Preview

Комплексные проблемы сердечно-сосудистых заболеваний

Расширенный поиск

ИМПЛАНТАЦИЯ БИОЛОГИЧЕСКИХ ПРОТЕЗОВ КЛАПАНОВ СЕРДЦА КАК РАЗНОВИДНОСТЬ ТРАНСПЛАНТАЦИИ: ИММУНОЛОГИЧЕСКИЕ СЛЕДСТВИЯ НОВОЙ КОНЦЕПЦИИ

https://doi.org/10.17802/2306-1278-2023-12-4S-196-205

Аннотация

Основные положения

  • Иммунологические триггеры и механизмы, стоящие за развитием структурной дегенерации биологических протезов клапанов сердца и отторжением алло- и ксенотрансплантатов, в значительной степени сходны.
  • Подходы, применяемые для подавления иммунного отторжения трансплантатов, могут быть реализованы при производстве и имплантации биологических протезов клапанов сердца с целью замедления темпов их структурной дегенерации.

 

Резюме

Биологические протезы клапанов сердца характеризуются низкой тромбогенностью, позволяющей избежать рисков пожизненной антикоагулянтной терапии. Вместе с тем сроки их функционирования ограничены в среднем 10–15 годами, поскольку их биологический компонент подвержен структурной дегенерации. Данные исследований последних 20 лет демонстрируют, что развитие структурной дегенерации обусловлено иммунозависимыми процессами, напоминающие таковые гуморального и клеточного отторжения алло- и ксенотрансплантатов. В настоящем обзоре мы суммируем актуальную информацию об иммунологических триггерах и механизмах структурной дегенерации. Кроме того, мы анализируем последние достижения в разработке подходов к снижению иммуногенности биологических протезов, включающие проверку иммунологической совместимости аллогенного материала и получение низкоиммуногенного ксенобиоматериала от генномодифицированных животных, децеллюляризацию биологических протезов, а также медикаментозное торможение структурной дегенерации.

Об авторах

Александр Евгеньевич Костюнин
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

кандидат биологических наук научный сотрудник лаборатории новых биоматериалов отдела экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация



Татьяна Владимировна Глушкова
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

кандидат биологических наук старший научный сотрудник лаборатории новых биоматериалов отдела экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация



Евгений Андреевич Овчаренко
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

кандидат технических наук заведующий лабораторией новых биоматериалов отдела экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация



Список литературы

1. Otto C.M., Nishimura R.A., Bonow R.O., Carabello B.A., Erwin J.P. 3rd, Gentile F., Jneid H., Krieger E.V., Mack M., McLeod C., O'Gara P.T., Rigolin V.H., Sundt T.M. 3rd, Thompson A., Toly C. 2020 ACC/AHA Guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021; 143(5):e72-e227. doi:10.1161/CIR.0000000000000923

2. Бокерия Л.А., Милиевская Е.Б., Куздоева З.Ф., Прянишникова В.В. Сердечно-сосудистая хирургия – 2017. Болезни и врождённые аномалии системы кровообращения. М.; 2018. 252с.

3. Bax J.J., Delgado V. Bioprosthetic heart valves, thrombosis, anticoagulation, and imaging surveillance. JACC Cardiovasc. Interv. 2017; 10(4): 388-390. doi:10.1016/j.jcin.2017.01.017

4. Manji R.A., Lee W., Cooper D.K.C. Xenograft bioprosthetic heart valves: past, present and future. Int. J. Surg. 2015; 23(Pt B):280-284. doi:10.1016/j.ijsu.2015.07.009

5. Dvir D., Bourguignon T., Otto C.M., Hahn R.T., Rosenhek R., Webb J.G. et al. Standardized definition of structural valve degeneration for surgical and transcatheter bioprosthetic aortic valves. Circulation. 2018; 137(4):388-399. doi:10.1161/CIRCULATIONAHA.117.030729

6. Барбараш Л.С., Журавлева И.Ю. Эволюция биопротезов клапанов сердца: достижения и проблемы двух десятилетий. Комплексные проблемы сердечно-сосудистых заболеваний. 2012; (1):4-11. doi:10.17802/2306-1278-2012-1-4-11

7. Schoen F.J., Levy R.J. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann. Thorac. Surg. 2005; 79(3):1072-1080. doi:10.1016/j.athoracsur.2004.06.033

8. Rodriguez-Gabella T., Voisine P., Puri R., Pibarot P., Rodés-Cabau J. Aortic bioprosthetic valve durability: incidence, mechanisms, predictors, and management of surgical and transcatheter valve degeneration. J. Am. Coll. Cardiol. 2017; 70(8):1013-1028. doi:10.1016/j.jacc.2017.07.715

9. Lisy M., Kalender G., Schenke-Layland K., Brockbank K.G., Biermann A., Stock U.A. Allograft heart valves: current aspects and future applications. Biopreserv. Biobank. 2017; 15(2):148-157. doi:10.1089/bio.2016.0070

10. Fiala R., Kochova P., Kubíkova T., Cimrman R., Tonar Z., Spatenka J., Fabián O., Burkert J. Mechanical and structural properties of human aortic and pulmonary allografts do not deteriorate in the first 10 years of cryopreservation and storage in nitrogen. Cell Tissue Bank. 2019; 20(2):221-241. doi:10.1007/s10561-019-09762-x

11. Mazine A., El-Hamamsy I., Verma S., Peterson M.D., Bonow R.O., Yacoub M.H., David T.E., Bhatt D.L. Ross procedure in adults for cardiologists and cardiac surgeons: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2018; 72(22):2761-2777. doi:10.1016/j.jacc.2018.08.2200

12. Naso F., Gandaglia A., Bottio T., Tarzia V., Nottle M.B., d'Apice A.J., Cowan P.J., Cozzi E., Galli C., Lagutina I., Lazzari G., Iop L., Spina M., Gerosa G. First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprostheses. Xenotransplantation. 2013; 20(4):252-261. doi:10.1111/xen.12044

13. Reuven E.M., Leviatan Ben-Arye S., Marshanski T., Breimer M.E., Yu H., Fellah-Hebia I., Roussel J.C., Costa C., Galiñanes M., Mañez R., Le Tourneau T., Soulillou J.P., Cozzi E., Chen X., Padler-Karavani V. Characterization of immunogenic Neu5Gc in bioprosthetic heart valves. Xenotransplantation. 2016; 23(5):381-92. doi:10.1111/xen.12260

14. Barone A., Benktander J., Whiddon C., Jin C., Galli C., Teneberg S., Breimer M. Glycosphingolipids of porcine, bovine, and equine pericardia as potential immune targets in bioprosthetic heart valve grafts. Xenotransplantation. 2018; 25(5):e12406. doi:10.1111/xen.12406

15. Galili U. Anti-Gal: an abundant human natural antibody of multiple pathogeneses and clinical benefits. Immunology. 2013; 140(1):1-11. doi:10.1111/imm.12110

16. Taylor R.E., Gregg C.J., Padler-Karavani V., Ghaderi D., Yu H., Huang S., Sorensen R.U., Chen X., Inostroza J., Nizet V., Varki A. Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. J. Exp. Med. 2010; 207(8):1637-1646. doi:10.1084/jem.20100575

17. Lu T., Yang B., Wang R., Qin C. Xenotransplantation: current status in preclinical research. Front. Immunol. 2020; 10:3060. doi:10.3389/fimmu.2019.03060

18. Böer U., Buettner F.F.R., Schridde A., Klingenberg M., Sarikouch S., Haverich A., Wilhelmi M. Antibody formation towards porcine tissue in patients implanted with crosslinked heart valves is directed to antigenic tissue proteins and αGal epitopes and is reduced in healthy vegetarian subjects. Xenotransplantation. 2017; 24(2). doi:10.1111/xen.12288

19. Gates K.V., Xing Q., Griffiths L.G. Immunoproteomic identification of noncarbohydrate antigens eliciting graft-specific adaptive immune responses in patients with bovine pericardial bioprosthetic heart valves. Proteomics Clin. Appl. 2019; 13(4):e1800129. doi:10.1002/prca.201800129

20. Manji R.A., Ekser B., Menkis A.H., Cooper D.K.C. Bioprosthetic heart valves of the future. Xenotransplantation. 2014; 21(1):1-10. doi:10.1111/xen.12080

21. Nair V., Law K.B., Li A.Y., Phillips K.R., David T.E., Butany J. Characterizing the inflammatory reaction in explanted Medtronic Freestyle stentless porcine aortic bioprosthesis over a 6-year period. Cardiovasc. Pathol. 2012; 21(3):158-168. doi:10.1016/j.carpath.2011.05.003

22. Sakaue T., Nakaoka H., Shikata F., Aono J., Kurata M., Uetani T,. Hamaguchi M., Kojima A., Uchita S., Yasugi T., Higashi H., Suzuki J., Ikeda S, Higaki J., Higashiyama S., Izutani H. Biochemical and histological evidence of deteriorated bioprosthetic valve leaflets: the accumulation of fibrinogen and plasminogen. Biol. Open. 2018; 7(8):pii:bio034009. doi:10.1242/bio.034009

23. Shetty R., Pibarot P., Audet A., Janvier R., Dagenais F., Perron J., Couture C., Voisine P., Després J.P., Mathieu P. Lipid-mediated inflammation and degeneration of bioprosthetic heart valves. Eur. J. Clin. Invest. 2009; 39(6):471-480. doi:10.1111/j.1365-2362.2009.02132.x

24. Simionescu A., Simionescu D.T., Deac R.F. Matrix metalloproteinases in the pathology of natural and bioprosthetic cardiac valves. Cardiovasc. Pathol. 1996; 5(6):323-332.

25. Fournier P.E., Thuny F., Grisoli D., Lepidi H., Vitte J., Casalta J.P., Weiller P.J., Habib G., Raoult D. A deadly aversion to pork. Lancet. 2011; 377(9776):1542. doi:10.1016/S0140-6736(11)60021-4

26. Hoekstra F., Knoop C., Vaessen L., Wassenaar C., Jutte N., Bos E., Bogers A., Weimar W. Donor-specific cellular immune response against human cardiac valve allografts. J. Thorac. Cardiovasc. Surg. 1996; 112(2):281-286. doi:10.1016/S0022-5223(96)70250-7

27. Kneib C., von Glehn C.Q., Costa F.D., Costa M.T., Susin M.F. Evaluation of humoral immune response to donor HLA after implantation of cellularized versus decellularized human heart valve allografts. Tissue Antigens. 2012; 80(2):165-174. doi:10.1111/j.1399-0039.2012.01885.x

28. Dignan R., O'Brien M., Hogan P., Passage J., Stephens F., Thornton A., Harrocks S. Influence of HLA matching and associated factors on aortic valve homograft function. J. Heart Valve Dis. 2000; 9(4):504-511.

29. Saleem N., Das R., Tambur A.R. Molecular histocompatibility beyond tears: the next generation version. Hum Immunol. 2022; 83(3):233-240. doi:10.1016/j.humimm.2021.12.005

30. Lee W., Long C., Ramsoondar J., Ayares D., Cooper D.K., Manji R.A., Hara H. Human antibody recognition of xenogeneic antigens (NeuGc and Gal) on porcine heart valves: could genetically modified pig heart valves reduce structural valve deterioration? Xenotransplantation. 2016; 23(5):370-380. doi:10.1111/xen.12254

31. Perota A., Lagutina I., Duchi R., Zanfrini E., Lazzari G., Judor J.P., Conchon S., Bach J.M., Bottio T., Gerosa G., Costa C., Galiñanes M., Roussel J.C., Padler-Karavani V., Cozzi E., Soulillou J.P., Galli C. Generation of cattle knockout for galactose-α1,3-galactose and N-glycolylneuraminic acid antigens. Xenotransplantation. 2019; 26(5):e12524. doi:10.1111/xen.12524

32. Adams A.B., Kim S.C., Martens G.R., Ladowski J.M., Estrada J.L., Reyes L.M., Breeden C., Stephenson A., Eckhoff D.E., Tector M., Tector A.J. Xenoantigen deletion and chemical immunosuppression can prolong renal xenograft survival. Ann Surg. 2018; 268(4):564-573. doi:10.1097/SLA.0000000000002977

33. Längin M., Mayr T., Reichart B., Michel S., Buchholz S., Guethoff S. et al. Consistent success in life-supporting porcine cardiac xenotransplantation. Nature. 2018; 564(7736):430-433. doi:10.1038/s41586-018-0765-z

34. Kuwaki K., Tseng Y.L., Dor F.J., Shimizu A., Houser S.L., Sanderson T.M., Lancos C.J., Prabharasuth D.D., Cheng J., Moran K., Hisashi Y., Mueller N., Yamada K., Greenstein J.L., Hawley R.J., Patience C., Awwad M., Fishman J.A., Robson S.C., Schuurman H.J., Sachs D.H., Cooper D.K. Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat. Med. 2005; 11(1):29-31. doi:10.1038/nm1171

35. Reardon S. First pig-to-human heart transplant: what can scientists learn? Nature. 2022; 601(7893):305-306. doi:10.1038/d41586-022-00111-9

36. Zhang R., Wang Y., Chen L., Wang R., Li C., Li X., Fang B., Ren X., Ruan M., Liu J., Xiong Q., Zhang L., Jin Y., Zhang M., Liu X., Li L., Chen Q., Pan D., Li R., Cooper D.K.C., Yang H., Dai Y. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH. Acta Biomater. 2018; 72:196-205. doi:10.1016/j.actbio.2018.03.055

37. McGregor C.G., Kogelberg H., Vlasin M., Byrne G.W. Gal-knockout bioprostheses exhibit less immune stimulation compared to standard biological heart valves. J. Heart Valve Dis. 2013; 22(3):383-390.

38. McGregor C., Byrne G., Rahmani B., Chisari E., Kyriakopoulou K., Burriesci G. Physical equivalency of wild type and galactose α 1,3 galactose free porcine pericardium; a new source material for bioprosthetic heart valves. Acta Biomater. 2016; 41:204-209. doi:10.1016/j.actbio.2016.06.007

39. Rahmani B., McGregor C., Byrne G., Burriesci G. A durable porcine pericardial surgical bioprosthetic heart valve: a proof of concept. J. Cardiovasc. Transl. Res. 2019; 12(4):331-337. doi:10.1007/s12265-019-09868-3

40. Crapo P.M., Gilbert T.W., Badylak S.F. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32(12):3233-3243. doi:10.1016/j.biomaterials.2011.01.057

41. Kim M.S., Lim H.G., Kim Y.J. Calcification of decellularized and alpha-galactosidase-treated bovine pericardial tissue in an alpha-Gal knock-out mouse implantation model: comparison with primate pericardial tissue. Eur. J. Cardiothorac. Surg. 2016; 49(3):894-900. doi:10.1093/ejcts/ezv189

42. Helder M.R.K., Stoyles N.J., Tefft B.J., Hennessy R.S., Hennessy R.R.C., Dyer R., Witt T., Simari R.D., Lerman A. Xenoantigenicity of porcine decellularized valves. J. Cardiothorac. Surg. 2017; 12(1):56. doi:10.1186/s13019-017-0621-5

43. Heuschkel M.A., Leitolis A., Roderjan J.G., Suss P.H., Luzia C.A.O., da Costa F.D.A., Correa A., Stimamiglio M.A. In vitro evaluation of bovine pericardium after a soft decellularization approach for use in tissue engineering. Xenotransplantation. 2019; 26(2):e12464. doi:10.1111/xen.12464

44. Wu L.C., Kuo Y.J., Sun F.W., Chen C.H., Chiang C.J., Weng P.W., Tsuang Y.H., Huang Y.Y. Optimized decellularization protocol including α-Gal epitope reduction for fabrication of an acellular porcine annulus fibrosus scaffold. Cell Tissue Bank. 2017; 18(3):383-396. doi:10.1007/s10561-017-9619-4

45. Bloch O., Golde P., Dohmen P.M., Posner S., Konertz W., Erdbrügger W. Immune response in patients receiving a bioprosthetic heart valve: lack of response with decellularized valves. Tissue Eng. Part A. 2011; 17(19-20):2399-405. doi:10.1089/ten.TEA.2011.0046

46. Bibevski S., Ruzmetov M., Fortuna R.S., Turrentine M.W., Brown J.W., Ohye R.G. Performance of SynerGraft decellularized pulmonary allografts compared with standard cryopreserved allografts: results from multiinstitutional data. Ann. Thorac. Surg. 2017; 103(3):869-874. doi:10.1016/j.athoracsur.2016.07.068

47. Sarikouch S., Horke A., Tudorache I., Beerbaum P., Westhoff-Bleck M., Boethig D., Repin O., Maniuc L., Ciubotaru A., Haverich A., Cebotari S. Decellularized fresh homografts for pulmonary valve replacement: a decade of clinical experience. Eur. J. Cardiothorac. Surg. 2016; 50(2):281-290. doi:10.1093/ejcts/ezw050

48. Manji R.A., Zhu L.F., Nijjar N.K., Rayner D.C., Korbutt G.S., Churchill T.A., Rajotte R.V., Koshal A., Ross D.B. Glutaraldehyde-fixed bioprosthetic heart valve conduits calcify and fail from xenograft rejection. Circulation. 2006; 114(4):318-327. doi:10.1161/CIRCULATIONAHA.105.549311

49. Eishi K., Ishibashi-Ueda H., Nakano K., Kosakai Y., Sasako Y., Kobayashi J., Yutani C. Calcific degeneration of bioprosthetic aortic valves in patients receiving steroid therapy. J. Heart Valve Dis. 1996; 5(6):668-672.


Дополнительные файлы

Рецензия

Для цитирования:


Костюнин А.Е., Глушкова Т.В., Овчаренко Е.А. ИМПЛАНТАЦИЯ БИОЛОГИЧЕСКИХ ПРОТЕЗОВ КЛАПАНОВ СЕРДЦА КАК РАЗНОВИДНОСТЬ ТРАНСПЛАНТАЦИИ: ИММУНОЛОГИЧЕСКИЕ СЛЕДСТВИЯ НОВОЙ КОНЦЕПЦИИ. Комплексные проблемы сердечно-сосудистых заболеваний. 2023;12(4S):196-205. https://doi.org/10.17802/2306-1278-2023-12-4S-196-205

For citation:


Kostyunin A.E., Glushkova T.V., Ovcharenko E.A. BIOPROSTHETIC VALVE IMPLANTATION AS TYPE OF TRANSPLANTATION: IMMUNOLOGICAL CONSEQUENCES OF NEW CONCEPT. Complex Issues of Cardiovascular Diseases. 2023;12(4S):196-205. (In Russ.) https://doi.org/10.17802/2306-1278-2023-12-4S-196-205

Просмотров: 256


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)