, 18: ЭК – эндотелиальные клетки. Note: Here and further in the table. 2, 3, 5, 6, 8, 9, 11, 12, 14, 16, 17. 18: ECs – endothelial cells.

форм эндотелиальных маркеров был кратно ниже (средняя площадь пика  $\leq 300,000$ ), при в среде и от контрольных, и от дисфункциональных ЭК отмечалась достаточно высокая экспрессия (средняя площадь пика от 100,000 до 300,000) белков тромбоцитарно-эндотелиальной молекулы клеточной адгезии (PECAM1), кавина-1 (CAVIN1), кавина-2 (CAVIN-2), рецептора к ангиопоэтинам ТІЕ1, белка межклеточной адгезии CLEC14A и рецептора к фактору роста эндотелия сосудов (VEGF) нейропилина-1 (NRP1). В среде от контрольных ЭК средняя площадь пика от 100,000 до 300,000 также детектировалась для дерматансульфатного протеогликана ESM1 (эндокана), в среде от дисфункциональных ЭК – для бета-1 и альфа-5 субъединиц интегрина (ITGB1 и ITGA5), басигина (BSG) и белка плотных контактов F11R (JAM-A/CD321, табл. 1). Следует отметить, что в составе секретома ЭК содержалось более 60% ранее идентифицированных маркеров эндотелиального фенотипа (28 из 45, 62%, табл. 1).

Расчет кратности изменения экспрессии при сравнительном анализе экспрессии белковых маркеров эндотелиального фенотипа показал повышение уровня растворимых форм сосудистой эндотелиальной белковой тирозинфосфатазы (PTPRB), альфа-5, альфа-2 и бета-1 субъединиц интегринов (ITGA5, ITGA2 и ITGB1), рецептора 2 В-типа к эфринам (ЕРНВ2), белка плотных контактов F11R (JAM-A), рецептора к ангиопоэтину-1 (TEK/ CD202B), басигина (BSG), рецептора к фактору роста эндотелия сосудов (VEGFR2), эндоглина (ENG) и молекулы клеточной адгезии клеток меланомы (МСАМ) в среде от дисфункциональных ЭК в сравнении с контрольными (табл. 2). В то же время сниженная экспрессия растворимых форм в среде от дисфункциональных ЭК отмечалась всего лишь для трех маркеров эндотелиального фенотипа: фактора фон Виллебранда (VWF), рецептора к VEGF нейропилина-2 (NRP2) и секретируемого ЭК протеогликана эндокана (ESM1, табл. 2).

Далее был проведен анализ экспрессии иных белков семейств, к которым относились маркеры эндотелиального фенотипа (интегринов, клаудинов, молекул семейств JAM и ZO, кадгеринов, коннексинов, эфринов и их рецепторов, рецепторов семейства Notch, ангиопоэтинов и ангиопоэтин-подобных белков). В значительной степени это были белки межклеточных контактов и контактов ЭК с эндотелиальной базальной мембраной (интегрины) и субэндотелиальным внеклеточным матриксом (белки плотных контактов окклюдин, клаудины и молекулы семейств JAM и ZO, белки адгезивных контактов кадгерины) и белки щелевых контактов (коннексины), а также белки ангиогенных молекул (эфрины и их рецепторы, рецепторы семейства Notch, ангиопоэтины, ангиопоэтин-подобные белки). В отличие от транскриптома (в котором наблюдалась экспрессия 44 подобных белков), в эндотелиальном секретоме было выявлено всего лишь 5 белков данной группы: эфрины (EFNB1, EFNB2, EFNA1), кадгерин-13 (CDH13) и белок плотных контактов ТЈР2 (ZO-2), из которых кратностью изменения экспрессии ≥ 1,5 в патологическом секретоме обладали EFNB1 и EFNB2 (табл. 3).

При сравнении маркеров эндотелиального фенотипа в среде от ЭК-КА и ЭК-ВГА у ЭК-КА было выявлено повышение кратности изменения экспрессии бета-1, альфа-2 и альфа-5 субъединицы интегринов (ITGB1, ITGA2 и ITGA5) более чем в 1,5 раза (табл. 4). В среде от ЭК-ВГА было вы-

Таблица Ранжирование белковых эндотелиального фенотипа по кратности изменения их содержания (отражаемого средним значением площади хроматографического пика) в культуральной среде от контрольных и дисфункциональных ЭК при анализе данных высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией

Table 2. Levels of endothelial cell markers (indicated by mean chromatographic peak area at high-performance liquid chromatography-tandem mass spectrometry) in the cell culture supernatant from control and dysfunctional ECs. Fold change ranking

| Белок /<br>Protein | Средняя площадь<br>хроматографического<br>пика в контрольных<br>ЭК/Mean<br>chromatographic peak<br>area in the intact ECs | Средняя площадь<br>хроматографического<br>пика в<br>дисфункциональных<br>ЭК/Mean<br>chromatographic peak<br>area in dysfunctional<br>ECs | Кратность<br>изменения<br>/ Fold<br>change |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| PTPRB              | 20 513                                                                                                                    | 44 018                                                                                                                                   | 2,15                                       |
| ITGA5              | 57 865                                                                                                                    | 116 574                                                                                                                                  | 2,01                                       |
| EPHB2              | 29 455                                                                                                                    | 54 173                                                                                                                                   | 1,84                                       |
| F11R               | 70 551                                                                                                                    | 118 789                                                                                                                                  | 1,68                                       |
| TEK                | 45 601                                                                                                                    | 72 489                                                                                                                                   | 1,59                                       |
| CLEC14A            | 125 027                                                                                                                   | 196 011                                                                                                                                  | 1,57                                       |
| BSG                | 76 763                                                                                                                    | 119 219                                                                                                                                  | 1,55                                       |
| KDR                | 57 912                                                                                                                    | 86 919                                                                                                                                   | 1,50                                       |
| ENG                | 54 140                                                                                                                    | 79 823                                                                                                                                   | 1,47                                       |
| ITGA2              | 62 168                                                                                                                    | 88 030                                                                                                                                   | 1,42                                       |
| MCAM               | 828 829                                                                                                                   | 1 166 022                                                                                                                                | 1,41                                       |
| ITGB1              | 88 596                                                                                                                    | 124 361                                                                                                                                  | 1,40                                       |
| EDF1               | 64 758                                                                                                                    | 88 327                                                                                                                                   | 1,36                                       |
| EPHB4              | 48 846                                                                                                                    | 60 794                                                                                                                                   | 1,24                                       |
| ICAM1              | 29 896                                                                                                                    | 36 531                                                                                                                                   | 1,22                                       |
| PROCR              | 984 319                                                                                                                   | 1 134 508                                                                                                                                | 1,15                                       |
| PECAM1             | 245 693                                                                                                                   | 277 225                                                                                                                                  | 1,13                                       |
| CAVIN2             | 207 455                                                                                                                   | 225 092                                                                                                                                  | 1,09                                       |
| CDH5               | 813 076                                                                                                                   | 775 906                                                                                                                                  | 0,95                                       |
| ICAM2              | 981 348                                                                                                                   | 931 041                                                                                                                                  | 0,95                                       |
| NRP1               | 117 760                                                                                                                   | 103 968                                                                                                                                  | 0,88                                       |
| TIE1               | 169 579                                                                                                                   | 142 454                                                                                                                                  | 0,84                                       |
| ESAM               | 97 464                                                                                                                    | 80 584                                                                                                                                   | 0,83                                       |
| TJP1               | 58 216                                                                                                                    | 46 992                                                                                                                                   | 0,81                                       |
| CAVIN1             | 186 650                                                                                                                   | 139 241                                                                                                                                  | 0,75                                       |
| VWF                | 1 693 335                                                                                                                 | 1 205 888                                                                                                                                | 0,71                                       |
| NRP2               | 95 766                                                                                                                    | 25 251                                                                                                                                   | 0,26                                       |
| ESM1               | 138 302                                                                                                                   | 33 071                                                                                                                                   | 0,24                                       |

явлено аналогичное повышение уровня растворимых форм белка плотных контактов F11R (JAM-A/ CD321), рецептора 4 В-типа к эфринам (EPHB4) и сосудистой эндотелиальной белковой тирозинфосфатазы (PTPRB), а также фактора фон Виллебранда (VWF), эндотелиальной дифференцировки (EDF1) и кавина-2 (CAVIN2, табл. 4). При этом все три белка с повышенным уровнем в среде от ЭК-КА (ITGB1, ITGA2 и ITGA5, табл. 4) были гиперэкспрессированы также и в среде от дисфункциональных ЭК (табл. 2), что позволило предположить патологический секреторный фенотип у ЭК-КА.

Далее в среде от контрольных и дисфункциональных ЭК была проанализировано содержание компонентов эндотелиальной базальной мембраны, являющейся субстратом для прикрепления ЭК в кровеносных сосудах. Иерархия компонентов эндотелиальной базальной мембраны в среде от контрольных и дисфункциональных ЭК была сопоставимой: наибольшим содержанием характеризовались остеонектин (SPARC), перлекан (HSPG2), фибронектин (FN1), аннексин A2 (ANXA2), субъединицы ламинина (LAMB1, LAMC1, LAMA4), тканевой ингибитор металлопротеиназ (TIMP1) и коллаген IV типа (COL4A1, табл. 5).

Последующий анализ выявил более 1,5-кратное снижение кратности содержания большинства компонентов эндотелиальной базальной мембраны: субъединиц коллагена IV типа (COL4A1 и COL4A2), субъединиц ламинина (LAMA4, LAMA5, LAMB1, LAMB2, LAMC1), тканевого ингибитора металлопротеиназ (ТІМР1), субъединицы коллагена VI типа (COL6A1), пероксидазина (PXDN), нидогена-1 (NID1), агрина (AGRN), перлекана (HSPG2), фибронектина (FN1), остеонектина (SPARC), фибулина-1 (FBN1) и гомо-

3. Ранжирование белков, эндотелиальным маркерам, по кратности изменения их содержания (отражаемого средним значением площади хроматографического пика) в культуральной среде от контрольных и дисфункциональных ЭК при анализе данных высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией

**Table 3.** Levels of proteins cognate to endothelial cell markers (indicated by mean chromatographic peak area at highperformance liquid chromatography-tandem mass spectrometry) in the cell culture supernatant from control and dysfunctional ECs. Fold change ranking

| Белок /<br>Protein | Средняя площадь<br>хроматографического<br>пика в контрольных<br>ЭК / Mean<br>chromatographic peak<br>area in the intact ECs | Средняя площадь<br>хроматографического<br>пика в<br>дисфункциональных<br>ЭК/Mean<br>chromatographic peak<br>area in dysfunctional<br>ECs | Кратность<br>изменения<br>/ Fold<br>change |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| EFNB1              | 101 503                                                                                                                     | 234 555                                                                                                                                  | 2,31                                       |
| EFNB2              | 25 090                                                                                                                      | 38 557                                                                                                                                   | 1,54                                       |
| CDH13              | 224 733                                                                                                                     | 293 657                                                                                                                                  | 1,31                                       |
| EFNA1              | 31 792                                                                                                                      | 41 283                                                                                                                                   | 1,30                                       |
| TJP2               | 52 566                                                                                                                      | 54 231                                                                                                                                   | 1,03                                       |

лога лизилоксидазы (LOXL2) в среде от дисфункциональных ЭК, при этом аналогичное повышение экспрессии наблюдалось только для аннексина А2 (ANXA2, табл. 6).

Отличительной особенностью ЭК-ВГА было повышенное выделение ими в среду широкого спектра компонентов эндотелиальной базальной мембраны: перлекана (HSPG2), нидогена (NID1), бета-2-субъединицы ламинина (LAMB2), коллагена IV типа (COL4A1), мультимерина-2 (MMRN2) и аннексина А2 (ANXA2) в сравнении с ЭК-КА (табл. 7). Четверо из данных молекул также были гиперэкспрессированы в среде от контрольных ЭК в сравнении с

Таблица 4. Ранжирование маркеров эндотелиального фенотипапократностиизмененияих содержания (отражаемого средним значением площади хроматографического пика) в культуральной среде от ЭК-КА и ЭК-ВГА при анализе данных высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией

**Table 4.** Levels of endothelial cell markers (indicated by mean chromatographic peak area at high-performance liquid chromatography-tandem mass spectrometry) in the cell culture supernatant from HCAEC and HITAEC. Fold change ranking

| Белок /<br>Protein | Средняя площадь<br>хроматографического<br>пика в ЭК-КА / Mean<br>chromatographic peak<br>area in HCAEC | Средняя площадь<br>хроматографического<br>пика в ЭК-ВГА /<br>Mean chromatographic<br>peak area in HITAEC | Кратность<br>изменения<br>/ Fold<br>change |
|--------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------|
| ITGB1              | 118 580                                                                                                | 68 608                                                                                                   | 1,73                                       |
| ITGA2              | 81 698                                                                                                 | 49 148                                                                                                   | 1,66                                       |
| ITGA5              | 72 491                                                                                                 | 48 115                                                                                                   | 1,51                                       |
| KDR                | 71 771                                                                                                 | 48 672                                                                                                   | 1,47                                       |
| PROCR              | 1 150 724                                                                                              | 873 383                                                                                                  | 1,32                                       |
| EPHB2              | 34 396                                                                                                 | 26 160                                                                                                   | 1,31                                       |
| ICAM1              | 34 875                                                                                                 | 26 576                                                                                                   | 1,31                                       |
| PECAM1             | 282 831                                                                                                | 220 934                                                                                                  | 1,28                                       |
| BSG                | 83 029                                                                                                 | 72 586                                                                                                   | 1,14                                       |
| ENG                | 54 983                                                                                                 | 53 579                                                                                                   | 1,03                                       |
| ESAM               | 98 521                                                                                                 | 96 759                                                                                                   | 1,02                                       |
| NRP2               | 96 120                                                                                                 | 95 530                                                                                                   | 1,01                                       |
| MCAM               | 817 877                                                                                                | 836 131                                                                                                  | 0,98                                       |
| TJP1               | 57 065                                                                                                 | 58 983                                                                                                   | 0,97                                       |
| TIE1               | 163 293                                                                                                | 173 771                                                                                                  | 0,94                                       |
| CDH5               | 728 540                                                                                                | 869 433                                                                                                  | 0,84                                       |
| CAVIN1             | 166 800                                                                                                | 199 884                                                                                                  | 0,83                                       |
| NRP1               | 104 220                                                                                                | 126 787                                                                                                  | 0,82                                       |
| ICAM2              | 815 501                                                                                                | 1 091 912                                                                                                | 0,75                                       |
| CLEC14A            | 102 468                                                                                                | 140 067                                                                                                  | 0,73                                       |
| TEK                | 37 343                                                                                                 | 51 106                                                                                                   | 0,73                                       |
| ESM1               | 113 142                                                                                                | 155 075                                                                                                  | 0,73                                       |
| F11R               | 54 678                                                                                                 | 81 134                                                                                                   | 0,67                                       |
| EDF1               | 49 221                                                                                                 | 75 116                                                                                                   | 0,66                                       |
| CAVIN2             | 155 643                                                                                                | 241 997                                                                                                  | 0,64                                       |
| EPHB4              | 30 934                                                                                                 | 60 788                                                                                                   | 0,51                                       |
| VWF                | 1 475 833                                                                                              | 1 838 336                                                                                                | 0,48                                       |
| PTPRB              | 6 207                                                                                                  | 30 050                                                                                                   | 0,21                                       |

Примечание: Здесь и далее в табл. 4, 7, 10, 13, 15: ЭК-ВГА эндотелиальные клетки внутренней грудной артерии; ЭК-КА – эндотелиальные клетки коронарной артерии. Note: Here and further in the table. 4, 7, 10, 13, 15: HCAEC human coronary artery endothelial cells; HITAEC - human internal thoracic artery endothelial cells.

дисфункциональными (табл. 6). В сравнении с ЭК-ВГА ЭК-КА характеризовались повышением выделения в среду фибронектина (FN1) и альфа-5-субъединицы ламинина (LAMA5, табл. 7).

По аналогии с маркерами эндотелиального фенотипа и компонентами эндотелиальной базальной мембраны, иерархия компонентов субэндотелиального внеклеточного матрикса в среде от контрольных и дисфункциональных ЭК не обладала большими различиями, хотя их относительное содержание характеризовалось несколько большей вариабельностью (табл. 8). В частности, в среде от контрольных и дисфункциональных ЭК была наиболее выражена экспрессия тромбоспондина-1 (THBS1), фактора роста соединительной ткани (CCN2), просапозина (PSAP), EGF-содержащего фибулиноподобного белка внеклеточного матрикса (EFEMP1), ингибитора активатора плазминогена (SERPINE1), фактора фон Виллебранда (VWF), галектина-1

уровней Таблица Ранжирование 5. компонентов эндотелиальной базальной мембраны (отражаемых средним значением площади хроматографического пика) в культуральной среде от контрольных и дисфункциональных ЭК относительно друг друга при анализе данных высокоэффективной жидкостной хроматографии тандемной масс-спектрометрией

**Table 5.** Levels of endothelial basement membrane components (indicated by mean chromatographic peak area at highperformance liquid chromatography-tandem mass spectrometry) in the cell culture supernatant from control and dysfunctional ECs. Head-to-head comparison of the cell culture supernatant from intact and dysfunctional ECs. Mean chromatographic peak area ranking

| Белок /<br>Protein | Средняя площадь<br>хроматографического<br>пика в контрольных<br>ЭК/Mean<br>chromatographic peak<br>area in the intact ECs | Белок /<br>Protein | Средняя площадь<br>хроматографического<br>пика в<br>дисфункциональных<br>ЭК/Mean<br>chromatographic peak<br>area in dysfunctional ECs |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| SPARC              | 3 819 368                                                                                                                 | ANXA2              | 1 934 463                                                                                                                             |
| HSPG2              | 2 667 961                                                                                                                 | SPARC              | 675 414                                                                                                                               |
| FN1                | 1 146 277                                                                                                                 | HSPG2              | 507 952                                                                                                                               |
| ANXA2              | 991 812                                                                                                                   | TIMP1              | 233 695                                                                                                                               |
| LAMB1              | 400 560                                                                                                                   | FN1                | 218 012                                                                                                                               |
| LAMC1              | 387 931                                                                                                                   | LAMB1              | 213 284                                                                                                                               |
| LAMA4              | 360 303                                                                                                                   | LAMC1              | 190 043                                                                                                                               |
| TIMP1              | 355 431                                                                                                                   | LAMA4              | 187 372                                                                                                                               |
| LOXL2              | 319 988                                                                                                                   | DAG1               | 124 564                                                                                                                               |
| COL4A1             | 169 751                                                                                                                   | COL4A1             | 109 548                                                                                                                               |
| FBN1               | 162 619                                                                                                                   | COL18A1            | 104 793                                                                                                                               |
| NID1               | 162 124                                                                                                                   | MMRN2              | 75 661                                                                                                                                |
| COL18A1            | 151 663                                                                                                                   | COL4A2             | 72 703                                                                                                                                |
| AGRN               | 122 995                                                                                                                   | LAMB2              | 69 495                                                                                                                                |
| LAMB2              | 120 715                                                                                                                   | LAMA5              | 64 503                                                                                                                                |
| DAG1               | 111 620                                                                                                                   | NID1               | 55 069                                                                                                                                |
| COL4A2             | 110 357                                                                                                                   | LOXL2              | 51 881                                                                                                                                |
| LAMA5              | 100 875                                                                                                                   | COL6A1             | 28 494                                                                                                                                |
| PXDN               | 73 855                                                                                                                    | FBN1               | 26 689                                                                                                                                |
| COL6A1             | 65 322                                                                                                                    | PXDN               | 26 338                                                                                                                                |
| MMRN2              | 63 146                                                                                                                    | AGRN               | 24 511                                                                                                                                |

(LGALS1), белка, связывающего инсулиноподобный фактор роста (IGFBP7) и катепсина В (табл. 8).

Анализ кратности изменения содержания компонентов субэндотелиального внеклеточного матрикса выявил снижение содержания 30 из них более чем в 1,5 раза (из них 21 – более чем в 2 раза), что составило 45% (30/66) от их общего количества в среде от дисфункциональных ЭК (табл. 9). В частности, среда от дисфункциональных ЭК характеризовалась снижением кратности изменения содержания дерматансульфатного протеогликана эндокана (ESM1), лизилгидроксилаз PLOD1 и PLOD3, фактора роста соединительной ткани (CCN2), кислого гликопротеина кластерина (CLU), тромбоспондина-1, ассоциированного с микрофибриллами белка MFAP2, а также протеогликанов бигликана (BGN) и тестикана (SPOCK1) более чем в 4 раза (табл. 9). При этом содержание 10 из 66 (15%) компонентов субэндотелиального внеклеточного матрикса, детектированных в среде от дисфункциональных ЭК,

Таблица 6. Ранжирование компонентов эндотелиальной базальной мембраны по кратности изменения их содержания (отражаемого средним значением площади хроматографического пика) в культуральной среде от контрольных и дисфункциональных ЭК при анализе данных высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией

**Table 6.** Levels of endothelial basement membrane components (indicated by mean chromatographic peak area at highperformance liquid chromatography-tandem mass spectrometry) in the cell culture supernatant from control and dysfunctional ECs. Fold change ranking

| Белок /<br>Protein | Средняя площадь<br>хроматографического<br>шика в контрольных<br>ЭК/Mean<br>chromatographic peak<br>area in the intact ECs | Средняя площадь<br>хроматографического<br>пика в<br>дисфункциональных<br>ЭК/ Mean<br>chromatographic peak<br>area in dysfunctional<br>ECs | Кратность<br>изменения<br>/ Fold<br>change |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| ANXA2              | 991 812                                                                                                                   | 1934463                                                                                                                                   | 1,95                                       |
| MMRN2              | 63 146                                                                                                                    | 75 661                                                                                                                                    | 1,20                                       |
| DAG1               | 111 620                                                                                                                   | 124 564                                                                                                                                   | 1,12                                       |
| COL18A1            | 151 663                                                                                                                   | 104 793                                                                                                                                   | 0,69                                       |
| COL4A2             | 110 357                                                                                                                   | 72 703                                                                                                                                    | 0,66                                       |
| TIMP1              | 355 431                                                                                                                   | 233 695                                                                                                                                   | 0,66                                       |
| COL4A1             | 169 751                                                                                                                   | 109 548                                                                                                                                   | 0,65                                       |
| LAMA5              | 100 875                                                                                                                   | 64 503                                                                                                                                    | 0,64                                       |
| LAMB2              | 120 715                                                                                                                   | 69 495                                                                                                                                    | 0,58                                       |
| LAMB1              | 400 560                                                                                                                   | 213 284                                                                                                                                   | 0,53                                       |
| LAMA4              | 360 303                                                                                                                   | 187 372                                                                                                                                   | 0,52                                       |
| LAMC1              | 387 931                                                                                                                   | 190 043                                                                                                                                   | 0,49                                       |
| COL6A1             | 65 322                                                                                                                    | 28 494                                                                                                                                    | 0,44                                       |
| PXDN               | 73 855                                                                                                                    | 26 338                                                                                                                                    | 0,36                                       |
| NID1               | 162 124                                                                                                                   | 55 069                                                                                                                                    | 0,34                                       |
| AGRN               | 122 995                                                                                                                   | 24 511                                                                                                                                    | 0,20                                       |
| HSPG2              | 2 667 961                                                                                                                 | 507 952                                                                                                                                   | 0,19                                       |
| FN1                | 1 146 277                                                                                                                 | 218 012                                                                                                                                   | 0,19                                       |
| SPARC              | 3 819 368                                                                                                                 | 675 414                                                                                                                                   | 0,18                                       |
| FBN1               | 162 619                                                                                                                   | 26 689                                                                                                                                    | 0,16                                       |
| LOXL2              | 319 988                                                                                                                   | 51 881                                                                                                                                    | 0,16                                       |

916 971

IGFBP7

Таблица 7. Ранжирование компонентов эндотелиальной базальной мембраны по кратности изменения их содержания (отражаемого средним значением площади хроматографического пика) в культуральной среде от ЭК-КА и ЭК-ВГА при анализе данных высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией

**Table 7.** Levels of endothelial basement membrane components (indicated by mean chromatographic peak area at highperformance liquid chromatography-tandem mass spectrometry) in the cell culture supernatant from human coronary artery endothelial cells (HCAEC) and human internal thoracic artery endothelial cells (HITAEC). Fold change ranking

| Белок /<br>Protein | Средняя площадь<br>хроматографического<br>пика в ЭК-КА / Mean<br>chromatographic peak<br>area in HCAEC | Средняя площадь<br>хроматографического<br>пика в ЭК-ВГА /<br>Mean chromatographic<br>peak area in HITAEC | Кратность<br>изменения<br>/ Fold<br>change |
|--------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------|
| FN1                | 1 574 492                                                                                              | 860 800                                                                                                  | 1,83                                       |
| LAMA5              | 126 242                                                                                                | 83 964                                                                                                   | 1,50                                       |
| AGRN               | 133 417                                                                                                | 116 046                                                                                                  | 1,15                                       |
| TIMP1              | 379 193                                                                                                | 339 589                                                                                                  | 1,12                                       |
| COL6A1             | 68 797                                                                                                 | 63 005                                                                                                   | 1,09                                       |
| LAMC1              | 386 572                                                                                                | 388 837                                                                                                  | 0,99                                       |
| PXDN               | 69 779                                                                                                 | 76 572                                                                                                   | 0,91                                       |
| LAMB1              | 375 920                                                                                                | 416 986                                                                                                  | 0,90                                       |
| COL4A2             | 101 870                                                                                                | 116 016                                                                                                  | 0,88                                       |
| DAG1               | 101 721                                                                                                | 118 219                                                                                                  | 0,86                                       |
| LOXL2              | 286 205                                                                                                | 342 510                                                                                                  | 0,84                                       |
| FBN1               | 138 392                                                                                                | 178 771                                                                                                  | 0,77                                       |
| SPARC              | 3 005 674                                                                                              | 4 361 831                                                                                                | 0,69                                       |
| LAMA4              | 283 360                                                                                                | 411 599                                                                                                  | 0,69                                       |
| COL18A1            | 118 029                                                                                                | 174 085                                                                                                  | 0,68                                       |
| HSPG2              | 1 978 068                                                                                              | 3 127 890                                                                                                | 0,63                                       |
| MMRN2              | 46 803                                                                                                 | 74 041                                                                                                   | 0,63                                       |
| ANXA2              | 731 348                                                                                                | 1 165 454                                                                                                | 0,63                                       |
| NID1               | 115 842                                                                                                | 192 978                                                                                                  | 0,60                                       |
| LAMB2              | 78 071                                                                                                 | 149 144                                                                                                  | 0,52                                       |
| COL4A1             | 105 515                                                                                                | 212 576                                                                                                  | 0,50                                       |

Таблица Ранжирование уровней компонентов субэндотелиального внеклеточного матрикса (отражаемых средним значением площади хроматографического пика) в культуральной среде от контрольных и дисфункциональных ЭК относительно друг друга при анализе данных высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией

Table 8. Levels of non-basement membrane extracellular matrix components (indicated by mean chromatographic peak area at high-performance liquid chromatography-tandem mass spectrometry) in the cell culture supernatant from control and dysfunctional ECs. Head-to-head comparison of the cell culture supernatant from intact and dysfunctional ECs. Mean chromatographic peak area ranking

| Белок /<br>Protein | Средняя площадь<br>хроматографического<br>пика в контрольных<br>ЭК / Mean<br>chromatographic peak<br>area in the intact ECs | Белок /<br>Protein | Средняя площадь<br>хроматографического<br>пика в<br>дисфункциональных<br>ЭК / Mean<br>chromatographic peak<br>area in dysfunctional<br>ECs |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| THBS1              | 5 104 409                                                                                                                   | PSAP               | 2 084 666                                                                                                                                  |
| CCN2               | 3 558 935                                                                                                                   | LGALS1             | 1 885 024                                                                                                                                  |
| PSAP               | 2 199 679                                                                                                                   | SERPINE1           | 1 483 797                                                                                                                                  |
| EFEMP1             | 2 157 048                                                                                                                   | VWF                | 1 205 888                                                                                                                                  |
| SERPINE1           | 1 773 705                                                                                                                   | CTSB               | 999 101                                                                                                                                    |
| VWF                | 1 693 335                                                                                                                   | EFEMP1             | 991 556                                                                                                                                    |

| LGALS1   | 1 635 998 | IGFBP7   | 916 971 |
|----------|-----------|----------|---------|
| IGFBP7   | 1 543 318 | THBS1    | 888 317 |
| CTSB     | 1 097 110 | CCN2     | 833 944 |
| HSP90AA1 | 1 086 666 | HNRNPM   | 785 334 |
| CLU      | 1 055 289 | PKM      | 686 261 |
| MMRN1    | 798 002   | SERPINB6 | 595 128 |
| PKM      | 755 842   | HSP90AA1 | 520 524 |
| BGN      | 642 459   | AHSG     | 461 143 |
|          |           |          |         |
| TIMP2    | 535 023   | A2M      | 434 820 |
| MFAP2    | 509 302   | CSTB     | 424 446 |
| HNRNPM   | 456 228   | MMRN1    | 424 319 |
| CALR     | 450 180   | SERPINB9 | 383 521 |
| SERPINB6 | 432 663   | S100A10  | 374 676 |
| AHSG     | 424 745   | CDH13    | 293 657 |
| TGM2     | 421 110   | TGM2     | 216 607 |
| SERPINB9 | 373 323   | CALR     | 215 122 |
| MMP2     | 367 433   | CLU      | 198 612 |
| CCN1     | 353 902   | APOA1    | 198 065 |
| CSTB     | 331 126   | TIMP2    | 197 218 |
| A2M      | 276 896   | CTSD     | 196 529 |
| SPOCK1   | 247 715   | CLEC14A  | 196 011 |
| HSP90B1  | 238 672   | ANXA1    | 187 914 |
| CDH13    | 224 733   | CTSC     | 186 829 |
| CTSD     | 193 478   | MMP2     | 182 026 |
| CTSZ     | 190 059   | LGALS3   | 176 413 |
| HDGF     | 189 903   | SERPINB1 | 167 911 |
| TINAGL1  | 185 142   | PZP      | 142 805 |
| CTSC     | 153 905   | ANXA5    | 137 497 |
| COL5A2   | 151 595   | CTSZ     | 132 521 |
| S100A10  | 144 898   | CCN1     |         |
|          |           |          | 130 483 |
| PLOD1    | 142 325   | HDGF     | 110 882 |
| ESM1     | 138 302   | HSP90B1  | 100 349 |
| LTBP2    | 126 945   | COL5A2   | 93 659  |
| SERPINH1 | 125 921   | HRNR     | 85 855  |
| CLEC14A  | 125 027   | SERPINH1 | 82 820  |
| ANXA1    | 121 678   | SERPINC1 | 82 800  |
| LGALS3   | 120 034   | ITIH2    | 75 107  |
| SERPINB1 | 117 864   | MFAP2    | 71 693  |
| PLOD3    | 109 869   | BGN      | 70 249  |
| POSTN    | 96 176    | TINAGL1  | 59 218  |
| ANXA5    | 94 890    | FLG      | 58 856  |
| ITIH2    | 93 370    | CTSL     | 57 548  |
| CTSL     | 85 235    | BCAM     | 52 363  |
| SERPINB8 | 84 198    | SERPINB8 | 50 953  |
| APOA1    | 84 082    | LTBP2    | 48 524  |
| PLOD2    | 71 970    | LGALS9   | 47 929  |
| HRNR     | 57 985    | ANXA6    | 47 124  |
| ANXA6    | 53 599    | S100A6   | 44 218  |
| LOX      | 51 830    | ICAM1    | 36 531  |
| BCAM     | 48 058    | PLOD1    | 33 605  |
| PZP      | 47 686    | ESM1     | 33 071  |
| ECM1     | 44 988    | PLOD2    | 32 949  |
| ABI3BP   | 44 114    | CTSH     | 31 086  |
| S100A6   | 38 630    | LOX      | 30 855  |
| SERPINC1 | 37 323    | ITIH4    | 29 794  |
|          |           |          |         |
| ICAM1    | 29 896    | ECM1     | 27 698  |
| CTSH     | 27 325    | POSTN    | 27 526  |
| ITIH4    | 24 171    | SPOCK1   | 20 440  |
| FLG      | 22 147    | PLOD3    | 15 812  |
| LGALS9   | 21 735    | ABI3BP   | 11 741  |
|          |           |          |         |

1 635 998

LGALS1

было повышенным более чем в 1,5 раза (табл. 9). К таким компонентам относился целый ряд кислых белков: кальций-связывающий белок S100A10, антитромбин III, альфа-2-микроглобулин и аннексин A1, а также белок PZP, филаггрин (FLG), аполипопротеин А1 и галектин-9 (табл. 9).

По аналогии с компонентами эндотелиальной базальной мембраны, в среде от ЭК-ВГА наблюдалось повышенное выделение 14 компонентов субэндотелиального внеклеточного матрикса в сравнении со средой от ЭК-КА (табл. 10). В их число входили 7 белков (CCN1, CCN2, EFEMP1, MFAP2, бигликан, мультимерин-1 и кластерин), также гиперэкспрессированные в среде от ЭК в физиологическом состоянии (табл. 9). Схожий молекулярный профиль наблюдался в среде от ЭК-КА, которые характеризовались повышенным выделением 15

компонентов субэндотелиального внеклеточного матрикса в сравнении с ЭК-ВГА (табл. 10). При этом 9 из гиперэкспрессированных в среде от ЭК-КА белков (лизилгидроксилазы PLOD2 и PLOD3, лизиоксидаза, тестикан-1, белок ЕСМ1, периостин, кальретикулин, матриксная металлопротеиназа-2 и коллаген V типа) совпадали с гиперэкспрессированными в среде от контрольных ЭК (табл. 9).

Учитывая актуальность синтеза монооксида азота (NO) для физиологии эндотелия, далее было проанализировано содержание компонентов данного сигнального пути в среде от контрольных и дисфункциональных ЭК (табл. 11). Тем не менее, в исследованных образцах было выявлено лишь 6 таких белков, один из которых (кавин-1) был гиперэкспрессирован в среде от дисфункциональных ЭК, а два (белок теплового шока HSP90AA1 и каль-

Таблица 9. Ранжирование компонентов субэндотелиального внеклеточного матрикса по кратности изменения их содержания (отражаемого средним значением площади хроматографического пика) в культуральной среде от контрольных и дисфункциональных ЭК при анализе данных высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией **Table 9.** Levels of non-basement membrane extracellular matrix components (indicated by mean chromatographic peak area at highperformance liquid chromatography-tandem mass spectrometry) in the cell culture supernatant from control and dysfunctional ECs. Fold change ranking

|          |                                                | Средняя площадь                               |                        | ANXA6    | 53 599    | 47 124    | 0,88 |
|----------|------------------------------------------------|-----------------------------------------------|------------------------|----------|-----------|-----------|------|
|          | Средняя площадь                                | хроматографического                           | T.                     | SERPINE1 | 1 773 705 | 1 483 797 | 0,84 |
| Белок /  | хроматографического<br>пика в контрольных      | пика в<br>дисфункциональных                   | Кратность<br>изменения | ITIH2    | 93 370    | 75 107    | 0,80 |
| Protein  | ЭК / Mean                                      | ЭК / Меап                                     | / Fold                 | VWF      | 1 693 335 | 1 205 888 | 0,71 |
|          | chromatographic peak<br>area in the intact ECs | chromatographic peak<br>area in dysfunctional | change                 | CTSZ     | 190 059   | 132 521   | 0,70 |
|          | area in the mater Bes                          | ECs                                           |                        | CTSL     | 85 235    | 57 548    | 0,68 |
| PZP      | 47 686                                         | 142 805                                       | 2,99                   | SERPINH1 | 125 921   | 82 820    | 0,66 |
| FLG      | 22 147                                         | 58 856                                        | 2,66                   | COL5A2   | 151 595   | 93 659    | 0,62 |
| S100A10  | 144 898                                        | 374 676                                       | 2,59                   | ECM1     | 44 988    | 27 698    | 0,62 |
| APOA1    | 84 082                                         | 198 065                                       | 2,36                   | SERPINB8 | 84 198    | 50 953    | 0,61 |
| SERPINC1 | 37 323                                         | 82 800                                        | 2,22                   | LOX      | 51 830    | 30 855    | 0,60 |
| LGALS9   | 21 735                                         | 47 929                                        | 2,21                   | IGFBP7   | 1 543 318 | 916 971   | 0,59 |
| HNRNPM   | 456 228                                        | 785 334                                       | 1,72                   | HDGF     | 189 903   | 110 882   | 0,58 |
| A2M      | 276 896                                        | 434 820                                       | 1,57                   | MMRN1    | 798 002   | 424 319   | 0,53 |
| CLEC14A  | 125 027                                        | 196 011                                       | 1,57                   | TGM2     | 421 110   | 216 607   | 0,51 |
| ANXA1    | 121 678                                        | 187 914                                       | 1,54                   | MMP2     | 367 433   | 182 026   | 0,50 |
| HRNR     | 57 985                                         | 85 855                                        | 1,48                   | HSP90AA1 | 1 086 666 | 520 524   | 0,48 |
| LGALS3   | 120 034                                        | 176 413                                       | 1,47                   | CALR     | 450 180   | 215 122   | 0,48 |
| ANXA5    | 94 890                                         | 137 497                                       | 1,45                   | EFEMP1   | 2 157 048 | 991 556   | 0,46 |
| SERPINB1 | 117 864                                        | 167 911                                       | 1,42                   | PLOD2    | 71 970    | 32 949    | 0,46 |
| SERPINB6 | 432 663                                        | 595 128                                       | 1,38                   | HSP90B1  | 238 672   | 100 349   | 0,42 |
| CDH13    | 224 733                                        | 293 657                                       | 1,31                   | LTBP2    | 126 945   | 48 524    | 0,38 |
| CSTB     | 331 126                                        | 424 446                                       | 1,28                   | CCN1     | 353 902   | 130 483   | 0,37 |
| ITIH4    | 24 171                                         | 29 794                                        | 1,23                   | TIMP2    | 535 023   | 197 218   | 0,37 |
| ICAM1    | 29 896                                         | 36 531                                        | 1,22                   | TINAGL1  | 185 142   | 59 218    | 0,32 |
| CTSC     | 153 905                                        | 186 829                                       | 1,21                   | POSTN    | 96 176    | 27 526    | 0,29 |
| LGALS1   | 1 635 998                                      | 1 885 024                                     | 1,15                   | ABI3BP   | 44 114    | 11 741    | 0,27 |
| S100A6   | 38 630                                         | 44 218                                        | 1,14                   | ESM1     | 138 302   | 33 071    | 0,24 |
| CTSH     | 27 325                                         | 31 086                                        | 1,14                   | PLOD1    | 142 325   | 33 605    | 0,24 |
| BCAM     | 48 058                                         | 52 363                                        | 1,09                   | CCN2     | 3 558 935 | 833 944   | 0,23 |
| AHSG     | 424 745                                        | 461 143                                       | 1,09                   | CLU      | 1 055 289 | 198 612   | 0,19 |
| SERPINB9 | 373 323                                        | 383 521                                       | 1,03                   | THBS1    | 5 104 409 | 888 317   | 0,17 |
| CTSD     | 193 478                                        | 196 529                                       | 1,02                   | PLOD3    | 109 869   | 15 812    | 0,14 |
| PSAP     | 2 199 679                                      | 2 084 666                                     | 0,95                   | MFAP2    | 509 302   | 71 693    | 0,14 |
| CTSB     | 1 097 110                                      | 999 101                                       | 0,91                   | BGN      | 642 459   | 70 249    | 0,11 |
| PKM      | 755 842                                        | 686 261                                       | 0,91                   | SPOCK1   | 247 715   | 20 440    | 0,08 |

модулин) – в среде от контрольных ЭК (табл. 11).

Анализ белков сигнальных путей ангиогенеза, являющегося одной из важнейших функций ЭК, показал приблизительно равное количество ангиогенных молекул с повышенным содержанием в среде от дисфункциональных (12) и от контрольных (14) ЭК (табл. 12). Большинство (10 из 12) компонентов с повышенным содержанием в среде

Таблица 10. Ранжирование компонентов субэндотелиального внеклеточного матрикса по кратности изменения их содержания (отражаемого средним значением площади хроматографического пика) в культуральной среде от ЭК-КА и ЭК-ВГА при анализе данных высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией

Table 10. Levels of non-basement membrane extracellular matrix components (indicated by mean chromatographic peak area at highperformance liquid chromatography-tandem mass spectrometry) in the cell culture supernatant from human coronary artery endothelial cells (HCAEC) and human internal thoracic artery endothelial cells (HITAEC). Fold change ranking

|          | Средняя площадь                            | Средняя площадь                          | Кратность     | CTSL     | 84 252    | 85 890    | 0,98 |
|----------|--------------------------------------------|------------------------------------------|---------------|----------|-----------|-----------|------|
| Белок /  | хроматографического<br>пика в ЭК-КА / Mean | хроматографического пика в ЭК-ВГА / Меап | изменения     | TIMP2    | 527 549   | 540 005   | 0,98 |
| Protein  | chromatographic peak                       | chromatographic peak                     | / Fold change | HSP90AA1 | 1 048 442 | 1 112 149 | 0,94 |
|          | area in HCAEC                              | area in HITAEC                           |               | CTSZ     | 179 675   | 196 981   | 0,91 |
| PLOD2    | 132 936                                    | 31 325                                   | 4,24          | ANXA1    | 113 661   | 127 023   | 0,89 |
| ITIH2    | 153 554                                    | 53 247                                   | 2,88          | SERPINE1 | 1 629 711 | 1 869 701 | 0,87 |
| AHSG     | 695 113                                    | 244 501                                  | 2,84          | VWF      | 1 475 833 | 1 838 336 | 0,80 |
| LGALS9   | 34 162                                     | 13 450                                   | 2,54          | SERPINB9 | 324 506   | 405 868   | 0,80 |
| SPOCK1   | 369 930                                    | 166 239                                  | 2,23          | CDH13    | 190 222   | 247 739   | 0,77 |
| ECM1     | 67 181                                     | 30 192                                   | 2,23          | CTSB     | 927 546   | 1 210 153 | 0,77 |
| LOX      | 76 143                                     | 35 621                                   | 2,14          | IGFBP7   | 1 298 718 | 1 706 386 | 0,76 |
| APOA1    | 119 512                                    | 60 462                                   | 1,98          | CLEC14A  | 102 468   | 140 067   | 0,73 |
| POSTN    | 135 510                                    | 69 953                                   | 1,94          | ESM1     | 113 142   | 155 075   | 0,73 |
| CALR     | 630 520                                    | 329 953                                  | 1,91          | THBS1    | 4 122 806 | 5 758 811 | 0,72 |
| ITIH4    | 32 938                                     | 18 327                                   | 1,80          | ANXA5    | 75 275    | 107 967   | 0,70 |
| MMP2     | 484 885                                    | 289 131                                  | 1,68          | SERPINB6 | 342 158   | 493 000   | 0,69 |
| ANXA6    | 68 813                                     | 43 456                                   | 1,58          | S100A6   | 30 486    | 44 060    | 0,69 |
| COL5A2   | 192 183                                    | 124 536                                  | 1,54          | LGALS3   | 94 602    | 136 989   | 0,69 |
| PLOD3    | 139 161                                    | 90 342                                   | 1,54          | PKM      | 594 878   | 863 151   | 0,69 |
| A2M      | 341 661                                    | 233 720                                  | 1,46          | SERPINC1 | 29 222    | 42 724    | 0,68 |
| LTBP2    | 156 352                                    | 107 340                                  | 1,46          | HNRNPM   | 345 002   | 530 379   | 0,65 |
| CSTB     | 403 262                                    | 283 036                                  | 1,42          | FLG      | 16 450    | 25 945    | 0,63 |
| TGM2     | 507 619                                    | 363 438                                  | 1,40          | CCN1     | 242 331   | 428 283   | 0,57 |
| SERPINH1 | 151 538                                    | 108 844                                  | 1,39          | EFEMP1   | 1 470 726 |           | 0,56 |
| HSP90B1  | 281 698                                    | 209 988                                  | 1,34          |          |           | 2 614 596 |      |
| ICAM1    | 34 875                                     | 26 576                                   | 1,31          | CCN2     | 2 421 339 | 4 317 333 | 0,56 |
| SERPINB8 | 94 806                                     | 77 126                                   | 1,23          | CTSH     | 17 390    | 33 949    | 0,51 |
| TINAGL1  | 198 553                                    | 176 202                                  | 1,13          | SERPINB1 | 72 837    | 147 882   | 0,49 |
| ABI3BP   | 47 174                                     | 42 074                                   | 1,12          | MFAP2    | 289 407   | 655 899   | 0,44 |
| HRNR     | 61 165                                     | 55 865                                   | 1,09          | BCAM     | 26 698    | 62 298    | 0,43 |
| CTSD     | 200 105                                    | 189 060                                  | 1,06          | LGALS1   | 899 492   | 2 127 002 | 0,42 |
| PSAP     | 2 258 364                                  | 2 160 555                                | 1,05          | BGN      | 253 507   | 901 760   | 0,28 |
| CTSC     | 156 922                                    | 151 894                                  | 1,03          | MMRN1    | 269 704   | 1 150 200 | 0,23 |
| PLOD1    | 142 584                                    | 142 152                                  | 1,00          | S100A10  | 45 739    | 211 004   | 0,22 |
| HDGF     | 189 633                                    | 190 083                                  | 1,00          | CLU      | 193 233   | 1 629 994 | 0,12 |

Таблица 11. Ранжирование компонентов сигнального пути метаболизма монооксида азота (NO) по кратности изменения их содержания (отражаемого средним значением площади хроматографического пика) в культуральной среде от контрольных и дисфункциональных ЭК при анализе данных высокоэффективной жидкостной хроматографии с тандемной массспектрометрией

Table 11. Levels of nitric oxide metabolism proteins (indicated by mean chromatographic peak area at high-performance liquid chromatography-tandem mass spectrometry) in the cell culture supernatant from control and dysfunctional ECs. Fold change ranking

| Белок /<br>Protein | Средняя площадь хроматографического пика в контрольных ЭК / Mean chromatographic peak area in the intact ECs | Средняя площадь хроматографического пика в<br>дисфункциональных ЭК / Mean chromatographic peak<br>area in dysfunctional ECs | Кратность<br>изменения /<br>Fold change |
|--------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| CAV1               | 178 838                                                                                                      | 360 365                                                                                                                     | 2,02                                    |
| DDAH1              | 249 135                                                                                                      | 330 175                                                                                                                     | 1,33                                    |
| LYPLA1             | 76 257                                                                                                       | 70 846                                                                                                                      | 0,93                                    |
| NMT1               | 58 195                                                                                                       | 53 768                                                                                                                      | 0,92                                    |
| HSP90AA1           | 1 086 666                                                                                                    | 520 524                                                                                                                     | 0,48                                    |
| CALM1              | 1 543 213                                                                                                    | 691 639                                                                                                                     | 0,45                                    |

Таблица 12. Ранжирование белков сигнальных путей ангиогенеза по кратности изменения их содержания (отражаемого средним значением площади хроматографического пика) в культуральной среде от контрольных и дисфункциональных ЭК при анализе данных высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией

Table 12. Levels of angiogenic proteins (indicated by mean chromatographic peak area at high-performance liquid chromatography-tandem mass spectrometry) in the cell culture supernatant from control and dysfunctional ECs. Fold change ranking

| Белок /<br>Protein | Средняя площадь<br>хроматографического<br>пика в контрольных<br>ЭК/Mean<br>chromatographic peak<br>area in the intact ECs | Средняя площадь<br>хроматографического<br>пика в<br>дисфункциональных<br>ЭК/Mean<br>chromatographic peak<br>area in dysfunctional ECs | Кратность<br>изменения<br>/ Fold<br>change |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| PTPRB              | 20 513                                                                                                                    | 44 018                                                                                                                                | 2,15                                       |
| CAV1               | 178 838                                                                                                                   | 360 365                                                                                                                               | 2,02                                       |
| ITGA5              | 57 865                                                                                                                    | 116 574                                                                                                                               | 2,01                                       |
| ANXA2              | 991 812                                                                                                                   | 1 934 463                                                                                                                             | 1,95                                       |
| MMP14              | 80 488                                                                                                                    | 153 530                                                                                                                               | 1,91                                       |
| EPHB2              | 29 455                                                                                                                    | 54 173                                                                                                                                | 1,84                                       |
| HMOX1              | 57 802                                                                                                                    | 98 923                                                                                                                                | 1,71                                       |
| ANPEP              | 804 781                                                                                                                   | 1 292 402                                                                                                                             | 1,61                                       |
| TEK                | 45 601                                                                                                                    | 72 489                                                                                                                                | 1,59                                       |
| BSG                | 76 763                                                                                                                    | 119 219                                                                                                                               | 1,55                                       |
| PLXND1             | 26 947                                                                                                                    | 41 215                                                                                                                                | 1,53                                       |
| KDR                | 57 912                                                                                                                    | 86 919                                                                                                                                | 1,50                                       |
| CXCL8              | 84 781                                                                                                                    | 119 695                                                                                                                               | 1,41                                       |
| MCAM               | 828 829                                                                                                                   | 1 166 022                                                                                                                             | 1,41                                       |
| ITGB1              | 88 596                                                                                                                    | 124 361                                                                                                                               | 1,40                                       |
| NRCAM              | 87 092                                                                                                                    | 117 063                                                                                                                               | 1,34                                       |
| EFNA1              | 31 792                                                                                                                    | 41 283                                                                                                                                | 1,30                                       |
| EPHB4              | 48 846                                                                                                                    | 60 794                                                                                                                                | 1,24                                       |
| MMRN2              | 63 146                                                                                                                    | 75 661                                                                                                                                | 1,20                                       |
| AIMP1              | 167 278                                                                                                                   | 200 214                                                                                                                               | 1,20                                       |
| BCAM               | 48 058                                                                                                                    | 52 363                                                                                                                                | 1,09                                       |
| WARS1              | 169 310                                                                                                                   | 182 448                                                                                                                               | 1,08                                       |
| CALD1              | 292 390                                                                                                                   | 291 362                                                                                                                               | 1,00                                       |
| ERAP1              | 54 497                                                                                                                    | 50 364                                                                                                                                | 0,92                                       |
| ATP5F1B            | 85 045                                                                                                                    | 78 488                                                                                                                                | 0,92                                       |
| CLIC4              | 275 553                                                                                                                   | 248 917                                                                                                                               | 0,90                                       |
| МҮН9               | 765 578                                                                                                                   | 678 520                                                                                                                               | 0,89                                       |
| NRP1               | 117 760                                                                                                                   | 103 968                                                                                                                               | 0,88                                       |
| TIE1               | 169 579                                                                                                                   | 142 454                                                                                                                               | 0,84                                       |
| SERPINE1           | 1 773 705                                                                                                                 | 1 483 797                                                                                                                             | 0,84                                       |
| FLNA               | 977 747                                                                                                                   | 815 615                                                                                                                               | 0,83                                       |
| CCL2               | 180 676                                                                                                                   | 139 472                                                                                                                               | 0,77                                       |
| COL18A1            | 151 663                                                                                                                   | 104 793                                                                                                                               | 0,69                                       |
| ACTG1              | 4 667 804                                                                                                                 | 3 176 610                                                                                                                             | 0,68                                       |
| COL4A2             | 110 357                                                                                                                   | 72 703                                                                                                                                | 0,66                                       |
| MYDGF              | 293 043                                                                                                                   | 190 214                                                                                                                               | 0,65                                       |
| ECM1               | 44 988                                                                                                                    | 27 698                                                                                                                                | 0,62                                       |
| ROBO4              | 125 562                                                                                                                   | 75 835                                                                                                                                | 0,60                                       |
| IGFBP7             | 1 543 318                                                                                                                 | 916 971                                                                                                                               | 0,59                                       |
| YWHAZ              | 2 093 775                                                                                                                 | 1 228 401                                                                                                                             | 0,59                                       |
| NCL                | 328 116                                                                                                                   | 184 180                                                                                                                               | 0,56                                       |
| MMP2               | 367 433                                                                                                                   | 182 026                                                                                                                               | 0,50                                       |
| PXDN               | 73 855                                                                                                                    | 26 338                                                                                                                                | 0,36                                       |
| NRP2               | 95 766                                                                                                                    | 25 251                                                                                                                                | 0,26                                       |
| ESM1               | 138 302                                                                                                                   | 33 071                                                                                                                                | 0,24                                       |
| CCN2               | 3 558 935                                                                                                                 | 833 944                                                                                                                               | 0,23                                       |
| HSPG2              | 2 667 961                                                                                                                 | 507 952                                                                                                                               | 0,19                                       |
| FN1                | 1 146 277                                                                                                                 | 218 012                                                                                                                               | 0,19                                       |
| 1111               | 1 170 277                                                                                                                 | 210 012                                                                                                                               | 0,17                                       |

Таблица 13. Ранжирование компонентов сигнальных путей ангиогенеза по кратности изменения их содержания (отражаемого средним значением площади хроматографического пика) в культуральной среде от ЭК-КА и ЭК-ВГА при анализе данных высокоэффективной жидкостной хроматографии с тандемной спектрометрией

Table 13. Levels of angiogenic proteins (indicated by mean chromatographic peak area at high-performance liquid chromatography-tandem mass spectrometry) in the cell culture supernatant from human coronary artery endothelial cells (HCAEC) and human internal thoracic artery endothelial cells (HITAEC). Fold change ranking

| Белок /<br>Protein | Средняя площадь<br>хроматографического<br>пика в ЭК-КА / Mean<br>chromatographic peak<br>area in HCAEC | Средняя площадь<br>хроматографического<br>пика в ЭК-ВГА /<br>Mean chromatographic<br>peak area in HITAEC | Кратность<br>изменения<br>/ Fold<br>change |
|--------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------|
| ECM1               | 67 181                                                                                                 | 30 192                                                                                                   | 2,23                                       |
| FN1                | 1 574 492                                                                                              | 860 800                                                                                                  | 1,83                                       |
| MMP14              | 108 699                                                                                                | 61 681                                                                                                   | 1,76                                       |
| ITGB1              | 118 580                                                                                                | 68 608                                                                                                   | 1,73                                       |
| MMP2               | 484 885                                                                                                | 289 131                                                                                                  | 1,68                                       |
| ITGA5              | 72 491                                                                                                 | 48 115                                                                                                   | 1,51                                       |
| KDR                | 71 771                                                                                                 | 48 672                                                                                                   | 1,47                                       |
| NRCAM              | 105 826                                                                                                | 74 602                                                                                                   | 1,42                                       |
| ANPEP              | 965 390                                                                                                | 697 708                                                                                                  | 1,38                                       |
| EPHB2              | 34 396                                                                                                 | 26 160                                                                                                   | 1,31                                       |
| BSG                | 83 029                                                                                                 | 72 586                                                                                                   | 1,14                                       |
| HMOX1              | 62 072                                                                                                 | 54 955                                                                                                   | 1,13                                       |
| AIMP1              | 173 537                                                                                                | 163 106                                                                                                  | 1,06                                       |
| ERAP1              | 56 125                                                                                                 | 53 411                                                                                                   | 1,05                                       |
| CLIC4              | 278 453                                                                                                | 273 620                                                                                                  | 1,02                                       |
| NRP2               | 96 120                                                                                                 | 95 530                                                                                                   | 1,01                                       |
| MCAM               | 817 877                                                                                                | 836 131                                                                                                  | 0,98                                       |
| WARS1              | 166 626                                                                                                | 171 099                                                                                                  | 0,97                                       |
| CALD1              | 287 229                                                                                                | 295 831                                                                                                  | 0,97                                       |
| MYH9               | 738 720                                                                                                | 783 483                                                                                                  | 0,94                                       |
| TIE1               | 163 293                                                                                                | 173 771                                                                                                  | 0,94                                       |
| FLNA               | 927 651                                                                                                | 1 011 144                                                                                                | 0,92                                       |
| PXDN               | 69 779                                                                                                 | 76 572                                                                                                   | 0,91                                       |
| MYDGF              | 276 183                                                                                                | 304 282                                                                                                  | 0,91                                       |
| NCL                | 303 054                                                                                                | 344 823                                                                                                  | 0,88                                       |
| ATP5F1B            | 78 513                                                                                                 | 89 400                                                                                                   | 0,88                                       |
| COL4A2             | 101 870                                                                                                | 116 016                                                                                                  | 0,88                                       |
| SERPINE1           | 1 629 711                                                                                              | 1 869 701                                                                                                | 0,87                                       |
| YWHAZ              | 1 878 904                                                                                              | 2 237 022                                                                                                | 0,84                                       |
| NRP1               | 104 220                                                                                                | 126 787                                                                                                  | 0,82                                       |
| ACTG1              | 4 089 299                                                                                              | 5 053 474                                                                                                | 0,81                                       |
| IGFBP7             | 1 298 718                                                                                              | 1 706 386                                                                                                | 0,76                                       |
| CAV1               | 149 238                                                                                                | 198 572                                                                                                  | 0,75                                       |
| TEK                | 37 343                                                                                                 | 51 106                                                                                                   | 0,73                                       |
| ESM1               | 113 142                                                                                                | 155 075                                                                                                  | 0,73                                       |
| COL18A1            | 118 029                                                                                                | 174 085                                                                                                  | 0,68                                       |
| HSPG2              | 1 978 068                                                                                              | 3 127 890                                                                                                | 0,63                                       |
| MMRN2              | 46 803                                                                                                 | 74 041                                                                                                   | 0,63                                       |
| ANXA2              | 731 348                                                                                                | 1 165 454                                                                                                | 0,63                                       |
| CCN2               | 2 421 339                                                                                              | 4 317 333                                                                                                | 0,56                                       |
| EPHB4              | 30 934                                                                                                 | 60 788                                                                                                   | 0,51                                       |
| ROBO4              | 73 953                                                                                                 | 159 968                                                                                                  | 0,46                                       |
| PLXND1             | 15 021                                                                                                 | 34 897                                                                                                   | 0,43                                       |
| BCAM               | 26 698                                                                                                 | 62 298                                                                                                   | 0,43                                       |
| PTPRB              | 6 207                                                                                                  | 30 050                                                                                                   | 0,21                                       |
| EFNA1              | 8 895                                                                                                  | 47 057                                                                                                   | 0,19                                       |
| CXCL8              | 8 076                                                                                                  | 135 918                                                                                                  | 0,06                                       |

от дисфункциональных ЭК обладало про-ангиогенной активностью (CAV1, ITGA5, ANXA2, MMP14, EPHB2, HMOX1, ANPEP, TIE2, BSG, KDR), оставшиеся 2 имели анти-ангиогенное действие (PTPRB, PLXND1, табл. 12). Аналогичное распределение про-ангиогенных (MYDGF, ECM1, IGFBP7, MMP-2, PXDN, NRP2, ESM1, CCN2, HSPG2, FN1) и анти-ангиогенных (COL4A2, ROBO4, NCL) компонентов наблюдалось и в среде от контрольных ЭК (табл. 12).

В среде от ЭК-КА наблюдалось повышенное

выделение 6 ангиогенных молекул, почти все из которых (ECM1, MMP14, MMP2, ITGB1, ITGA5) обладали про-ангиогенным действием (табл. 13). В среде от ЭК-ВГА детектировали 11 ангиогенных молекул, 7 из которых имели про-ангиогенные эффекты, а 4 – анти-ангиогенные (табл. 13).

Далее был проведен сравнительный анализ содержания компонентов сигнальных путей активации и агрегации тромбоцитов, а также свертывания крови в контрольных и дисфункциональных ЭК (табл. 14). В среде от дисфункциональных ЭК на-

Таблица 14. Ранжирование белков сигнальных путей активации и агрегации тромбоцитов и свертывания крови по кратности изменения их содержания (отражаемого средним значением площади хроматографического пика) в культуральной среде от контрольных и дисфункциональных ЭК при анализе данных высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией

Table 14. Levels of platelet aggregation, platelet activation, and blood coagulation proteins (indicated by mean chromatographic peak area at high-performance liquid chromatography-tandem mass spectrometry) in the cell culture supernatant from control and dysfunctional ECs. Fold change ranking

|          |                                                | Средняя площадь                               |                        | AHSG     | 424 745   | 461 143   | 1,09 |
|----------|------------------------------------------------|-----------------------------------------------|------------------------|----------|-----------|-----------|------|
|          | Средняя площадь                                | хроматографического<br>пика в                 | L'normour              | CSRP1    | 358 180   | 375 285   | 1,05 |
| Белок /  | хроматографического<br>пика в контрольных      | дисфункциональных                             | Кратность<br>изменения | CAP1     | 378 468   | 384 049   | 1,01 |
| Protein  | ЭК/Mean                                        | ЭК / Mean                                     | / Fold                 | FAM3C    | 71 530    | 71 924    | 1,01 |
|          | chromatographic peak<br>area in the intact ECs | chromatographic peak<br>area in dysfunctional | change                 | CRK      | 149 981   | 145 221   | 0,97 |
|          |                                                | ECs                                           |                        | PSAP     | 2 199 679 | 2 084 666 | 0,95 |
| CD59     | 323 148                                        | 1 839 455                                     | 5,69                   | AK3      | 55 768    | 52 123    | 0,93 |
| CD63     | 33 960                                         | 91 565                                        | 2,70                   | MYH9     | 765 578   | 678 520   | 0,89 |
| VTI1B    | 14 702                                         | 38 665                                        | 2,63                   | OLA1     | 63 898    | 53 593    | 0,84 |
| TMSB4X   | 6 480 679                                      | 16 707 120                                    | 2,58                   | RHOA     | 59 230    | 49 649    | 0,84 |
| APOA1    | 84 082                                         | 198 065                                       | 2,36                   | SERPINE1 | 1 773 705 | 1 483 797 | 0,84 |
| TF       | 52 237                                         | 120 949                                       | 2,32                   | FLNA     | 977 747   | 815 615   | 0,83 |
| SERPINC1 | 37 323                                         | 82 800                                        | 2,22                   | ACTN4    | 640 291   | 521 929   | 0,82 |
| PLAU     | 11 034                                         | 24 253                                        | 2,20                   | HBB      | 724 625   | 583 990   | 0,81 |
| ALB      | 366 130                                        | 778 712                                       | 2,13                   | GNG12    | 71 509    | 54 922    | 0,77 |
| PLAUR    | 31 412                                         | 58 980                                        | 1,88                   | ACTN1    | 1 538 816 | 1 124 174 | 0,73 |
| ACTB     | 2 597 121                                      | 4 707 533                                     | 1,81                   | VWF      | 1 693 335 | 1 205 888 | 0,71 |
| SOD1     | 1 268 800                                      | 2 299 391                                     | 1,81                   | GNB2     | 57 373    | 40 690    | 0,71 |
| PEAR1    | 24 792                                         | 44 449                                        | 1,79                   | ACTG1    | 4 667 804 | 3 176 610 | 0,68 |
| PPIA     | 3 792 438                                      | 6 676 717                                     | 1,76                   | RAC1     | 95 928    | 63 962    | 0,67 |
| HSPB1    | 343 546                                        | 600 900                                       | 1,75                   | MAPK1    | 107 880   | 71 563    | 0,66 |
| WDR1     | 843 773                                        | 1 463 565                                     | 1,73                   | TIMP1    | 355 431   | 233 695   | 0,66 |
| PFN1     | 2 920 484                                      | 4 915 364                                     | 1,68                   | TLN1     | 212 789   | 136 055   | 0,64 |
| PABPC4   | 32 042                                         | 52 157                                        | 1,63                   | GNB1     | 118 167   | 74 666    | 0,63 |
| AP3B1    | 24 600                                         | 38 999                                        | 1,59                   | APLP2    | 71 818    | 44 237    | 0,62 |
| A2M      | 276 896                                        | 434 820                                       | 1,57                   | ECM1     | 44 988    | 27 698    | 0,62 |
| CYRIB    | 60 221                                         | 91 167                                        | 1,51                   | CLIC1    | 422 113   | 257 369   | 0,61 |
| ANXA5    | 94 890                                         | 137 497                                       | 1,45                   | MANF     | 166 321   | 102 225   | 0,61 |
| ITGA2    | 62 168                                         | 88 030                                        | 1,42                   | QSOX1    | 308 488   | 182 272   | 0,59 |
| GNAI2    | 32 902                                         | 45 124                                        | 1,37                   | YWHAZ    | 2 093 775 | 1 228 401 | 0,59 |
| ALB      | 5 194 866                                      | 6 963 660                                     | 1,34                   | PDIA3    | 695 116   | 377 186   | 0,54 |
| TAGLN2   | 970 318                                        | 1 272 827                                     | 1,31                   | TUBA4A   | 183 198   | 97 673    | 0,53 |
| GRB2     | 56 627                                         | 71 508                                        | 1,26                   | MMRN1    | 798 002   | 424 319   | 0,53 |
| VCL      | 312 404                                        | 386 907                                       | 1,24                   | HSPA5    | 377 677   | 178 888   | 0,47 |
| ITIH4    | 24 171                                         | 29 794                                        | 1,23                   | CALM1    | 1 543 213 | 691 639   | 0,45 |
| CD9      | 178 262                                        | 217 392                                       | 1,22                   | CALU     | 304 784   | 127 340   | 0,42 |
| ALDOA    | 1 137 341                                      | 1 357 342                                     | 1,19                   | APP      | 386 374   | 133 548   | 0,35 |
| PTPN11   | 40 213                                         | 47 707                                        | 1,19                   | FN1      | 1 146 277 | 218 012   | 0,19 |
| CFL1     | 2 164 607                                      | 2 547 591                                     | 1,18                   | CLU      | 1 055 289 | 198 612   | 0,19 |
| LAMP2    | 213 185                                        | 250 225                                       | 1,17                   | SPARC    | 3 819 368 | 675 414   | 0,18 |
| PROCR    | 984 319                                        | 1 134 508                                     | 1,15                   | THBS1    | 5 104 409 | 888 317   | 0,17 |
| PECAM1   | 245 693                                        | 277 225                                       | 1,13                   | SRGN     | 367 032   | 35 388    | 0,10 |
| CD109    | 141 870                                        | 154 883                                       | 1,09                   | 1101     | 20.002    |           | 0,10 |

блюдалось повышенное содержание 21 белков данных сигнальных путей, включая растворимую форму рецептора защиты ЭК от комплемента CD59, протромботический тканевой фактор (тромбопластин) и антитромботические белки антитромбин III (SERPINC1), урокиназный активатор плазминогена (PLAU) и растворимую форму соответствующего рецептора (PLAUR), а также растворимую форму тромбоцитарно-эндотелиального рецептора (PEAR1, табл. 14). В среде от контрольных ЭК отмечалось повышенное содержание 23 белков данных сигнальных путей, включая протромботические белки MAPK1, талин (TLN1), PDIA3, мультимерин-1 (MMRN1), кальмодулин (CALM1), фибронектин (FN1) и тромбоспондин-1 (TSP1, табл. 14).

В среде от ЭК-КА наблюдалось большее количество гиперэкспрессированных белков сигнальных путей активации и агрегации тромбоцитов, а также свертывания крови (13 молекул) в сравнении с 7 белками в ЭК-ВГА (табл. 15). Из молекул с повышенным содержанием в среде от ЭК-КА явным протромботическим эффектом обладали три белка (тканевой фактор, фибронектин и ІТІН4), анти-тромботическим эффектом - один белок (APLP2, табл. 15). Из молекул с повышенным содержанием в среде от ЭК-ВГА один белок (муль-

Таблица 15. Ранжирование белков сигнальных путей активации и агрегации тромбоцитов и свертывания крови по кратности изменения их содержания (отражаемого средним значением площади хроматографического пика) в культуральной среде от ЭК-КА и ЭК-ВГА при анализе данных высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией Table 15. Levels of platelet aggregation, platelet activation, and blood coagulation proteins (indicated by mean chromatographic peak area at high-performance liquid chromatography-tandem mass spectrometry) in the cell culture supernatant from human coronary artery endothelial cells (HCAEC) and human internal thoracic artery endothelial cells (HITAEC). Fold change ranking

|                    | Средняя площадь<br>хроматографического  | Средняя площадь<br>хроматографического   | Кратность           | ACTN1<br>CD9      | 1420539<br>164357 | 1617668<br>187532 | 0,88 |
|--------------------|-----------------------------------------|------------------------------------------|---------------------|-------------------|-------------------|-------------------|------|
| Белок /<br>Protein | пика в ЭК-КА / Меап                     | пика в ЭК-ВГА /                          | изменения<br>/ Fold |                   |                   |                   |      |
| 1 TOTCH            | chromatographic peak<br>area in HCAEC   | Mean chromatographic peak area in HITAEC | change              | CLIC1<br>SERPINE1 | 387017<br>1629711 | 445511<br>1869701 | 0,87 |
| TE.                | • • • • • • • • • • • • • • • • • • • • | •••                                      | 2.44                | TUBA4A            | 165801            | 194795            | 0,87 |
| TF                 | 90962                                   | 26419                                    | 3,44                |                   | 1878904           |                   | 0,83 |
| AHSG               | 695113                                  | 244501                                   | 2,84                | YWHAZ             |                   | 2237022           |      |
| SRGN               | 595779                                  | 214534                                   | 2,78                | PFN1              | 2601035           | 3133450           | 0,83 |
| ECM1               | 67181                                   | 30192                                    | 2,23                | ACTG1             | 4089299           | 5053474           | 0,81 |
| APOA1              | 119512                                  | 60462                                    | 1,98                | PEAR1             | 21654             | 26884             | 0,81 |
| FN1                | 1574492                                 | 860800                                   | 1,83                | VWF               | 1475833           | 1838336           | 0,80 |
| ITIH4              | 32938                                   | 18327                                    | 1,80                | ACTN4             | 555656            | 696714            | 0,80 |
| APLP2              | 96040                                   | 55669                                    | 1,73                | ACTB              | 2222910           | 2846595           | 0,78 |
| ITGA2              | 81698                                   | 49148                                    | 1,66                | OLA1              | 54730             | 70009             | 0,78 |
| GRB2               | 73117                                   | 45633                                    | 1,60                | CALM1             | 1303528           | 1703002           | 0,77 |
| HSPA5              | 475477                                  | 312478                                   | 1,52                | TAGLN2            | 815662            | 1073421           | 0,76 |
| RAC1               | 119381                                  | 80293                                    | 1,49                | CSRP1             | 297159            | 398861            | 0,75 |
| LAMP2              | 263660                                  | 179535                                   | 1,47                | SOD1              | 1059711           | 1408192           | 0,75 |
| A2M                | 341661                                  | 233720                                   | 1,46                | PPIA              | 3090916           | 4260119           | 0,73 |
| PTPN11             | 49449                                   | 34056                                    | 1,45                | GNB1              | 95645             | 133182            | 0,72 |
| RHOA               | 71416                                   | 51105                                    | 1,40                | THBS1             | 4122806           | 5758811           | 0,72 |
| CRK                | 177392                                  | 131707                                   | 1,35                | ANXA5             | 75275             | 107967            | 0,70 |
| PROCR              | 1150724                                 | 873383                                   | 1,32                | SPARC             | 3005674           | 4361831           | 0,69 |
| PECAM1             | 282831                                  | 220934                                   | 1,28                | SERPINC1          | 29222             | 42724             | 0,68 |
| CALU               | 339020                                  | 281961                                   | 1,20                | CAP1              | 289739            | 437621            | 0,66 |
| MANF               | 178531                                  | 158181                                   | 1,13                | HSPB1             | 248875            | 406659            | 0,61 |
| TIMP1              | 379193                                  | 339589                                   | 1,12                | PLAU              | 7917              | 13111             | 0,60 |
| AK3                | 59746                                   | 53116                                    | 1,12                | CFL1              | 1510145           | 2600915           | 0,58 |
| PLAUR              | 32697                                   | 30555                                    | 1,07                | ALDOA             | 788987            | 1369576           | 0,58 |
| QSOX1              | 320635                                  | 300391                                   | 1,07                | MAPK1             | 72151             | 131699            | 0,55 |
| PSAP               | 2258364                                 | 2160555                                  | 1,05                | TMSB4X            | 4298478           | 7935480           | 0,54 |
| PDIA3              | 710565                                  | 684817                                   | 1,04                | CD109             | 91518             | 175438            | 0,52 |
| WDR1               | 856283                                  | 835433                                   | 1,02                | TFPI              | 53245             | 102339            | 0,52 |
| APP                | 390647                                  | 383525                                   | 1,02                | GNB2              | 36428             | 71337             | 0,51 |
| CYRIB              | 60514                                   | 60026                                    | 1,01                | CD63              | 21282             | 42412             | 0,50 |
| CD59               | 312550                                  | 330214                                   | 0,95                | AP3B1             | 14057             | 31628             | 0,44 |
| MYH9               | 738720                                  | 783483                                   | 0,94                | GNG12             | 36635             | 94758             | 0,39 |
| FLNA               | 927651                                  | 1011144                                  | 0,92                | PABPC4            | 13504             | 44400             | 0,30 |
| VCL                | 291181                                  | 326552                                   | 0,89                | GNAI2             | 13815             | 45627             | 0,30 |
| TLN1               | 198168                                  | 222535                                   | 0,89                | MMRN1             | 269704            | 1150200           | 0,23 |
| FAM3C              | 66051                                   | 75182                                    | 0,88                | CLU               | 193233            | 1629994           | 0,12 |

тимерин-1) также обладал протромбогенным действием (табл. 15).

Далее был проведен анализ белков окислительного (табл. 16) и эндоплазматического (табл. 17) стресса в среде от контрольных и дисфункциональных ЭК. В среде от дисфункциональных ЭК наблюдалось повышенное содержание 2 белков окислительного стресса (табл. 16) и 5 белков эндоплазматического стресса (табл. 17), в среде от контрольных ЭК – 5 белков окислительного стресса (табл. 16) и 9 белков эндоплазматического стресса (табл. 17). На основании полученных результатов было сделано заключение, что окислительный и эндоплазматический стресс не характеризуется существенным выделением белков соответствующих сигнальных путей в среду.

Далее по общему массиву данных был проведен расширенный биоинформатический анализ молекулярных категорий среди 10% (в данном случае 125) белков с наибольшим содержанием в среде от дисфункциональных и контрольных ЭК. При помощи данного анализа в среде от контрольных ЭК было выявлено статистически значимо повышенное содержание компонентов сигнального пути Notch (играющего важную роль в регуляции эндотелиального гомеостаза), белков репарации ДНК и

Таблица 16. Ранжирование белков сигнальных путей окислительного стресса по кратности изменения их содержания (отражаемого средним значением площади хроматографического пика) в культуральной среде от контрольных и дисфункциональных ЭК при анализе данных высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией

**Table 16.** Levels of oxidative stress-related proteins (indicated by mean chromatographic peak area at high-performance liquid chromatography-tandem mass spectrometry) in the cell culture supernatant from control and dysfunctional ECs. Fold change ranking

| Белок /<br>Protein | Средняя площадь<br>хроматографического<br>пика в контрольных<br>ЭК/Mean<br>chromatographic peak<br>area in the intact ECs | Средняя площадь<br>хроматографического<br>пика в<br>дисфункциональных<br>ЭК / Mean<br>chromatographic peak<br>area in dysfunctional<br>ECs | Кратность<br>изменения<br>/ Fold<br>change |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| PPIA               | 3792438                                                                                                                   | 6676717                                                                                                                                    | 1,76                                       |
| STAU1              | 28979                                                                                                                     | 48068                                                                                                                                      | 1,66                                       |
| PARK7              | 625713                                                                                                                    | 884444                                                                                                                                     | 1,41                                       |
| PRDX5              | 180666                                                                                                                    | 253302                                                                                                                                     | 1,40                                       |
| SOD2               | 105328                                                                                                                    | 146625                                                                                                                                     | 1,39                                       |
| NAGLU              | 82370                                                                                                                     | 98485                                                                                                                                      | 1,20                                       |
| GSR                | 156997                                                                                                                    | 174480                                                                                                                                     | 1,11                                       |
| PRDX3              | 182882                                                                                                                    | 202255                                                                                                                                     | 1,11                                       |
| PRDX2              | 123413                                                                                                                    | 117009                                                                                                                                     | 0,95                                       |
| SNCA               | 78351                                                                                                                     | 65379                                                                                                                                      | 0,83                                       |
| HSPA1A             | 164986                                                                                                                    | 111947                                                                                                                                     | 0,68                                       |
| PARP1              | 112949                                                                                                                    | 74504                                                                                                                                      | 0,66                                       |
| G6PD               | 136933                                                                                                                    | 83678                                                                                                                                      | 0,61                                       |
| NQO1               | 172289                                                                                                                    | 87904                                                                                                                                      | 0,51                                       |
| EIF2S1             | 117159                                                                                                                    | 38870                                                                                                                                      | 0,33                                       |
| STK24              | 53536                                                                                                                     | 12504                                                                                                                                      | 0,23                                       |

пролиферативных белков, компонентов внеклеточного матрикса, а также провоспалительных и ангиогенных белков (табл. 18). Среда от ЭК-ВГА также отличалась статистически значимо повышенным содержанием белков сигнального пути Notch, сигнальных путей пролиферации, компонентов внеклеточного матрикса и провоспалительных белков (табл. 19).

На последнем этапе работы был проведен многопараметрический анализ провоспалительных цитокинов, выделяемых в среду ЭК-КА и ЭК-ВГА под воздействием первичных кальципротеиновых частиц (вызывающих умеренную дисфункцию эндотелия) и вторичных кальципротеиновых частиц (вызывающих выраженную дисфункцию эндотелия). Воздействие первичных кальципротеиновых частиц на ЭК-КА вызывало повышение выделения 12 провоспалительных цитокинов: интерлейкина (IL)-1β, IL-6, IL-8, IL-12, хемокинов GROα/CXCL1, IP-10/CXCL10, MIP-1α/CCL3, CCL11, фактора некроза опухоли-α (TNF-α), трансформирующего фактора роста-α (TGF-α), гранулоцитарного колониестимулирующего фактора роста (G-CSF) и гранулоцитарно-макрофагального колониестимулирующего фактора роста (GM-CSF), в то время как при

Таблица 17. Ранжирование белков сигнальных путей эндоплазматического стресса по кратности изменения их содержания (отражаемого средним значением площади хроматографического пика) в культуральной среде от контрольных и дисфункциональных ЭК при анализе данных высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией

Table 17. Levels of endoplasmic reticulum stress-related proteins (indicated by mean chromatographic peak area at highperformance liquid chromatography-tandem mass spectrometry) in the cell culture supernatant from control and dysfunctional ECs. Fold change ranking

| Белок /<br>Protein | Средняя площадь<br>хроматографического<br>пика в контрольных<br>ЭК/Mean<br>chromatographic peak<br>area in the intact ECs | Средняя площадь<br>хроматографического<br>пика в<br>дисфункциональных<br>ЭК/Mean<br>chromatographic peak<br>area in dysfunctional<br>ECs | Кратность<br>изменения<br>/ Fold<br>change |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| UFM1               | 64163                                                                                                                     | 251908                                                                                                                                   | 3,93                                       |
| UFC1               | 41175                                                                                                                     | 107023                                                                                                                                   | 2,60                                       |
| GORASP2            | 98915                                                                                                                     | 232703                                                                                                                                   | 2,35                                       |
| MARCKS             | 248982                                                                                                                    | 547701                                                                                                                                   | 2,20                                       |
| NCK1               | 34958                                                                                                                     | 61645                                                                                                                                    | 1,76                                       |
| CXCL8              | 84781                                                                                                                     | 119695                                                                                                                                   | 1,41                                       |
| BCAP31             | 114966                                                                                                                    | 111202                                                                                                                                   | 0,97                                       |
| WFS1               | 67980                                                                                                                     | 49407                                                                                                                                    | 0,73                                       |
| PDIA3              | 695116                                                                                                                    | 377186                                                                                                                                   | 0,54                                       |
| HSPA5              | 377677                                                                                                                    | 178888                                                                                                                                   | 0,47                                       |
| P4HB               | 478240                                                                                                                    | 223252                                                                                                                                   | 0,47                                       |
| HSP90B1            | 238672                                                                                                                    | 100349                                                                                                                                   | 0,42                                       |
| PDIA6              | 159871                                                                                                                    | 60877                                                                                                                                    | 0,38                                       |
| PDIA4              | 216920                                                                                                                    | 76672                                                                                                                                    | 0,35                                       |
| EIF2S1             | 117159                                                                                                                    | 38870                                                                                                                                    | 0,33                                       |
| TARDBP             | 131123                                                                                                                    | 34638                                                                                                                                    | 0,26                                       |
| THBS1              | 5104409                                                                                                                   | 888317                                                                                                                                   | 0,17                                       |

добавлении первичных кальципротеиновых частиц к ЭК-ВГА наблюдалось повышенное выделение 5 провоспалительных цитокинов (IL-1β, IL-6, IL-8, IP-10/CXCL10 и RANTES/CCL5, табл. 20). Воздействие вторичных кальципротеиновых частиц на ЭК-КА приводило к повышению выделения 30 провоспалительных цитокинов: интерлейкина (IL)-1α, IL-β, IL-2, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-15, IL-17а, растворимой формы рецептора к IL-1α (IL-1Rα), хемокинов GROα/CXCL1, IP-10/ CXCL10, MIP-1α/CCL3, MIP-1β/CCL4, RANTES/ CCL5, MCP-3/CCL7, эотаксина/CCL11, MDC/ ССL22, TNF-α, лимфотоксина-альфа (LT-α)/фактора некроза опухоли-α (TNF-b), TGF-α, G-CSF, GM-CSF, альфа-2-интерферона (IFN-α2), гамма-интерферона (IFN-у), растворимого CD40-лиганда (sCD40L) и лиганда fms-подобной тирозинкиназы 3 (Flt-3L, табл. 20). В то же время воздействие вторичных кальципротеиновых частиц на ЭК-ВГА вызывало повышение секреции лишь 10 провоспалительных цитокинов: IL-1β, IL-6, IL-8, IL-13, IL-17a, IP-10/CXCL10, RANTES/CCL5, GM-CSF, TNF-b и ІFN-α2 (табл. 20). Таким образом, в сравнении с ЭК-КА ЭК-ВГА обладали существенно большей устойчивостью к провоспалительной активации при 24-часовой инкубации с модельным пусковым фактором дисфункции эндотелия. Базальная концентрация большинства (22) провоспалительных цитокинов между ЭК-ВГА и ЭК-КА значимо не отличалась (кратность изменения менее чем в 1,25 раза), при этом 7 цитокинов (IL-1b, IL-8, IL-12, IP-10/CXCL10, RANTES/CCL5, эотаксин/CCL11, GM-CSF) характеризовались повышенным содержанием в среде от ЭК-ВГА, а 1 (IL-6) – в среде от ЭК-КА (табл. 20).

# Обсуждение

Сравнительный анализ молекул, выделяемых контрольными и дисфункциональными ЭК, имеет принципиальное значение для последующего анализа функциональной гетерогенности ЭК различных направлений дифференцировки, а также ЭК атерочувствительных и атерорезистентных артерий. В данном исследовании совокупность молекул, выделяемых ЭК-КА и ЭК-ВГА в культуральную среду, была подразделена на классы белков, функционально значимые для физиологии эндотелия. К таким категориям были отнесены маркеры эндотелиального фенотипа, компоненты эндотелиальной базальной мембраны и субэндотелиального внеклеточного матрикса, белки сигнальных путей ангиогенеза, белки сигнальных путей активации и агрегации тромбоцитов и свертывания крови, а также белки ответа на окислительный и эндоплазматический стресс. В данном контексте наличие растворимых форм рецепторных маркеров и компонентов эндотелиального гликокаликса в среде

отражает непосредственное снижение жизнеспособности ЭК, синтез компонентов базальной мембраны и внеклеточного матрикса – активность синтетических процессов, белки сигнальных путей ангиогенеза косвенно указывают на способность ЭК к формированию капилляров (об этом, в частности, может свидетельствовать соотношение про- и анти-ангиогенных белков), а белки сигнальных путей активации и агрегации тромбоцитов и свертывания крови могут сигнализировать о развитии протромботической дисфункции эндотелия (при этом необходимо учитывать соотношение белков с протромбогенным и антитромбогенным действием).

В предыдущем исследовании нами было выделено 45 основных маркеров эндотелиального фенотипа, экспрессируемых в ЭК на генном и белковом уровне, однако роль большинства из них в развитии дисфункции эндотелия в клинических исследованиях не изучалась. В данной работе нами было выделено 28 маркеров эндотелиального фенотипа, выделяемых ЭК в культуральную среду, и определены 12 из них, характеризующиеся повышенным содержанием в среде от дисфункциональных ЭК (при этом концентрация растворимых форм интегринов ITGB1, ITGA2 и ITGA5 была повышена как в среде от дисфункциональных ЭК, так и в среде от ЭК-КА). В дальнейших исследованиях целесообразно провести анализ чувствительности и специфичности растворимых форм данных белков как молекулярных маркеров дисфункции различных линий ЭК при воздействии различных пусковых факторов (цитотоксические препараты, кальципротеиновые частицы, мочевина, провоспалительные цитокины, липополисахарид, насыщенные жирные кислоты, дефицит питательных веществ, S1-субъединица Spike-белка или рецептор-связывающий домен коронавируса SARS-CoV-2, ингибиторы эндотелиальной NO-синтазы). В число указанных 12 маркеров входили классические рецепторы ЭК (EPHB2, KDR, TEK, ENG, BSG, MCAM), связывающие ЭК с базальной мембраны интегрины (ITGA5, ITGA2, ITGB1) и белки межклеточных контактов (PTPRB и F11R/JAM-A); кроме того, большинство данных белков обладало про-ангиогенным действием (рецептор к эфрину ЕРНВ2, рецептор к фактору роста сосудистого эндотелия KDR, рецептор к ангиопоэтину-1 ТЕК, рецептор к ТGF-β эндоглин, модулирующая активность KDR и ТЕК эндотелиальная фосфатаза PTPRB). Верификационный анализ содержания растворимых форм данных белков в среде от ЭК при воздействии различных пусковых факторов дисфункции эндотелия в сравнении с классическими определяемыми в литературе маркерами (РЕСАМ1, VE-кадгерин, VCAM-1 и ICAM-1) может позволить выделить один или несколько молекулярных маркеров дисфункции эндотелия, пригодных для дальнейшего клинического тестирования. Повышенное содержание растворимых форм интегринов (ITGA5, ITGA2, ITGB1) в среде от ЭК-КА в сравнении с ЭК-ВГА при ее протеомном профилировании представляет собой особый интерес и требует расширенного анализа с сочетанием дот-блоттинга и иммуноферментного анализа.

Ранее было показано, что растворимые формы эндотелиальных рецепторов (в частности, растворимые формы VCAM-1 и E-селектина) [24], а также содержащийся в цитозоле ЭК фактор фон Виллебранда [25] могут иметь высокую чувствительность и специфичность в качестве маркеров дисфункции эндотелия у пациентов с COVID-19. Увеличение концентрации растворимой формы VE-кадгерина было отмечено у пациентов с полиорганной недостаточностью [33]. В отношении хронических патологий было продемонстрировано, что повышенная концентрация растворимых форм ICAM-1, Е-селектина и фактора фон Виллебранда в сыворотке крови ассоциированы с развитием ишемического инсульта [26, 27] и сахарного диабета [28, 29]. Кроме того, была выявлена связь увеличенной концентрации VCAM-1 и ICAM-1 в сыворотке крови с повышенным содержанием взвешенных частиц в атмосферном воздухе [30], при клинической депрессии [31] и при системной склеродермии [32], являющихся факторами сердечно-сосудистого риска. В совокупности данные исследования позволяют предположить клиническую релевантность растворимых форм эндотелиальных рецепторов в качестве вероятных маркеров дисфункции эндотелия. Вполне возможно, что скрининговый (многопараметрический) анализ циркулирующих маркеров эндотелиального фенотипа у различных категорий пациентов может позволить определить наиболее высокочувствительные и высокоспецифичные из них с целью последующего подтверждения их диагностической ценности методом иммуноферментного анализа.

Достаточно интересным является снижение выделения дисфункциональными ЭК компонентов базальной мембраны и субэндотелиального внеклеточного матрикса. В этом отношении необходимо отметить снижение секреции целого ряда таких белков (перлекана, коллагена IV типа, нидогена-1, бета-2-субъединицы ламинина LAMB2, мультимерина-2 и аннексина А2) ЭК-КА в сравнении с ЭК-ВГА, что также может свидетельствовать об их патологическом фенотипе. Феномен уменьшения выделения компонентов эндотелиальной базальной мембраны при отсутствии патологических изменений секреции белков субэндотелиального внеклеточного матрикса в ЭК-КА может свидетельствовать о снижении регенеративного потенциала ЭК и требует дальнейшего изучения в контексте исследования молекулярных маркеров дисфункции эндотелия. В этом отношении перспективным подходом к сравнительной оценке патофизиологической ценности двух данных групп молекул является дот-блоттинг, при котором возможна полуколичественная оценка всех активно выделяемых и вместе с тем гипоэкспрессированных в среде от дисфункциональных ЭК маркеров эндотелиальной базальной мембраны (остеонектина, перлекана, фибронектина, ламинина, гомолога лизилоксидазы 2, фибулина-1, агрина, нидогена-1, коллагена IV типа, пероксидазина и коллагена VI типа) и белков субэндотелиального внеклеточного матрикса (тромбоспондина-1, фактора роста соединительной ткани, EGF-содержащего фибулиноподобного белка, тканевых ингибиторов металлопротеиназ-1 и -2, трансглутаминазы 2, матриксной металлопротеиназы-2, тестикана-1, ассоциированного с микрофибриллами белка МFAP2, бигликана и богатого цистеином индуктора ангиогенеза CCN1). Гипотеза о более высокой диагностической ценности компонентов эндотелиальной базальной мембраны в сравнении с белками субэндотелиального внеклеточного матрикса выглядит особенно привлекательной в контексте их вероятной более высокой специфичности для ЭК, однако также нуждается в дальнейшей валидации на клеточных культурах и в клинических исследованиях (по аналогии с растворимыми формами эндотелиальных рецепторов). В отношении этого класса молекул предложенный выше скрининговый подход представляется несколько более простым в реализации в силу большого количества рецепторных маркеров эндотелиального фенотипа (45) с учетом дополнительной необходимости профилирования маркеров эндотелиального гликокаликса (синдекан-1, синдекан-2, синдекан-4, эндокан, гиалуроновая кислота, тромбомодулин). Кроме того, выделяемые ЭК компоненты базальной мембраны теоретически должны характеризоваться низкой активностью синтеза или полным отсутствием экспрессии в циркулирующих в крови иммунных клетках, эритроцитах и тромбоцитах (что не всегда справедливо для рецепторных маркеров эндотелиального фенотипа в силу их не всегда высокой специфичности и тем более для провоспалительных цитокинов, широкий спектр которых в большом количестве секретируется иммунными клетками). В целом снижение жизнеспособности эндотелия (сопровождающееся выделением его рецепторных маркеров в микроокружение и системный кровоток) логично сочетается с нарушением его регенеративных способностей (отражаемых сниженной активностью синтеза компонентов базальной мембраны).

Третьим существенным отличием секреторного профиля ЭК-КА от ЭК-ВГА было повышенное количество белков сигнальных путей активации и агрегации тромбоцитов в среде от ЭК-КА. Вместе с тем среди дифференциально экспрессируемых в Таблица 18. Молекулярные категории биоинформатических баз данных (Gene Ontology и Reactome) среди 125 (10%) белков с наиболее повышенным содержанием в культуральной среде от контрольных ЭК в сравнении с дисфункциональными ЭК при анализе данных высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией. Ранжирование по мануально выделенным классам молекул и по кратности изменения экспрессии (fold change)

Table 18. Molecular terms (Gene Ontology and Reactome) among top 125 (10%) proteins overexpressed in the intact ECs as compared with dysfunctional ECs. High-performance liquid chromatographytandem mass spectrometry. The molecular classes (right column) have been selected manually. Molecular class ranking followed by a fold change ranking

| База данных /<br>Database           | Молекулярная категория / Molecular term                                                                   | Номер<br>молекулярной<br>категории в<br>базе данных /<br>ID number | Количество белков в молекулярной категории из 125 наиболее экспрессированных белков / Number of molecular term proteins in 125 most expressed proteins | Процент белков молекулярной категории из 125 наиболее экспрессированных белков / Proportion of molecular term proteins from 125 most expressed proteins | Кратность<br>изменения<br>экспрессии<br>/ Fold<br>change | Значение<br>FDR / FDR    | Класс молекул / Molecular class             |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------|---------------------------------------------|
| Reactome                            | Транскрипция и трансляция компонентов сигнального пути NOTCH /<br>Pre-NOTCH Transcription and translation | R-HSA-1912408                                                      | 24                                                                                                                                                     | 15,79                                                                                                                                                   | 21,94                                                    | 1,94 × 10 <sup>-23</sup> | Сигнальный путь NOTCH / Signaling by NOTCH  |
| Reactome                            | Сигнальный путь NOTCH / Signaling by NOTCH                                                                | R-HSA-157118                                                       | 25                                                                                                                                                     | 16,45                                                                                                                                                   | 9,75                                                     | 3,38 × 10 <sup>-16</sup> | Сигнальный путь NOTCH / Signaling by NOTCH  |
| Gene Ontology<br>Biological Process | Организация теломер / Telomere organization                                                               | GO:0032200                                                         | 24                                                                                                                                                     | 15,79                                                                                                                                                   | 115,43                                                   | 6,68 × 10 <sup>-43</sup> | Репарация ДНК / DNA repair                  |
| Reactome                            | Негомологичное соединение концов / Nonhomologous end-joining                                              | R-HSA-5693571                                                      | 14                                                                                                                                                     | 9,21                                                                                                                                                    | 18,10                                                    | 3,21 × 10 <sup>-12</sup> | Репарация ДНК / DNA repair                  |
| Reactome                            | Эксцизионная репарация оснований / Base excision repair                                                   | R-HSA-73884                                                        | 14                                                                                                                                                     | 9,21                                                                                                                                                    | 13,62                                                    | 1,25 × 10 <sup>-10</sup> | Репарация ДНК / DNA repair                  |
| Reactome                            | Поддержание функции теломер / Telomere maintenance                                                        | R-HSA-157579                                                       | 14                                                                                                                                                     | 9,21                                                                                                                                                    | 11,11                                                    | 1,65 × 10 <sup>-9</sup>  | Репарация ДНК / DNA repair                  |
| Reactome                            | Поддержание функции хромосом / Chromosome maintenance                                                     | R-HSA-73886                                                        | 14                                                                                                                                                     | 9,21                                                                                                                                                    | 8,92                                                     | 2,42 × 10 <sup>-8</sup>  | Репарация ДНК / DNA repair                  |
| Reactome                            | Гомологичная рекомбинация / Homology directed repair                                                      | R-HSA-5693538                                                      | 14                                                                                                                                                     | 9,21                                                                                                                                                    | 8,92                                                     | 2,42 × 10 <sup>-8</sup>  | Репарация ДНК / DNA repair                  |
| Reactome                            | Хроматин-модифицирующие ферменты / Chromatin modifying enzymes                                            | R-HSA-3247509                                                      | 24                                                                                                                                                     | 15,79                                                                                                                                                   | 7,90                                                     | 1,66 × 10 <sup>-13</sup> | Репарация ДНК / DNA repair                  |
| Reactome                            | Репарация двуцепочечных разрывов ДНК / DNA double-strand break repair                                     | R-HSA-5693532                                                      | 14                                                                                                                                                     | 9,21                                                                                                                                                    | 7,32                                                     | 2,54 × 10 <sup>-7</sup>  | Репарация ДНК / DNA repair                  |
| Reactome                            | Репарация ДНК / DNA repair                                                                                | R-HSA-73894                                                        | 14                                                                                                                                                     | 9,21                                                                                                                                                    | 3,75                                                     | 3,36 × 10 <sup>-4</sup>  | Репарация ДНК / DNA repair                  |
| Gene Ontology<br>Molecular Function | Структурные компоненты хроматина / Structural constituent of chromatin                                    | GO:0030527                                                         | 24                                                                                                                                                     | 15,79                                                                                                                                                   | 28,41                                                    | 1,86 × 10 <sup>-24</sup> | Пролиферация / Proliferation                |
| Reactome                            | Сборка предрепликативного комплекса / Assembly of the pre-replicative complex                             | R-HSA-68867                                                        | 24                                                                                                                                                     | 15,79                                                                                                                                                   | 16,21                                                    | 1,88 × 10 <sup>-20</sup> | Пролиферация / Proliferation                |
| Reactome                            | Инициация репликации ДНК / DNA Replication pre-initiation                                                 | R-HSA-69002                                                        | 24                                                                                                                                                     | 15,79                                                                                                                                                   | 14,38                                                    | 2,64 × 10 <sup>-19</sup> | Пролиферация / Proliferation                |
| Gene Ontology<br>Biological Process | Организация хроматина / Chromatin organization                                                            | GO:0006325                                                         | 27                                                                                                                                                     | 17,76                                                                                                                                                   | 13,80                                                    | 1,07 × 10 <sup>-19</sup> | Пролиферация / Proliferation                |
| Reactome                            | Репликация ДНК / DNA replication                                                                          | R-HSA-69306                                                        | 26                                                                                                                                                     | 17,11                                                                                                                                                   | 12,65                                                    | 1,27 × 10 <sup>-19</sup> | Пролиферация / Proliferation                |
| Reactome                            | Контрольные точки клеточного цикла / Cell cycle checkpoints                                               | R-HSA-69620                                                        | 15                                                                                                                                                     | 9,87                                                                                                                                                    | 4,88                                                     | 9,36 × 10 <sup>-6</sup>  | Пролиферация / Proliferation                |
| Gene Ontology<br>Molecular Function | Связывание ламинина / Laminin binding                                                                     | GO:0043236                                                         | 5                                                                                                                                                      | 3,29                                                                                                                                                    | 26,39                                                    | 8,60 × 10 <sup>-4</sup>  | Внеклеточный матрикс / Extracellular matrix |
| Gene Ontology<br>Molecular Function | Структурные компоненты внеклеточного матрикса / extracellular matrix structural constituent               | GO:0005201                                                         | 18                                                                                                                                                     | 11,84                                                                                                                                                   | 18,84                                                    | 7,95 × 10 <sup>-15</sup> | Внеклеточный матрикс / Extracellular matrix |
| Gene Ontology<br>Cellular Component | Базальная мембрана / Basement membrane                                                                    | GO:0005604                                                         | 10                                                                                                                                                     | 6,58                                                                                                                                                    | 14,10                                                    | 6,82 × 10 <sup>-7</sup>  | Внеклеточный матрикс / Extracellular matrix |
| Gene Ontology<br>Molecular Function | Связывание коллагена / Collagen binding                                                                   | GO:0005518                                                         | 7                                                                                                                                                      | 4,61                                                                                                                                                    | 12,67                                                    | 5,36 × 10 <sup>-4</sup>  | Внеклеточный матрикс / Extracellular matrix |
| Reactome                            | Формирование эластических волокон / Elastic fibre formation                                               | R-HSA-1566948                                                      | 6                                                                                                                                                      | 3,95                                                                                                                                                    | 12,34                                                    | 4,44 × 10 <sup>-4</sup>  | Внеклеточный матрикс / Extracellular matrix |

| Gene Ontology<br>Biological Process | Организация коллагеновых фибрилл / Collagen fibril organization                                                                        | GO:0030199    | 6  | 3,95  | 11,80 | 9,70 × 10 <sup>-3</sup>  | Внеклеточный матрикс / Extracellular matrix |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------|----|-------|-------|--------------------------|---------------------------------------------|
| Gene Ontology<br>Cellular Component | Коллагенсодержащий внеклеточный матрикс / Collagen-containing extracellular matrix                                                     | GO:0062023    | 30 | 19,74 | 10,61 | 1,10 × 10 <sup>-19</sup> | Внеклеточный матрикс / Extracellular matrix |
| Reactome                            | Протеогликаны внеклеточного матрикса / ECM proteoglycans                                                                               | R-HSA-3000178 | 8  | 5,26  | 9,53  | 7,89 × 10 <sup>-5</sup>  | Внеклеточный матрикс / Extracellular matrix |
| Reactome                            | Репликация ДНК / DNA replication                                                                                                       | R-HSA-69306   | 26 | 17,11 | 12,65 | $1,27 \times 10^{-19}$   | Пролиферация / Proliferation                |
| Reactome                            | Контрольные точки клеточного цикла / Cell cycle checkpoints                                                                            | R-HSA-69620   | 15 | 9,87  | 4,88  | 9,36 × 10 <sup>-6</sup>  | Пролиферация / Proliferation                |
| Gene Ontology<br>Molecular Function | Связывание ламинина / Laminin binding                                                                                                  | GO:0043236    | 5  | 3,29  | 26,39 | 8,60 × 10 <sup>-4</sup>  | Внеклеточный матрикс / Extracellular matrix |
| Gene Ontology<br>Molecular Function | Структурные компоненты внеклеточного матрикса / Extracellular matrix structural constituent                                            | GO:0005201    | 18 | 11,84 | 18,84 | $7,95 \times 10^{-15}$   | Внеклеточный матрикс / Extracellular matrix |
| Gene Ontology<br>Cellular Component | Базальная мембрана / Basement membrane                                                                                                 | GO:0005604    | 10 | 6,58  | 14,10 | 6,82 × 10 <sup>-7</sup>  | Внеклеточный матрикс / Extracellular matrix |
| Gene Ontology<br>Molecular Function | Связывание коллагена / Collagen binding                                                                                                | GO:0005518    | 7  | 4,61  | 12,67 | 5,36 × 10 <sup>-4</sup>  | Внеклеточный матрикс / Extracellular matrix |
| Reactome                            | Формирование эластических волокон / Elastic fibre formation                                                                            | R-HSA-1566948 | 6  | 3,95  | 12,34 | 4,44 × 10 <sup>-4</sup>  | Внеклеточный матрикс / Extracellular matrix |
| Gene Ontology<br>Biological Process | Организация коллагеновых фибрилл / Collagen fibril organization                                                                        | GO:0030199    | 6  | 3,95  | 11,80 | 9,70 × 10 <sup>-3</sup>  | Внеклеточный матрикс / Extracellular matrix |
| Gene Ontology<br>Cellular Component | Коллагенсодержащий внеклеточный матрикс / Collagen-containing extracellular matrix                                                     | GO:0062023    | 30 | 19,74 | 10,61 | 1,10 × 10 <sup>-19</sup> | Внеклеточный матрикс / Extracellular matrix |
| Reactome                            | Протеогликаны внеклеточного матрикса / ECM proteoglycans                                                                               | R-HSA-3000178 | 8  | 5,26  | 9,53  | 7,89 × 10 <sup>-5</sup>  | Внеклеточный матрикс / Extracellular matrix |
| Gene Ontology<br>Cellular Component | Внеклеточный матрике / Extracellular matrix                                                                                            | GO:0031012    | 15 | 9,87  | 9,20  | 2,31 × 10 <sup>-8</sup>  | Внеклеточный матрикс / Extracellular matrix |
| Reactome                            | Формирование коллагена / Collagen formation                                                                                            | R-HSA-1474290 | 7  | 4,61  | 7,04  | 1,69 × 10 <sup>-3</sup>  | Внеклеточный матрикс / Extracellular matrix |
| Reactome                            | Организация внеклеточного матрикса / Extracellular matrix organization                                                                 | R-HSA-1474244 | 25 | 16,45 | 7,00  | 5,24 × 10 <sup>-13</sup> | Внеклеточный матрикс / Extracellular matrix |
| Reactome                            | Биосинтез и модификация коллагена / Collagen biosynthesis and modifying enzymes                                                        | R-HSA-1650814 | 5  | 3,29  | 6,75  | 1,86 × 10 <sup>-2</sup>  | Внеклеточный матрикс / Extracellular matrix |
| Reactome                            | Деградация внеклеточного матрикса / Degradation of the extracellular matrix                                                            | R-HSA-1474228 | 8  | 5,26  | 5,13  | 3,18 × 10 <sup>-3</sup>  | Внеклеточный матрикс / Extracellular matrix |
| Reactome                            | Секреторный фенотип, ассоциированный со старением / Senescence-associated secretory phenotype                                          | R-HSA-2559582 | 24 | 15,79 | 19,22 | 3,92 × 10 <sup>-22</sup> | Воспаление / Inflammation                   |
| Reactome                            | Старение, вызванное окислительным стрессом / Oxidative stress induced senescence                                                       | R-HSA-2559580 | 24 | 15,79 | 17,24 | 4,38 × 10 <sup>-21</sup> | Воспаление / Inflammation                   |
| Reactome                            | Старение, индуцированное повреждениями ДНК или критическим<br>укорачиванием теломер / DNA damage/telomere stress induced<br>senescence | R-HSA-2559586 | 14 | 9,21  | 15,64 | 2,04 × 10 <sup>-11</sup> | Воспаление / Inflammation                   |
| Reactome                            | Клеточное старение / Cellular senescence                                                                                               | R-HSA-2559583 | 24 | 15,79 | 10,97 | $1,26 \times 10^{-16}$   | Воспаление / Inflammation                   |
| Reactome                            | Сигнальные пути ннтерлейкинов / Signaling by interleukins                                                                              | R-HSA-449147  | 19 | 12,50 | 3,65  | 1,57 × 10 <sup>-5</sup>  | Воспаление / Inflammation                   |
| Reactome                            | Сигнальные пути цитокинов / Cytokine signaling in immune system                                                                        | R-HSA-1280215 | 25 | 16,45 | 2,82  | 2,31 × 10 <sup>-5</sup>  | Воспаление / Inflammation                   |
| Gene Ontology<br>Biological Process | Стимуляция миграции ЭК / Positive regulation of EC migration                                                                           | GO:0010595    | 6  | 3,95  | 11,63 | 9,84 × 10 <sup>-3</sup>  | Ангиогенез / Angiogenesis                   |
| Reactome                            | Сигнальный путь VEGF / Signaling by VEGF                                                                                               | R-HSA-194138  | 8  | 5,26  | 6,70  | 6,97 × 10 <sup>-4</sup>  | Ангиогенез / Angiogenesis                   |
| Reactome                            | Сигнальный путь VEGFA-VEGFR2 / VEGFA-VEGFR2 pathway                                                                                    | R-HSA-4420097 | 6  | 3,95  | 5,60  | 1,31 × 10 <sup>-2</sup>  | Ангиогенез / Angiogenesis                   |
| Gene Ontology<br>Biological Process | Стимуляция биосинтеза NO / Positive regulation of nitric oxide biosynthetic process                                                    | GO:0045429    | 6  | 3,95  | 16,58 | 2,62 × 10 <sup>-3</sup>  | Монооксид азота (NO) / Nitric oxide         |

Таблица 19. Молекулярные категории биоинформатических баз данных (Gene Ontology и Reactome) среди 125 (10%) белков с наиболее повышенным содержанием в культуральной среде от ЭК-ВГА в сравнении с ЭК-КА при анализе данных высокоэффективной жидкостной хроматографии с тандемной масс-спектрометрией. Ранжирование по мануально выделенным классам молекул и по кратности изменения экспрессии (fold change)

Table 19. Molecular terms (Gene Ontology and Reactome) among top 125 (10%) proteins overexpressed in human internal thoracic artery endothelial cells (HITAEC) as compared with human coronary artery endothelial cells (HCAEC). High-performance liquid chromatography-tandem mass spectrometry. The molecular classes (right column) have been selected manually. Molecular class ranking followed by a fold change ranking

| База данных /<br>Database           | Молекулярная категория / Molecular term                                                                   | Номер<br>молскулярной<br>категории в<br>базе данных /<br>ID number | Количество белков в молекулярной категории из 125 наиболее экспрессированных белков / Number of molecular term proteins in 125 most expressed proteins | Процент белков молекулярной категории из 125 наиболее экспрессированных белков / Proportion of molecular term proteins from 125 most expressed proteins | Кратность<br>изменения<br>экспрессии<br>/ Fold<br>change | Значение<br>FDR / FDR    | Класс молекул / Molecular class<br>Сигнальный путь NOTCH / Signaling by NOTCH |  |  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------|--|--|
| Reactome                            | Транскрипция и трансляция компонентов сигнального пути<br>Notch / Pre-NOTCH transcription and translation | R-HSA-1912408                                                      | 10                                                                                                                                                     | 7,25                                                                                                                                                    | 10,27                                                    | 7,85 × 10 <sup>-6</sup>  |                                                                               |  |  |
| Reactome                            | Процессинг и экспрессия компонентов сигнального пути Notch / Pre-NOTCH expression and processing          | R-HSA-1912422                                                      | 10                                                                                                                                                     | 7,25                                                                                                                                                    | 8,84                                                     | 1,93 × 10 <sup>-5</sup>  | Сигнальный путь NOTCH / Signaling by NOTCH                                    |  |  |
| Reactome                            | Сигнальный путь NOTCH / Signaling by NOTCH                                                                | R-HSA-157118                                                       | 10                                                                                                                                                     | 7,25                                                                                                                                                    | 4,38                                                     | $2,93 \times 10^{-3}$    | Сигнальный путь NOTCH /Signaling by NOT                                       |  |  |
| Gene Ontology<br>Biological Process | Opганизация теломер / Telomere organization                                                               | GO:0032200                                                         | 10                                                                                                                                                     | 7,25                                                                                                                                                    | 53,44                                                    | 1,02 × 10 <sup>-10</sup> | Пролиферация / Proliferation                                                  |  |  |
| Gene Ontology<br>Molecular Function | Структурные компоненты хроматина / Structural constituent of chromatin                                    | GO:0030527                                                         | 11                                                                                                                                                     | 7,97                                                                                                                                                    | 14,45                                                    | 6,90 × 10 <sup>-7</sup>  | Пролиферация / Proliferation                                                  |  |  |
| Reactome                            | Сборка предрепликативного комплекса / Assembly of the pre-<br>replicative complex                         | R-HSA-68867                                                        | 10                                                                                                                                                     | 7,25                                                                                                                                                    | 7,59                                                     | 5,57 × 10 <sup>-5</sup>  | Пролиферация / Proliferation                                                  |  |  |
| Reactome                            | Инициация репликации ДНК / DNA Replication pre-initiation                                                 | R-HSA-69002                                                        | 10                                                                                                                                                     | 7,25                                                                                                                                                    | 6,74                                                     | 1,31 × 10 <sup>-4</sup>  | Пролиферация / Proliferation                                                  |  |  |
| Reactome                            | Репликация ДНК / DNA replication                                                                          | R-HSA-69306                                                        | 11                                                                                                                                                     | 7,97                                                                                                                                                    | 6,02                                                     | 1,11 × 10 <sup>-4</sup>  | Пролиферация / Proliferation                                                  |  |  |
| Gene Ontology<br>Biological Process | Организация хроматина / Chromatin organization                                                            | GO:0006325                                                         | 10                                                                                                                                                     | 7,25                                                                                                                                                    | 5,68                                                     | 1,23 × 10 <sup>-2</sup>  | Пролиферация / Proliferation                                                  |  |  |
| Reactome                            | Хроматин-модифицирующие ферменты / Chromatin modifying enzymes                                            | R-HSA-3247509                                                      | 10                                                                                                                                                     | 7,25                                                                                                                                                    | 3,70                                                     | 8,16 × 10 <sup>-3</sup>  | Пролиферация / Proliferation                                                  |  |  |
| Gene Ontology<br>Molecular Function | Структурные компоненты внеклеточного матрикса / Extracellular matrix structural constituent               | GO:0005201                                                         | 8                                                                                                                                                      | 5,80                                                                                                                                                    | 9,29                                                     | 1,54 × 10 <sup>-3</sup>  | Внеклеточный матрикс / Extracellular matrix                                   |  |  |
| Gene Ontology<br>Cellular Component | Коллагенсодержащий внеклеточный матрикс / Collagen-<br>containing extracellular matrix                    | GO:0062023                                                         | 15                                                                                                                                                     | 10,87                                                                                                                                                   | 5,97                                                     | 1,21 × 10 <sup>-5</sup>  | Внеклеточный матрикс / Extracellular matrix                                   |  |  |
| Reactome                            | Организация внеклеточного матрикса / Extracellular matrix organization                                    | R-HSA-1474244                                                      | 11                                                                                                                                                     | 7,97                                                                                                                                                    | 3,46                                                     | $7,15 \times 10^{-3}$    | Внеклеточный матрикс / Extracellular matrix                                   |  |  |
| Reactome                            | Секреторный фенотип, ассоциированный со старением / Senescence-associated secretory phenotype             | R-HSA-2559582                                                      | 12                                                                                                                                                     | 8,70                                                                                                                                                    | 10,80                                                    | 1,03 × 10 <sup>-6</sup>  | Воспаление / Inflammation                                                     |  |  |
| Reactome                            | Старение, вызванное окислительным стрессом / Oxidative stress induced senescence                          | R-HSA-2559580                                                      | 11                                                                                                                                                     | 7,97                                                                                                                                                    | 8,88                                                     | 6,79 × 10 <sup>-6</sup>  | Воспаление / Inflammation                                                     |  |  |
| Reactome                            | Клеточное старение / Cellular senescence                                                                  | R-HSA-2559583                                                      | 12                                                                                                                                                     | 8,70                                                                                                                                                    | 6,16                                                     | 3,35 × 10 <sup>-5</sup>  | Воспаление / Inflammation                                                     |  |  |
| Reactome                            | Сигнальные пути ннтерлейкинов / Signaling by interleukins                                                 | R-HSA-449147                                                       | 21                                                                                                                                                     | 15,22                                                                                                                                                   | 4,54                                                     | $1,07 \times 10^{-6}$    | Воспаление / Inflammation                                                     |  |  |
| Reactome                            | Сигнальные пути цитокинов / Cytokine Signaling in immune system                                           | R-HSA-1280215                                                      | 25                                                                                                                                                     | 18,12                                                                                                                                                   | 3,17                                                     | 9,04 × 10 <sup>-6</sup>  | Воспаление / Inflammation                                                     |  |  |
| Reactome                            | Иммунная система / Immune system                                                                          | R-HSA-168256                                                       | 38                                                                                                                                                     | 27,54                                                                                                                                                   | 1,78                                                     | $1,90 \times 10^{-3}$    | Воспаление / Inflammation                                                     |  |  |

Таблица 20. Анализ провоспалительных цитокинов в культуральной среде от ЭК-КА методом хМАР (при помощи конъюгированных с антителами флюоресцентно меченных магнитных микросфер) после 24-часового воздействия первичных (КПЧ-С) и вторичных (КПЧ-И) кальципротеиновых частиц

Table 20, Multi-analyte profiling (xMAP) measurement of pro-inflammatory cytokines in the cell culture supernatant from HCAEC treated with primary (CPP-P) or secondary (CPP-S) calciprotein particles for 24 hours

| Концентрация цитокинов, пг/мл / Cytokine level, pg/mL                              | IL-1a         |                 | IL-1b         |                 | IL-2                               |                 | IL-5         |                 | IL-6                        |                |  |
|------------------------------------------------------------------------------------|---------------|-----------------|---------------|-----------------|------------------------------------|-----------------|--------------|-----------------|-----------------------------|----------------|--|
| Линия ЭК / EC line                                                                 |               | ЭК-ВГА / НІТАЕС |               |                 |                                    |                 |              |                 |                             |                |  |
| ФСБД / DPBS                                                                        | 9,01          | 8,88            | 2,99          | 4,70            | 1,92                               | 1,90            | 1,06         | 0,93            | 7,41                        | 4,79           |  |
| KПЧ-C / CPP-P                                                                      | 8,71          | 7,96            | 11,77         | 8,87            | 1,73                               | 1,36            | 0,63         | 0,76            | 112,98                      | 21,84          |  |
| КПЧ-И / СРР-S                                                                      | 18,13         | 9,10            | 15,39         | 10,88           | 3,04                               | 1,21            | 1,42         | 1,13            | 243,51                      | 59,74          |  |
| Кратность изменения (КПЧ-С) / Fold change (СРР-Р)                                  | 0,97          | 0,90            | 3,94          | 1,89            | 0,90                               | 0,72            | 0,60         | 0,81            | 15,24                       | 4,56           |  |
| Кратность изменения (КПЧ-И) / Fold change (CPP-S)                                  | 2,01          | 1,03            | 5,16          | 2,31            | 1,58                               | 0,64            | 1,35         | 1,22            | 32,84                       | 12,48          |  |
| Кратность изменения в ЭК-ВГА в сравнении с ЭК-КА / Fold change in HITAEC vs. HCAEC | · ·           |                 | 1,58          |                 | 0,99                               |                 | 0,88         |                 | 0,65                        |                |  |
| Концентрация цитокинов, пг/мл / Cytokine level, pg/mL                              | IL-7          |                 | IL-8          |                 | IL-10                              |                 | IL-12        |                 | IL-13                       |                |  |
| Линия ЭК / EC line                                                                 | ЭК-КА / НСАЕС | ЭК-ВГА / НІТАЕС | ЭК-КА / НСАЕС | ЭК-ВГА / НІТАЕС | ЭК-КА / НСАЕС                      | ЭК-ВГА / НІТАЕС | ЭК-КА/НСАЕС  | ЭК-ВГА / НІТАЕС | ЭК-КА/НСАЕС                 | ЭК-ВГА / НІТАЕ |  |
| ФСБД / DPBS                                                                        | 3,33          | 3,30            | 435,02        | 1 477,37        | 4,65                               | 5,16            | 11,87        | 25,67           | 3,98                        | 3,94           |  |
| КПЧ-С / СРР-Р                                                                      | 3,55          | 3,49            | 2 000,00      | 2 000,00        | 4,38                               | 4,13            | 27,62        | 13,99           | 3,79                        | 3,82           |  |
| КПЧ-И / CPP-S                                                                      | 6,53          | 3,54            | 2 000,00      | 2 000,00        | 10,43                              | 5,02            | 35,27        | 17,61           | 7,70                        | 5,93           |  |
| Кратность изменения (КПЧ-С) / Fold change (СРР-Р)                                  | 1,07          | 1,06            | 4,60          | 1,35            | 0,94                               | 0,80            | 2,33         | 0,54            | 0,95                        | 0,97           |  |
| Кратность изменения (КПЧ-И) / Fold change (СРР-S)                                  | 1,96          | 1,07            | 4,60          | 1,35            | 2,24                               | 0,97            | 2,97         | 0,69            | 1,93                        | 1,50           |  |
| Кратность изменения в ЭК-ВГА в сравнении с ЭК-КА / Fold change in HITAEC vs. HCAEC | 0,99          |                 | 3,40          |                 | 1,11                               |                 | 2,16         |                 | 0,99                        |                |  |
| Концентрация цитокинов, пг/мл / Cytokine level, pg/mL                              | IL-15         |                 | IL-17a        |                 | IL-1Ra                             |                 | CXCL1        |                 | CXCL10                      |                |  |
| Линия ЭК / EC line                                                                 | ЭК-КА/НСАЕС   | ЭК-ВГА / НІТАЕС | ЭК-КА/НСАЕС   | ЭК-ВГА / НІТАЕС | ЭК-КА / НСАЕС                      | ЭК-ВГА / НІТАЕС | ЭК-КА/НСАЕС  | ЭК-ВГА / НІТАЕС | ЭК-КА/НСАЕС                 | ЭК-ВГА / НІТАЕ |  |
| ФСБД / DPBS                                                                        | 2,89          | 2,77            | 3,50          | 3,66            | 14,06                              | 16,09           | 685,4        | 655,5           | 29,35                       | 57,88          |  |
| КПЧ-С / СРР-Р                                                                      | 2,24          | 2,49            | 3,14          | 4,23            | 13,58                              | 13,99           | 1580,8       | 628,4           | 83,41                       | 91,46          |  |
| КПЧ-И / CPP-S                                                                      | 3,65          | 2,90            | 8,48          | 6,29            | 35,80                              | 14,58           | 1635,9       | 655,4           | 107,23                      | 87,65          |  |
| Кратность изменения (КПЧ-С) / Fold change (СРР-Р)                                  | 0,77          | 0,90            | 0,90          | 1,16            | 0,97                               | 0,87            | 2,31         | 0,96            | 2,84                        | 1,58           |  |
| Кратность изменения (КПЧ-И) / Fold change (СРР-S)                                  | 1,26          | 1,05            | 2,42          | 1.72            | 2,55                               | 0.91            | 2,39         | 1.00            | 3,65                        | 1.51           |  |
| Кратность изменения в ЭК-ВГА в сравнении с ЭК-КА / Fold change in HITAEC vs. HCAEC | C             | ),96            | 1             | ,05             | -                                  | ,14             |              | ),96            |                             | 1,97           |  |
| Концентрация цитокинов, пг/мл / Cytokine level, pg/mL                              | CCL3          |                 | CCL4          |                 | CCL5                               |                 | CCL7         |                 | CCL11                       |                |  |
| Линия ЭК / EC line                                                                 |               |                 |               |                 |                                    |                 |              |                 | C OK-KA/HCAEC OK-BFA/HITAEC |                |  |
| ΦCEA / DPBS                                                                        | 11.30         | 12.08           | 2,99          | 2,69            | 19,34                              | 32.97           | 27.91        | 28.60           | 15,75                       | 22.85          |  |
| КПЧ-С / СРР-Р                                                                      | 16,63         | 9,97            | 2,46          | 2,21            | 21,21                              | 59,73           | 24,83        | 25,93           | 21,96                       | 22,73          |  |
| КПЧ-И / СРР-Ѕ                                                                      | 24,03         | 13,18           | 5,33          | 1,96            | 43,91                              | 105,72          | 41,49        | 29,97           | 26,61                       | 20,70          |  |
| Кратность изменения (КПЧ-С) / Fold change (СРР-Р)                                  | 1.47          | 0,83            | 0,82          | 0,82            | 1,10                               | 1.81            | 0,89         | 0.91            | 1,39                        | 0.99           |  |
| Кратность изменения (КПЧ-И) / Fold change (CPP-S)                                  | 2,13          | 1.09            | 1,78          | 0.73            | 2,27                               | 3,21            | 1,49         | 1.05            | 1,69                        | 0,91           |  |
| Кратность изменения в ЭК-ВГА в сравнении с ЭК-КА / Fold change in HITAEC vs. HCAEC | , -           | 1,07            | 7             | ),90            |                                    | ,71             | , .          | 1,02            |                             | 1,45           |  |
|                                                                                    | CCL22         |                 | TNF-a         |                 | TNF-b                              |                 | TGF-a        |                 | G-CSF                       |                |  |
| Концентрация цитокинов, пг/мл / Cytokine level, pg/mL                              |               |                 |               |                 | TNF-b<br>ЭК-КА/HCAEC ЭК-ВГА/HITAEC |                 |              |                 |                             |                |  |
| Линия ЭК / EC line<br>ФСБД / DPBS                                                  | 39,19         | 34,53           | 2,44          | 2,63            | 8,10                               |                 |              |                 | 1,02                        |                |  |
| ФСЬД / DPBS<br>КПЧ-С / CPP-P                                                       | 27,09         | 23,74           | 5,06          | 2,63            | 6,47                               | 6,87<br>7,52    | 1,07<br>2,14 | 1,17<br>0,78    | 2,15                        | 1,15           |  |
| КПЧ-С / СРГ-Р<br>КПЧ-И / СРР-S                                                     | 90,57         | 33,50           | 4,85          | 2,63            | 13,24                              | 8,42            | 2,14         | 0,78            | 6,13                        | 1,19           |  |
| КПЧ-И / СРР-S  Кратность изменения (КПЧ-С) / Fold change (СРР-Р)                   | 0,69          | 0,69            | 2,08          | 0,98            | 0,80                               | 1.09            | 2,99         | 0,90            | 2,11                        | 1,03           |  |
| • • • • • • • • • • • • • • • • • • • •                                            | -7            | -7              |               | - /             | -                                  | 7               |              | -7              |                             | ,              |  |
| Кратность изменения (КПЧ-И) / Fold change (СРР-S)                                  | 2,31          | 0,97            | 1,99          | 1,00            | 1,64                               | 1,22            | 2,80         | 0,77            | 6,01                        | 1,04           |  |
| Кратность изменения в ЭК-ВГА в сравнении с ЭК-КА / Fold change in HITAEC vs. HCAEC | 0,88          |                 | 1,08          |                 | 0,85                               |                 | 1,10         |                 | 1,13                        |                |  |
| Концентрация цитокинов, пг/мл / Cytokine level, pg/mL                              |               | GM-CSF          |               | IFNa2           |                                    | IFNy            |              | sCD40L          |                             | Flt-3L         |  |
| Линия ЭК / EC line                                                                 |               | ЭК-ВГА / НІТАЕС |               |                 |                                    |                 |              |                 |                             |                |  |
| ФСБД / DPBS                                                                        | 9,55          | 15,26           | 18,43         | 21,30           | 9,29                               | 9,56            | 19,46        | 20,36           | 16,71                       | 15,42          |  |
| KПЧ-C / CPP-P                                                                      | 16,24         | 14,53           | 15,89         | 15,77           | 9,26                               | 7,96            | 16,55        | 11,96           | 16,63                       | 14,11          |  |
| КПЧ-И / CPP-S                                                                      | 26,13         | 20,38           | 33,70         | 27,90           | 16,90                              | 9,95            | 32,05        | 17,57           | 26,02                       | 16,08          |  |
| Кратность изменения (КПЧ-С) / Fold change (СРР-Р)                                  | 1,70          | 0,95            | 0,86          | 0,74            | 1,00                               | 0,83            | 0,85         | 0,59            | 0,99                        | 0,91           |  |
| Кратность изменения (КПЧ-И) / Fold change (CPP-S)                                  | 2,74          | 1,34            | 1,83          | 1,31            | 1,82                               | 1,04            | 1,65         | 0,86            | 1,56                        | 1,04           |  |
| Кратность изменения в ЭК-ВГА в сравнении с ЭК-КА / Fold change in HITAEC vs. HCAEC | 1             | 1,60            | 1             | .16             | 1                                  | ,03             | 1            | 1,05            |                             | 0,92           |  |

Примечание: ФСБД – фосфатно-солевого буфера по Дульбекко; ЭК – эндотелиальные клетки; ЭК-ВГА – эндотелиальные клетки внутренней грудной артерии; ЭК-КА – эндотелиальные клетки коронарной артерии. Note: CPP-P – primary calciprotein particles; CPP-S – secondary calcipro среде от ЭК-КА белков не было выявлено явного преобладания про-тромбогенных молекул над анти-тромбогенными, что с учетом отсутствия признаков протромботической активации эндотелия в предыдущих исследованиях по моделированию его дисфункции [5, 34-36] позволяет предположить меньшую патофизиологическую значимость данной находки в сравнении с вышеуказанными (повышением содержания рецепторных маркеров и снижением выделения компонентов базальной мембраны). Следует отметить, что количество белков сигнальных путей активации и агрегации тромбоцитов или сигнальных путей ангиогенеза в среде от дисфункциональных и контрольных ЭК было приблизительно равным, что также позволяет предположить отсутствие (или слабую выраженность) нарушений данных звеньев гомеостаза эндотелия при развитии его дисфункции (поскольку для их диагностики принципиальна оценка содержания именно секретируемых, а не просто синтезируемых в ЭК белков). Аналогичные наблюдения были сделаны и в отношении содержания белков сигнальных путей окислительного и эндоплазматического стресса в среде от дисфункциональных и контрольных ЭК, однако в данном случае, напротив, более информативным является анализ их содержания внутри клетки (где они оказывают основной патологический эффект), а не в культуральной среде.

Расширенный биоинформатический анализ дифференциально экспрессированных молекулярных категорий позволил подтвердить гомеостатический профиль молекул, выделяемых ЭК-ВГА. Качественный состав молекул, выделяемых контрольными ЭК и ЭК-ВГА, характеризовался повышенной представленностью компонентов сигнального пути Notch, сигнальных путей пролиферации, компонентов внеклеточного матрикса и провоспалительных белков. При этом следует отметить необходимость провоспалительных белков (к примеру, выделяемых моноцитами MIF, IL-8/ CXCL8, MCP-1/CCL2, RANTES/CCL5, MIP-3α/ CCL20, ENA-78/CXCL5, PECAM1/CD31, ангиогенин, PAI-1, uPAR и тромбоспондин-1) для ускорения пролиферации ЭК [37, 38]. Примером этого является культивирование колониеформирующих эндотелиальных клеток, деление которых в первые дни после выделения из периферической крови в значительной степени зависит от моноцитов и лимфоцитов, выделяемых в градиенте фиколла вместе с клетками-предшественниками и секретирующих в микроокружение большое количество провоспалительных цитокинов [37, 38]. При этом спектр провоспалительных цитокинов ЭК и моноцитов в значительной степени совпадает (MIF, IL-6, IL-8/ CXCL8, MCP-1/CCL2, RANTES/CCL5, MIP-3α/ CCL20, GROα/CXCL1, ENA-78/CXCL5), что позволяет предположить высокий уровень адаптации

ЭК (в частности, ЭК-ВГА) к базальному уровню секреции данных молекул на ЭК. В противном случае пролиферативная активность немногочисленных колоний эндотелиальных клеток-предшественников (объективно неспособных к выделению сколько-нибудь существенного количества цитокинов) подавлялась бы большим количеством провоспалительных цитокинов, выделяемых моноцитами и лимфоцитами.

Возможно, именно адаптация ЭК-ВГА к базальной секреции провоспалительных цитокинов способствует их повышенной устойчивости к воздействию модельных пусковых факторов дисфункции эндотелия. При многопараметрическом профилировании цитокинов в культуральной среде ЭК-ВГА отличались повышенной базальной экспрессией большего количества провоспалительных цитоки-HOB (IL-1b, IL-8, IL-12, IP-10/CXCL10, RANTES/ ССL5, эотаксин/ССL11, GM-CSF) в сравнении с ЭК-КА, в среде от которых более чем в 1,25 раза была повышена экспрессия лишь IL-6. С учетом того, что все указанные молекулы относятся к числу основных эндотелиальных цитокинов [39, 40], данные наблюдения подтверждают результаты биоинформатического анализа, предполагающие достаточно высокую базальную секрецию цитокинов ЭК-ВГА. В сравнении с контрольными культурами воздействие первичных кальципротеиновых частиц (моделирующих умеренную дисфункцию эндотелия) и вторичных кальципротеиновых частиц (моделирующих выраженную дисфункцию эндотелия) приводило к повышению экспрессии кратно большего количества провоспалительных цитокинов в ЭК-КА (12 и 30 при воздействии первичных и вторичных кальципротеиновых частиц соответственно), чем в ЭК-ВГА (5 и 10 соответственно), что свидетельствовало о меньшей устойчивости ЭК-КА (и, соответственно, о более высокой устойчивости ЭК-ВГА) к развитию дисфункции эндотелия.

### Заключение

Культуральная среда от дисфункциональных ЭК отличается повышенным содержанием рецепторных маркеров эндотелиального фенотипа и сниженным содержанием компонентов базальной мембраны и субэндотелиального внеклеточного матрикса в сравнении со средой от контрольных ЭК. Содержание ангиогенных молекул, белков сигнальных путей активации и агрегации тромбоцитов и свертывания крови и белков окислительного и эндоплазматического стресса в среде от дисфункциональных и контрольных ЭК было приблизительно схожим. Молекулярный профиль культуральной среды от ЭК-КА был более схожим с дисфункциональным в сравнении с ЭК-ВГА, отличаясь повышенным содержанием растворимых форм интегринов и сниженным содержанием компонентов эндотелиальной базальной мембраны. Напротив, молекулярный профиль культуральной среды от ЭК-ВГА был более схожим с таковым у интактных ЭК и характеризовался более высокой представленностью компонентов сигнального пути Notch, сигнальных путей пролиферации, компонентов внеклеточного матрикса и провоспалительных белков. Многопараметрическое профилирование провоспалительных цитокинов в культуральной среде подтвердило их более высокую базальную секрецию в ЭК-ВГА в сочетании с более высокой устойчивостью ЭК-ВГА к развитию дисфункции эндотелия при ее моделировании, одновременно свидетельствуя о более выраженной провоспалительной активации ЭК-КА при воздействии модельных триггеров дисфункции эндотелия.

# Конфликт интересов

В.Е. Маркова заявляет об отсутствии конфликта интересов. Д.К. Шишкова заявляет об отсутствии конфликта интересов. А.Д. Степанов заявляет об отсутствии конфликта интересов. А.В. Фролов заявляет об отсутствии конфликта интересов. Ю.О.

### Информация об авторах

Маркова Виктория Евгеньевна, младший научный сотрудник лаборатории молекулярной, трансляционной и цифровой медицины отдела экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация; ОРСІД 0000-0002-6652-5745

Шишкова Дарья Кирилловна, кандидат биологических наук заведующая лабораторией молекулярной, трансляционной и цифровой медицины отдела экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация; ORCID 0000-0002-1518-3888

Степанов Александр Денисович, младший научный сотрудник лаборатории молекулярной, трансляционной и цифровой медицины отдела экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация; ORCID 0009-0009-7947-5917

Фролов Алексей Витальевич, доктор медицинских наук старший научный сотрудник лаборатории рентгенэндоваскулярной и реконструктивной хирургии сердца и сосудов отдела хирургии сердца и сосудов федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация; ОКСІО 0000-0002-1746-8895

Синицкий Максим Юрьевич, кандидат биологических наук заведующий лабораторией геномной медицины отдела экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация; **ORCID** 0000-0002-4824-2418

Юрьева заявляет об отсутствии конфликта интересов. А.И. Лазебная заявляет об отсутствии конфликта интересов. Е.А. Репкин заявляет об отсутствии конфликта интересов. А.Г. Кутихин входит в редакционную коллегию журнала «Комплексные проблемы сердечно-сосудистых заболеваний».

# Финансирование

Исследование выполнено за счет гранта Российского научного фонда № 24-65-00039 «Идентификация циркулирующего маркера провоспалительной дисфункции эндотелия в контексте гетерогенности эндотелиальных клеток», https://rscf.ru/ project/24-65-00039/.

# Благодарности

Ультравысокоэффективная жидкостная хроматография, совмещенная с тандемной масс-спектрометрией (УФЭЖХ-МС/МС), была проведена на оборудовании Ресурсного центра «Развитие молекулярных и клеточных технологий» Научного парка СПбГУ.

### Author Information Form

Markova Victoria E., MSc, Junior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution "Research Institute for Complex Issues of Cardiovascular Diseases", Kemerovo, Russian Federation; ORCID 0000-0002 - 6652 - 5745

Shishkova Daria K., PhD, Head of the Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution "Research Institute for Complex Issues of Cardiovascular Diseases", Kemerovo, Russian Federation; ORCID 0000-0002-1518-3888

Stepanov Alexander D., BSc, Junior Researcher, Laboratory of Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution "Research Institute for Complex Issues of Cardiovascular Diseases", Kemerovo, Russian Federation; ORCID 0009-0009-7947-5917

Frolov Alexey V., MD, DSc, Senior Researcher, Laboratory for Endovascular and Reconstructive Cardiovascular Surgery, Department of Cardiovascular Surgery, Federal State Budgetary Institution "Research Institute for Complex Issues of Cardiovascular Diseases", Kemerovo, Russian Federation; ORCID 0000-0002-1746-8895

Sinitsky Maxim Yu., PhD, Head of the Laboratory for Genomic Medicine, Department of Experimental Medicine, Federal State Budgetary Institution "Research Institute for Complex Issues of Cardiovascular Diseases", Kemerovo, Russian Federation; ORCID 0000-0002-4824-2418

Синиикая Анна Викторовна, кандидат биологических наук старший научный сотрудник лаборатории геномной медицины отдела экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний». Кемерово, Российская Федерация; **ORCID** 0000-0002-4467-8732

Кабилов Марсель Расимович, руководитель центра коллективного пользования «Геномика» федерального государственного бюджетного учреждения науки Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук. Новосибирск. Российская Федерация; **ORCID** 0000-0003-2777-0833

Тупикин Алексей Евгеньевич, научный сотрудник центра коллективного пользования «Геномика» федерального государственного бюджетного учреждения науки Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск, Российская Федерация; **ORCID** 0000-0002-8194-0322

Юрьева Юлия Олеговна, младший научный сотрудник лаборатории молекулярной, трансляционной и цифровой медицины отдела экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация; **ORCID** 0009-0007-6734-3787

Лазебная Анастасия Ивановна, младший научный сотрудник лаборатории молекулярной, трансляционной и цифровой медицины отдела экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация; ОКСІО 0000-0002-1867-6354

Кутихин Антон Геннадьевич, доктор медицинских наук заведующий отделом экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация; ОКСІО 0000-0001-8679-4857

MBE – вклад в концепцию и дизайн исследования, полу- MVE – contribution to the concept and design of the study, чение, анализ и интерпретация данных, написание статьи, утверждение окончательной версии для публикации, полная ответственность за содержание

Вклад авторов в статью

ШДК – вклад в концепцию и дизайн исследования, получение, анализ и интерпретация данных, корректировка статьи, утверждение окончательной версии для публикации, полная ответственность за содержание

САД – вклад в концепцию и дизайн исследования, полу- SAD – contribution to the concept and design of the study, data чение, анализ и интерпретация данных, написание статьи, утверждение окончательной версии для публикации, полная ответственность за содержание

и интерпретация данных, корректировка статьи, утверждение окончательной версии для публикации, полная ответственность за содержание

СМЮ - получение, анализ и интерпретация данных, корректировка статьи, утверждение окончательной версии для публикации, полная ответственность за содержание

CAB – получение, анализ и интерпретация данных, кор- SAV – data collection, analysis and interpretation, editing, ректировка статьи, утверждение окончательной версии для approval of the final version, fully responsible for the content публикации, полная ответственность за содержание

Sinitskaya Anna V., PhD, Senior Researcher, Laboratory for Genomic Medicine, Department of Experimental Medicine, Federal State Budgetary Institution "Research Institute for Complex Issues of Cardiovascular Diseases", Kemerovo, Russian Federation; **ORCID** 0000-0002-4467-8732

Kabilov Marsel R., Head of the Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation; ORCID 0000-0003-2777-

Tupikin Alexey E., Research Fellow, Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation; ORCID 0000-0002-8194-0322

Yurieva Yulia O., Junior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution "Research Institute for Complex Issues of Cardiovascular Diseases", Kemerovo, Russian Federation; ORCID 0009-0007-6734-3787

Lazebnaya Anastasia I., Junior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution "Research Institute for Complex Issues of Cardiovascular Diseases", Kemerovo, Russian Federation; ORCID 0000-0002-1867-6354

Kutikhin Anton G., MD, DSc, Head of the Department of Experimental Medicine, Federal State Budgetary Institution "Research Institute for Complex Issues of Cardiovascular Diseases", Kemerovo, Russian Federation; Kemerovo, Russian Federation; ORCID 0000-0001-8679-4857

data collection, analysis and interpretation, manuscript writing, approval of the final version, fully responsible for the content

**Author Contribution Statement** 

HSDK – contribution to the concept and design of the study, data collection, analysis and interpretation, editing, approval of the final version, fully responsible for the content

collection, analysis and interpretation, manuscript writing, approval of the final version, fully responsible for the content

 $\Phi AB$  – вклад в концепцию и дизайн исследования, анализ FAV – contribution to the concept and design of the study, data analysis and interpretation, editing, approval of the final version, fully responsible for the content

> SMYu – data collection, analysis and interpretation, editing, approval of the final version, fully responsible for the content

ректировка статьи, утверждение окончательной версии для публикации, полная ответственность за содержание

*TAE* – получение, анализ и интерпретация данных, корректировка статьи, утверждение окончательной версии для публикации, полная ответственность за содержание

ЮЮО – получение, анализ и интерпретация данных, корректировка статьи, утверждение окончательной версии для публикации, полная ответственность за содержание

ЛАИ – получение, анализ и интерпретация данных, корректировка статьи, утверждение окончательной версии для публикации, полная ответственность за содержание

и интерпретация данных, написание статьи, утверждение окончательной версии для публикации, полная ответственность за содержание

KMP – получение, анализ и интерпретация данных, кор- KMR – data collection, analysis and interpretation, editing, approval of the final version, fully responsible for the content

> TAE – data collection, analysis and interpretation, editing, approval of the final version, fully responsible for the content

> YuYuO – data collection, analysis and interpretation, editing, approval of the final version, fully responsible for the content

> LAI – data collection, analysis and interpretation, editing, approval of the final version, fully responsible for the content

 $KA\Gamma$  – вклад в концепцию и дизайн исследования, анализ KAG – contribution to the concept and design of the study, data analysis and interpretation, manuscript writing, approval of the final version, fully responsible for the content

### СПИСОК ЛИТЕРАТУРЫ / REFERENCES

- 1. Cahill PA, Redmond EM. Vascular endothelium -Gatekeeper of vessel health. Atherosclerosis. 2016;248:97-109. doi: 10.1016/j.atherosclerosis.2016.03.007.
- 2. Amersfoort J, Eelen G, Carmeliet P. Immunomodulation by endothelial cells - partnering up with the immune system? Nat Rev Immunol. 2022; 22(9):576-588. doi: 10.1038/s41577-022-00694-4.
- 3. Trimm E, Red-Horse K. Vascular endothelial cell development and diversity. Nat Rev Cardiol. 2023; 20(3):197-210. doi: 10.1038/s41569-022-00770-1.
- 4. Kutikhin AG, Shishkova DK, Velikanova EA, Sinitsky MY, Sinitskaya AV, Markova VE. Endothelial Dysfunction in the Context of Blood-Brain Barrier Modeling. J Evol Biochem Physiol. 2022; 58(3):781-806. doi: 10.1134/ S0022093022030139.
- 5. Goncharov NV, Popova PI, Kudryavtsev IV, Golovkin AS, Savitskaya IV, Avdonin PP, Korf EA, Voitenko NG, Belinskaia DA, Serebryakova MK, Matveeva NV, Gerlakh NO, Anikievich NE, Gubatenko MA, Dobrylko IA, Trulioff AS, Aquino AD, Jenkins RO, Avdonin PV. Immunological Profile and Markers of Endothelial Dysfunction in Elderly Patients with Cognitive Impairments. Int J Mol Sci. 2024; 25(3):1888. doi: 10.3390/ ijms25031888.
- 6. Corban MT., Prasad A, Nesbitt L, Loeffler D, Herrmann J, Lerman LO, Lerman A. Local Production of Soluble Urokinase Plasminogen Activator Receptor and Plasminogen Activator Inhibitor-1 in the Coronary Circulation Is Associated With Coronary Endothelial Dysfunction in Humans. J Am Heart Assoc. 2018; 7(15):e009881. doi: 10.1161/JAHA.118.009881.
- 7. Shishkova D, Markova V, Markova Y, Sinitsky M, Sinitskaya A, Matveeva V, Torgunakova E, Lazebnaya A, Stepanov A, Kutikhin A. Physiological Concentrations of Calciprotein Particles Trigger Activation and Pro-Inflammatory Response in Endothelial Cells and Monocytes. Biochemistry (Mosc). 2025; 90(1):132-160. doi: 10.1134/ S0006297924604064.
- 8. Stepanov A, Shishkova D, Markova V, Markova Y, Frolov A, Lazebnaya A, Oshchepkova K, Perepletchikova D, Smirnova

- D, Basovich L, Repkin E, Kutikhin A. Proteomic Profiling of Endothelial Cell Secretomes After Exposure to Calciprotein Particles Reveals Downregulation of Basement Membrane Assembly and Increased Release of Soluble CD59. Int J Mol Sci. 2024; 25(21):11382. doi: 10.3390/ijms252111382.
- 9. Gomez Toledo A, Golden GJ, Cummings RD, Malmström J, Esko JD. Endothelial Glycocalyx Turnover in Vascular Health and Disease: Rethinking Endothelial Dysfunction. Annu Rev Biochem. 2025; 94(1):561-586. doi: 10.1146/annurevbiochem-032620-104745.
- 10. Frolov A, Lobov A, Kabilov M, Zainullina B, Tupikin A, Shishkova D, Markova V, Sinitskaya A, Grigoriev E, Markova Y, Kutikhin A. Multi-Omics Profiling of Human Endothelial Cells from the Coronary Artery and Internal Thoracic Artery Reveals Molecular but Not Functional Heterogeneity. Int J Mol Sci. 2023; 24(19):15032. doi: 10.3390/ijms241915032.
- 11. Shishkova D, Lobov A, Zainullina B, Matveeva V, Markova V, Sinitskaya A, Velikanova E, Sinitsky M, Kanonykina A, Dyleva Y, Kutikhin A. Calciprotein Particles Cause Physiologically Significant Pro-Inflammatory Response in Endothelial Cells and Systemic Circulation. Int J Mol Sci. 2022; 23(23):14941. doi: 10.3390/ijms232314941.
- 12. Sinitsky M, Repkin E, Sinitskaya A, Markova V, Shishkova D, Barbarash O. Proteomic Profiling of Endothelial Cells Exposed to Mitomycin C: Key Proteins and Pathways Underlying Genotoxic Stress-Induced Endothelial Dysfunction. Int J Mol Sci. 2024; 25(7):4044. doi: 10.3390/ijms25074044.
- 13. Baaten CCFMJ, Vondenhoff S, Noels H. Endothelial Cell Dysfunction and Increased Cardiovascular Risk in Patients With Chronic Kidney Disease. Circ Res. 2023; 132(8):970-992. doi: 10.1161/CIRCRESAHA.123.321752.
- 14. Segers VFM, Bringmans T, De Keulenaer GW. Endothelial dysfunction at the cellular level in three dimensions: severity, acuteness, and distribution. Am J Physiol Heart Circ Physiol. 2023; 325(2):H398-H413. doi: 10.1152/ajpheart.00256.2023.
- 15. Guzik TJ, Nosalski R, Maffia P, Drummond GR. Immune and inflammatory mechanisms in hypertension. Nat Rev Cardiol. 2024; 21(6):396-416. doi: 10.1038/s41569-023-00964-1.

Для цитирования: Маркова В.Е., Шишкова Д.К., Степанов А.Д., Фролов А.В., Юрьева Ю.О., Лазебная А.И., Репкин Е.А., Кутихин А.Г. Сравнительный анализ качественного и количественного состава молекул, выделяемых первичными эндотелиальными клетками коронарной и внутренней грудной артерии человека в физиологическом и дисфункциональном состоянии. Комплексные проблемы сердечно-сосудистых заболеваний. 2025;14(5): 210-235. DOI: 10.17802/2306-1278-2025-14-5-210-235

To cite: Markova V.E., Shishkova D.K., Stepanov A.D., Frolov A.V., Yurieva Yu.O., Lazebnaya A.I., Repkin E.A., Kutikhin A.G. Secretome of primary human coronary artery and intrnal thoracic artery endothelial cells at physiological state and at endothelial dysfunction. Complex Issues of Cardiovascular Diseases. 2025;14(5): 210-235. DOI: 10.17802/2306-1278-2025-14-5-210-235