Preview

Complex Issues of Cardiovascular Diseases

Advanced search

Participation of transcriptional factor ZBTB16 in the processes of physiological bone tissue formation and in pathological calcification of the aortic valve

https://doi.org/10.17802/2306-1278-2021-10-4-122-130

Abstract

Degenerative calcific aortic valve stenosis is the most common type of heart valve disease in the Western world. Patients with severe stenosis are associated with 50 percent chance of mortality within two years in the absence of intervention. Surgical interventions are the only treatment method for severe calcific aortic valve stenosis to date. Pharmacological approaches have so far failed to affect the course of the disease. Thus, there is an urgent need to develop novel treatment strategies that could slow down the progression of the stenosis. ZBTB16 is a zinc finger protein with N-term BTB/POZ domain (protein-protein interaction motif) and 9 zinc finger domains (DNA binding motif) in C-term. There is growing evidence proving the participation of ZBTB16 in skeletal development. ZBTB16 has been shown to play a role in the specification of limb and axial skeleton patterning. Moreover, the expression of ZBTB16 is increased in patients with ectopic bone formation. Nowadays, the evidence supports that the mechanisms that play key roles in the formation of bone tissue are similar to the processes occurring during the development of ectopic ossification of the aortic valve. Thus, it can be assumed that ZBTB16 is heavily involved in osteogenic transformation in the aortic valve. Understanding similarities and differences in the mechanisms that mediate osteogenic differentiation of stem cells during bone formation and pathological ossification of tissues can help to find the ways to control the osteogenic differentiation in the human body. The aim of this review is to summarize data on the role of ZBTB16 and its products in the regulation of differentiation and proliferation of cells involved in osteogenesis and in the development of ectopic calcification of the aortic valve. The study of the dynamic changes of ZBTB16 expression in aortic valve calcification is a new and relevant study field.

About the Authors

D. S. Semenova
Federal State Educational Institution of Higher Professional Training “Saint Petersburg State University”; Federal State Budgetary Institution of Science“ Institute of Cytology” of the Russian Academy of Sciences; Federal State Budgetary Institution “V.A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation
Russian Federation

Semenova Daria S., Research Engineer at the Federal State Educational Institution of Higher Professional Training “Saint Petersburg State University”, Saint Petersburg, Russian Federation; Junior Researcher at the Laboratory of Regenerative Biomedicine, Federal State Budgetary Institution of Science“ Institute of Cytology” of the Russian Academy of Sciences, Saint Petersburg, Russian Federation; Laboratory assistant at the Laboratory of Molecular Cardiology and Genetics, Federal State Budgetary Institution “V.A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation

7–9, Universitetskaya nab., Saint Petersburg, 199034,

4, Tikhoretskiy Ave., Saint Petersburg, 194064,

2, Akkuratova St., Saint Petersburg, 197341



A. B. Malashicheva
Federal State Educational Institution of Higher Professional Training “Saint Petersburg State University”; Federal State Budgetary Institution of Science“ Institute of Cytology” of the Russian Academy of Sciences; Federal State Budgetary Institution “V.A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation
Russian Federation

Malashicheva Anna B., Associate Professor at the Federal State Educational Institution of Higher Professional Training “Saint Petersburg State University”, Saint Petersburg, Russian Federation; Head of the Laboratory of Regenerative Biomedicine, Federal State Budgetary Institution of Science“ Institute of Cytology” of the Russian Academy of Sciences, Saint Petersburg, Russian Federation; Head of the Laboratory of Molecular Cardiology and Genetics, Federal State Budgetary Institution “V.A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation

7–9, Universitetskaya nab., Saint Petersburg, 199034,

4, Tikhoretskiy Ave., Saint Petersburg, 194064,

2, Akkuratova St., Saint Petersburg, 197341



References

1. Iung B., Baron G., Butchart E.G., Delahaye F., GohlkeBärwolf C., Levang O.W., Tornos P., Vanoverschelde J.L., Vermeer F., Boersma E., Ravaud P., Vahanian A. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur Heart J. 2003;24(13):1231-43. doi: 10.1016/s0195-668x(03)00201-x

2. Baumgartner H., Falk V., Bax J.J., De Bonis M., Hamm C., Holm P.J., Iung B., Lancellotti P., Lansac E., Rodriguez Muñoz D., Rosenhek R., Sjögren J., Tornos Mas P., Vahanian A., Walther T., Wendler O., Windecker S., Zamorano J.L.; ESC Scientific Document Group. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017;38(36):2739-2791. doi: 10.1093/eurheartj/ehx391.

3. Dweck M.R., Khaw H.J., Sng G.K., Luo E.L., Baird A., Williams M.C., Makiello P., Mirsadraee S., Joshi N.V., van Beek E.J., Boon N.A., Rudd J.H., Newby D.E. Aortic stenosis, atherosclerosis, and skeletal bone: is there a common link with calcification and inflammation? Eur Heart J. 2013;34(21):1567- 74. doi: 10.1093/eurheartj/eht034.

4. Aikawa E., Libby P. A Rock and a Hard Place: Chiseling Away at the Multiple Mechanisms of Aortic Stenosis. Circulation. 2017;135(20):1951-1955. doi: 10.1161/CIRCULATIONAHA.117.027776.

5. Hutcheson J.D., Aikawa E., Merryman W.D. Potential drug targets for calcific aortic valve disease. Nat Rev Cardiol. 2014;11(4):218-31. doi: 10.1038/nrcardio.2014.1.

6. Leopold J.A. Cellular mechanisms of aortic valve calcification. Circ Cardiovasc Interv. 20121;5(4):605-14. doi: 10.1161/CIRCINTERVENTIONS.112.971028.

7. Mathieu P., Boulanger M.C. Basic mechanisms of calcific aortic valve disease. Can J Cardiol. 2014;30(9):982-93. doi: 10.1016/j.cjca.2014.03.029.

8. Egan K.P., Kim J.H., Mohler E.R. 3rd, Pignolo R.J. Role for circulating osteogenic precursor cells in aortic valvular disease. Arterioscler Thromb Vasc Biol. 2011;31(12):2965-71. doi: 10.1161/ATVBAHA.111.234724.

9. Hruska K.A., Mathew S., Saab G. Bone morphogenetic proteins in vascular calcification. Circ Res. 2005;97(2):105-14. doi: 10.1161/01.RES.00000175571.53833.6c.

10. Wallby L., Janerot-Sjöberg B., Steffensen T., Broqvist M. T lymphocyte infiltration in non-rheumatic aortic stenosis: a comparative descriptive study between tricuspid and bicuspid aortic valves. Heart. 2002;88(4):348-51. doi: 10.1136/heart.88.4.348.

11. Vattikuti R., Towler D.A. Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab. 2004;286(5):E686-96. doi: 10.1152/ajpendo.00552.2003.

12. Syväranta S., Helske S., Laine M., Lappalainen J., Kupari M., Mäyränpää M.I., Lindstedt K.A., Kovanen P.T. Vascular endothelial growth factor-secreting mast cells and myofibroblasts: a novel self-perpetuating angiogenic pathway in aortic valve stenosis. Arterioscler Thromb Vasc Biol. 2010;30(6):1220-7. doi: 10.1161/ATVBAHA.109.198267

13. Schipani E., Maes C., Carmeliet G., Semenza G.L. Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J Bone Miner Res. 2009;24(8):1347-53. doi: 10.1359/jbmr.090602.

14. Seya K., Yu. Z., Kanemaru K., Daitoku K., Akemoto Y., Shibuya H., Fukuda I., Okumura K., Motomura S., Furukawa K. Contribution of bone morphogenetic protein-2 to aortic valve calcification in aged rat. J Pharmacol Sci. 2011;115(1):8- 14. doi: 10.1254/jphs.10198fp.

15. Boström K.I., Rajamannan N.M., Towler D.A. The regulation of valvular and vascular sclerosis by osteogenic morphogens. Circ Res. 201;109(5):564-77. doi: 10.1161/CIRCRESAHA.110.234278.

16. Butcher J.T., Tressel S., Johnson T., Turner D., Sorescu G., Jo H., Nerem R.M. Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler Thromb Vasc Biol. 2006;26(1):69-77. doi: 10.1161/01.ATV.0000196624.70507.0d.

17. Boström K.I., Rajamannan N.M., Towler D.A. The regulation of valvular and vascular sclerosis by osteogenic morphogens. Circ Res. 2011109(5):564-77. doi: 10.1161/CIRCRESAHA.110.234278.

18. Rajamannan N.M. Mechanisms of aortic valve calcification: the LDL-density-radius theory: a translation from cell signaling to physiology. Am J Physiol Heart Circ Physiol. 2010;298(1):H5-15. doi: 10.1152/ajpheart.00824.2009.

19. Mikhaylova L., Malmquist J., Nurminskaya M. Regulation of in vitro vascular calcification by BMP4, VEGF and Wnt3a. Calcif Tissue Int. 2007;81(5):372-81. doi: 10.1007/s00223-007-9073-6.

20. Massy Z.A., Mentaverri R., Mozar A., Brazier M., Kamel S. The pathophysiology of vascular calcification: are osteoclast-like cells the missing link? Diabetes Metab. 2008;34 (S1):S16-20. doi: 10.1016/S1262-3636(08)70098-3.

21. Byon C.H., Sun Y., Chen J., Yuan K., Mao X., Heath J.M., Anderson P.G., Tintut Y., Demer L.L., Wang D., Chen Y. Runx2- upregulated receptor activator of nuclear factor κB ligand in calcifying smooth muscle cells promotes migration and osteoclastic differentiation of macrophages. Arterioscler Thromb Vasc Biol. 2011;31(6):1387-96. doi: 10.1161/ATVBAHA.110.222547.

22. Mohler E.R. 3rd, Gannon F., Reynolds C., Zimmerman R., Keane M.G., Kaplan F.S. Bone formation and inflammation in cardiac valves. Circulation. 2001;103(11):1522-8. doi: 10.1161/01.cir.103.11.1522.

23. Ortuño M.J., Ruiz-Gaspà S., Rodríguez-Carballo E., Susperregui A.R., Bartrons R., Rosa J.L., Ventura F. p38 regulates expression of osteoblast-specific genes by phosphorylation of osterix. J Biol Chem. 2010;285(42):31985-94. doi: 10.1074/jbc.M110.123612.

24. Yang X., Matsuda K., Bialek P., Jacquot S., Masuoka H.C., Schinke T., Li L., Brancorsini S., Sassone-Corsi P., Townes T.M., Hanauer A., Karsenty G. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell. 2004;117(3):387-98. doi: 10.1016/s0092-8674(04)00344-7.

25. Liu T.M., Lee E.H., Lim B., Shyh-Chang N. Concise Review: Balancing Stem Cell Self-Renewal and Differentiation with PLZF. Stem Cells. 2016;34(2):277-87. doi: 10.1002/stem.2270.

26. Hemming S., Cakouros D., Vandyke K., Davis M.J., Zannettino A.C., Gronthos S. Identification of Novel EZH2 Targets Regulating Osteogenic Differentiation in Mesenchymal Stem Cells. Stem Cells Dev. 2016;25(12):909-21. doi: 10.1089/scd.2015.0384.

27. Onizuka S., Iwata T., Park S.J., Nakai K., Yamato M., Okano T., Izumi Y. ZBTB16 as a Downstream Target Gene of Osterix Regulates Osteoblastogenesis of Human Multipotent Mesenchymal Stromal Cells. J Cell Biochem. 2016;117(10):2423-34. doi: 10.1002/jcb.25634.

28. Saugspier M., Felthaus O., Viale-Bouroncle S., Driemel O., Reichert T.E., Schmalz G., Morsczeck C. The differentiation and gene expression profile of human dental follicle cells. Stem Cells Dev. 2010;19(5):707-17. doi: 10.1089/scd.2010.0027.

29. Felthaus O., Gosau M., Morsczeck C. ZBTB16 induces osteogenic differentiation marker genes in dental follicle cells independent from RUNX2. J Periodontol. 2014;85(5):e144-51. doi: 10.1902/jop.2013.130445

30. Kolesnichenko M., Vogt P.K. Understanding PLZF: two transcriptional targets, REDD1 and smooth muscle α-actin, define new questions in growth control, senescence, self-renewal and tumor suppression. Cell Cycle. 2011;10(5):771-5. doi: 10.4161/cc.10.5.14829.

31. Dick J.E., Doulatov S. The role of PLZF in human myeloid development. Ann N Y Acad Sci. 2009;1176:150-3. doi: 10.1111/j.1749-6632.2009.04965.x.

32. Buaas F.W., Kirsh A.L., Sharma M., McLean D.J., Morris J.L., Griswold M.D., de Rooij D.G., Braun R.E. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet. 2004;36(6):647-52. doi: 10.1038/ng1366

33. Barna M., Hawe N., Niswander L., Pandolfi P.P. Plzf regulates limb and axial skeletal patterning. Nat Genet. 2000;25(2):166-72. doi: 10.1038/76014.

34. Cheung M., Pei J., Pei Y., Jhanwar S.C., Pass H.I., Testa J.R. The promyelocytic leukemia zinc-finger gene, PLZF, is frequently downregulated in malignant mesothelioma cells and contributes to cell survival. Oncogene. 2010;29(11):1633-40. doi: 10.1038/onc.2009.455.

35. Felicetti F., Bottero L., Felli N., Mattia G., Labbaye C., Alvino E., Peschle C., Colombo M.P., Carè A. Role of PLZF in melanoma progression. Oncogene. 2004;23(26):4567-76. doi: 10.1038/sj.onc.1207597.

36. Vincent-Fabert Cю., Platet N., Vandevelde A., Poplineau M., Koubi M., Finetti P., Tiberi G., Imbert A.M., Bertucci F., Duprez E. PLZF mutation alters mouse hematopoietic stem cell function and cell cycle progression. Blood. 2016;127(15):1881- 5. doi: 10.1182/blood-2015-09-666974

37. Ambele M.A., Dessels C., Durandt C., Pepper M.S. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation. Stem Cell Res. 2016;16(3):725-34. doi: 10.1016/j.scr.2016.04.011.

38. Plaisier C.L., Bennett B.J., He A., Guan B., Lusis A.J., Reue K., Vergnes L. Zbtb16 has a role in brown adipocyte bioenergetics. Nutr Diabetes. 2012;2(9):e46. doi: 10.1038/nutd.2012.21.

39. Fischer S., Kohlhase J., Böhm D., Schweiger B., Hoffmann D., Heitmann M., Horsthemke B., Wieczorek D. Biallelic loss of function of the promyelocytic leukaemia zinc finger (PLZF) gene causes severe skeletal defects and genital hypoplasia. J Med Genet. 2008;45(11):731-7. doi: 10.1136/jmg.2008.059451.

40. Inoue I., Ikeda R., Tsukahara S. Current topics in pharmacological research on bone metabolism: Promyelotic leukemia zinc finger (PLZF) and tumor necrosis factor-alpha-stimulated gene 6 (TSG-6) identified by gene expression analysis play roles in the pathogenesis of ossification of the posterior longitudinal ligament. J Pharmacol Sci. 2006;100(3):205-10. doi: 10.1254/jphs.fmj05004x5.

41. Morsczeck C. Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro. Calcif Tissue Int. 2006;78(2):98-102. doi: 10.1007/s00223-005-0146-0.

42. Kato M., Patel M.S., Levasseur R., Lobov I., Chang B.H., Glass D.A. 2nd, Hartmann C., Li L., Hwang T.H., Brayton C.F., Lang R.A., Karsenty G., Chan L. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol. 2002;157(2):303-14. doi: 10.1083/jcb.200201089.

43. Morsczeck C., Schmalz G., Reichert T.E., Völlner F., Saugspier M., Viale-Bouroncle S., Driemel O. Gene expression profiles of dental follicle cells before and after osteogenic differentiation in vitro. Clin Oral Investig. 2009;13(4):383-91. doi: 10.1007/s00784-009-0260-x.

44. Ikeda R., Yoshida K., Tsukahara S., Sakamoto Y., Tanaka H., Furukawa K., Inoue I. The promyelotic leukemia zinc finger promotes osteoblastic differentiation of human mesenchymal stem cells as an upstream regulator of CBFA1. J Biol Chem. 2005;280(9):8523-30. doi: 10.1074/jbc.M409442200.

45. Little R.D., Carulli J.P., Del Mastro R.G., Dupuis J., Osborne M., Folz C., Manning S.P., Swain P.M. et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70(1):11-9. doi: 10.1086/338450.

46. Lee K.S., Kim H.J., Li Q.L., Chi X.Z., Ueta C., Komori T., Wozney J.M., Kim E.G., Choi J.Y., Ryoo H.M., Bae S.C. Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol. 2000;20(23):8783-92. doi: 10.1128/MCB.20.23.8783-8792.2000.

47. Marofi F., Vahedi G., Solali S., Alivand M., Salarinasab S., Zadi Heydarabad M., Farshdousti Hagh M. Gene expression of TWIST1 and ZBTB16 is regulated by methylation modifications during the osteoblastic differentiation of mesenchymal stem cells. J Cell Physiol. 2019;234(5):6230-6243. doi: 10.1002/jcp.27352

48. Li J.Y., English M.A., Ball H.J., Yeyati P.L., Waxman S., Licht J.D. Sequence-specific DNA binding and transcriptional regulation by the promyelocytic leukemia zinc finger protein. J Biol Chem. 1997;272(36):22447-55. doi: 10.1074/jbc.272.36.22447.

49. Melnick A., Ahmad K.F., Arai S., Polinger A., Ball H., Borden K.L., Carlile G.W., Prive G.G., Licht J.D. In-depth mutational analysis of the promyelocytic leukemia zinc finger BTB/ POZ domain reveals motifs and residues required for biological and transcriptional functions. Mol Cell Biol. 2000;20(17):6550-67. doi: 10.1128/MCB.20.17.6550-6567.2000.

50. Wang N., Frank G.D., Ding R., Tan Z., Rachakonda A., Pandolfi P.P., Senbonmatsu T., Landon E.J., Inagami T. Promyelocytic leukemia zinc finger protein activates GATA4 transcription and mediates cardiac hypertrophic signaling from angiotensin II receptor 2. PLoS One. 2012;7(4):e35632. doi: 10.1371/journal.pone.0035632.


Review

For citations:


Semenova D.S., Malashicheva A.B. Participation of transcriptional factor ZBTB16 in the processes of physiological bone tissue formation and in pathological calcification of the aortic valve. Complex Issues of Cardiovascular Diseases. 2021;10(4):122-130. (In Russ.) https://doi.org/10.17802/2306-1278-2021-10-4-122-130

Views: 384


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)