Preview

Complex Issues of Cardiovascular Diseases

Advanced search

RELATIONSHIP BETWEEN TELOMERE LENGTH AND MARKERS OF INFLAMMATION IN THE PRE- AND POSTOPERATIVE PERIOD OF PATIENTS WITH CORONARY ARTERY DISEASE

https://doi.org/10.17802/2306-1278-2024-13-3-28-36

Abstract

Highlights

  • Telomere length in patients with coronary artery disease is shorter compared to the telomere length of healthy individuals.
  • Telomeric regions of DNA in patients with coronary artery disease do not recover over time.
  • Telomere length in atherogenesis negatively correlates with markers of cardiovascular diseases and inflammatory process.

 

Aim. To assess the impact of changes in the length of telomeric regions of chromosomes on the course of coronary artery disease caused by coronary artery atherosclerosis in the population of residents of a coal-mining region.

Methods. The study included 60 patients with coronary artery disease (before surgery and five years after) and 52 healthy participants. We isolated the DNA using the standard phenol-chloroform extraction method. We used the quantitative PCR method to measure the relative length of leukocyte telomeres and analyzed biochemical parameters using standard methods, selecting cytokine proteins as markers of the inflammatory process.

Results. Telomeres in healthy participants were seven times longer compared to patients with coronary artery disease. At the same time, the length of telomeric regions of DNA did not differ in patients before surgery and after 5 years of rehabilitation. We used ROC analysis to determine the effectiveness of measuring telomeres as a marker of atherosclerosis. The area under the ROC curve was 0.998 ± 0.002. We found an inverse correlation between the telomere length and such parameters as the total body sodium, triglycerides and high-density lipoproteins. We noted a significant inverse correlation between such indicators of the lipid profile as triglycerides and high-density lipoproteins only in patients before surgery. The study results revealed direct and inverse dependence of the length of telomeres and cytokines such as IL-33 and IL-10, respectively.

Conclusion. Supposedly, inflammatory processes and oxidative stress, complementing each other, are the causes of irreparable damage to telomeres, accelerating the aging process and leading to irreversible consequences in atherogenesis.

About the Authors

Maxim A. Asanov
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Junior Researcher at the Laboratory of Genomic Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Alyona O. Poddubnyak
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Junior Researcher at the Laboratory of Genomic Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Anastasia V. Ponasenko
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Head of the Laboratory of Genomic Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



References

1. Salakhov R.R., Ponasenko A.V. Telomere length and cardiovascular diseases. Complex Issues of Cardiovascular Diseases. 2018;7(4S):101-107. (In Russ.) doi: 10.17802/2306-1278-2018-7-4S-101-107

2. Weischer M., Bojesen S.E., Cawthon R.M., et al. Short telomere length, myocardial infarction, ischemic heart disease, and early death. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012; 32 (3): 822–9. doi: 10.1161/ATV.0000000000000016

3. Farzaneh-Far R., Cawthon R.M., Na B., et al. Prognostic value of leukocyte telomere length in patients with stable coronary artery disease: data from the Heart and Soul Study Arteriosclerosis, Thrombosis, and Vascular Biology. 2008;28(7):1379-84. doi: 10.1161/ATVBAHA.108.167049

4. Stone R.C., Horvath K., Kark J.D., et al. Telomere Length and the Cancer–Atherosclerosis Trade-Off. PLOS Genetics. 2016;12(7):e1006144. doi: 10.1371/journal.pgen.1006144

5. Blackburn E.H. Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Letters. 2005;579(4):859-62. doi: 10.1016/j.febslet.2004.11.036

6. Collins K. Mammalian telomeres and telomerase. Current Opinion in Cell Biology. 2000;12:378-83. doi: 10.1016/s0955-0674(00)00103-4

7. Wang X.B., Cui N.H., Zhang S., et al. Leukocyte telomere length, mitochondrial DNA copy number, and coronary artery disease risk and severity: A two-stage case-control study of 3064 Chinese subjects. Atherosclerosis. 2019;284:165-72. doi: 10.1016/j.atherosclerosis.2019.03.010

8. Opstad T.B., Kalstad A.A., Pettersen A.A., et al. Novel biomolecules of ageing, sex differences and potential underlying mechanisms of telomere shortening in coronary artery disease. Experimental Gerontology. 2019;119: 53-60. doi: 10.1016/j.exger.2019.01.020

9. Zhan Y., Hägg S. Telomere length and cardiovascular disease risk. Curr Opin Cardiol. 2019;34(3):270-74. doi: 10.1097/HCO.0000000000000613

10. De Meyer T., Nawrot T., Bekaert S., et al. Telomere Length as Cardiovascular Aging Biomarker: JACC Review Topic of the Week. J Am Coll Cardiol. 2018;72(7):805-13. doi: 10.1097/HCO.0000000000000613

11. De Meyer T., Rietzschel E.R., De Buyzere M.L., et al. Systemic telomere length and preclinical atherosclerosis: the Asklepios Study. European Heart Journal. 2009;30(24):3074-81. doi: 10.1093/eurheartj/ehp324

12. Doklad o sostojanii i ohrane okruzhajushhej sredy Kemerovskoj oblasti v 2013 godu. Departament prirodnyh resursov i jekologii Kemerovskoj oblasti. Kemerovo 2014: 1-584. (In Russ)

13. Polikutina OM, Slepynina YS, Bazdyrev ED, et al. Air pollutants and myocardial infarction in a large industrial region. Is there a relationship? Kardiologicheskij Vestnik. 2015;10(4):34-44. (In Russ)

14. McGarry T., Biniecka M., Veale D.J., et al. Hypoxia, oxidative stress and inflammation. Free Radic Biol Med. 2018;125:15-24. doi: 10.1016/j.freeradbiomed.2018.03.042

15. O'Callaghan N.J., Fenech M. A quantitative PCR method for measuring absolute telomere length. Biological Procedures Online. 2011;31:13-3. doi: 10.1186/1480-9222-13-3.

16. Mwasongwe S., Gao Y., Griswold M., et al. Leukocyte telomere length and cardiovascular disease in African Americans: The Jackson Heart Study. Atherosclerosis. 2017;266:41-47. doi: 10.1016/j.atherosclerosis.2017.09.016.

17. Haycock P.C., Heydon E.E., Kaptoge S., et al. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2014;349:g4227. doi: 10.1136/bmj.g4227.

18. Doroshchuk N.A., Lankin V.Z., Tikhaze A.K., et al. Telomere length as a biomarker of the risk of cardiovascular complications in patients with coronary heart disease. Terapevticheskii arkhiv. 2021; 93(1):20-24. (In Russ.) doi: 10.26442/00403660.2021.01.200588

19. Doroshchuk N.A., Tikhaze A.K., Lankin V.Z., et al. The influence of oxidative stress on the length of telomeric repeats in chromosomes of white blood cells in patients with different risk of cardiovascular death and patients with coronary artery disease. Kardiologicheskiy vestnik. 2017;12(1):32-37. (In Russ.)

20. Xu X., Hu H., Lin Y., et al. Differences in Leukocyte Telomere Length between Coronary Heart Disease and Normal Population: A Multipopulation Meta-Analysis. Biomed Res Int. 2019;6:5046867. doi: 10.1155/2019/5046867

21. Lee H.T., Bose A., Lee C.Y., et al. Molecular mechanisms by which oxidative DNA damage promotes telomerase activity. Nucleic Acids Research. 2017;45:11752-65. doi: 10.1093/nar/gkx789

22. Koriath M., Müller C., Pfeiffer N., et al. Relative Telomere Length and Cardiovascular Risk Factors. Biomolecules. 2019;9(5):192. doi: 10.3390/biom9050192

23. Rehkopf D.H., Needham B.L., Lin J., et al. Leukocyte Telomere Length in Relation to 17 Biomarkers of Cardiovascular Disease Risk: A Cross-Sectional Study of US Adults. PLOS Medicine. 2016;13(11):e1002188. doi: 10.1371/journal.pmed.1002188

24. Barter P., Gotto A.M., LaRosa J.C., et al. HDL Cholesterol, Very Low Levels of LDL Cholesterol, and Cardiovascular Events. The New England Journal of Medicine. 2007;357(13): 1301-10. doi: 10.1056/NEJMoa064278

25. Ahotupa M. Oxidized lipoprotein lipids and atherosclerosis. Free Radical Research. 2017;51(4):439-47. doi: 10.1080/10715762.2017.1319944

26. Proudfoot J.M., Barden A.E., Loke W.M., et al. HDL is the major lipoprotein carrier of plasma F2-isoprostanes. Journal of Lipid Research. 2009;50:716–22. doi: 10.1194/jlr.M800607-JLR200

27. Ahotupa M., Suomela J.P., Vuorimaa T., Vasankari T. Lipoprotein-specifi c transport of circulating lipid peroxides. Annals of Medicine. 2010;42:521–9. doi: 10.3109/07853890.2010.510932

28. Chen W., Gardner J.P., Kimura M., et al. Leukocyte telomere length is associated with HDL cholesterol levels: The Bogalusa heart study. Atherosclerosis. 2009;205(2):620-5. doi: 10.1016/j.atherosclerosis.2009.01.021

29. Tanonaka K., Motegi K., Arino T., et al. Possible Pathway of Na+ Flux into Mitochondria in Ischemic Heart. Biological and pharmaceutical bulletin. 2012;35(10):1661-8. doi: 10.1248/bpb.b12-00010

30. Syrovaya A.O., Leontieva F.S., Novikova I.V., et al. Biological role of free radicals in development of pathological states. Mezhdunarodnyj medicinskij zhurnal. 2012;3(71):98–104. (In Russ)

31. Aizawa H., Koarai A., Shishikura Y., et al. Oxidative stress enhances the expression of IL-33 in human airway epithelial cells. Respir Res. 2018;19(1):52. doi: 10.1186/s12931-018-0752-9.

32. Schleithoff S.S., Zittermann A., Tenderich G., et al. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double - blind, randomized, placebo - controlled trial. Am J Clin Nutr. 2006;83:754-9. doi: 10.1093/ajcn/83.4.754

33. Podzolkov V.I., Pokrovskaya A.E., Panasenko O.I. Vitamin D deficiency and cardiovascular pathology. Terapevticheskii arkhiv. 2018;90(9):144-150. (In Russ.) doi: 10.26442/terarkh2018909144-150


Supplementary files

Review

For citations:


Asanov M.A., Poddubnyak A.O., Ponasenko A.V. RELATIONSHIP BETWEEN TELOMERE LENGTH AND MARKERS OF INFLAMMATION IN THE PRE- AND POSTOPERATIVE PERIOD OF PATIENTS WITH CORONARY ARTERY DISEASE. Complex Issues of Cardiovascular Diseases. 2024;13(3):28-36. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-3-28-36

Views: 216


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)