ROLE OF PECTINATE MUSCLES IN HEMODYNAMICS IN THE CAVITIES OF THE HUMAN HEART
https://doi.org/10.17802/2306-1278-2024-13-3-111-117
Abstract
Highlights
This review precedes the planned study and is an analysis of the available works on the role of pectinate muscles in the development of morphological and functional conditions of intracavitary hemodynamics in the heart.
Abstract
This review presents an analysis of recent publications on the assessment of the functional role of the pectinate muscles in the development of morphological and functional conditions of blood flow in the atria. The results of this analysis helped us to identify a number of topics for further research. The results of this research should help us develop new diagnostic systems and criteria in cardiology field, and assist in furthering research regarding the development of anatomically and physiologically substantiated valve prostheses, taking into account the individual characteristics of the hydrodynamic patterns of blood flow.
About the Authors
Vladimir E. MilyukovRussian Federation
PhD, Professor, Acting Head of the Department of Topographic Anatomy and Operative Surgery, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
Valery A. Bryukhanov
Russian Federation
student, International School “Medicine of the Future” of the Federal State Autonomous Educational Institution of Higher Education “I.M. Sechenov First Moscow State Medical University” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
Heyala Murshud kyzy Sharifova
Russian Federation
PhD, Senior Lecturer at the Department of Human Anatomy, Federal State Autonomous Educational Institution of Higher Education “I.M. Sechenov First Moscow State Medical University” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
Cao Cuong Nguyen
Viet Nam
PhD, Dean of the Faculty of Pharmacy and Nursing, Yersin University of Da Lat of Vietnam, Da Lat, Vietnam
References
1. Hindricks G., Potpara T., Dagres N., Arbelo E., Bax J.J., Blomström-Lundqvist C., Boriani G., Castella M., Dan G.A., Dilaveris P.E., Fauchier L., Filippatos G., Kalman J.M., La Meir M., Lane D.A., Lebeau J.P., Lettino M., Lip G.Y.H., Pinto F.J., Thomas G.N., Valgimigli M., Van Gelder I.C., Van Putte B.P., Watkins C.L.; ESC Scientific Document Group. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42(5):373-498. doi:10.1093/eurheartj/ehaa612
2. Best, J. G., Bell, R., Haque, M., Chandratheva, A., Werring, D. J. Atrial fibrillation and stroke: a practical guide. Pract Neurol. 2019;19(3):208-224. doi:10.1136/practneurol-2018-002089
3. Jame, S., Barnes, G. Stroke and thromboembolism prevention in atrial fibrillation. Heart. 2020;106(1):10-17. doi:10.1136/heartjnl-2019-314898
4. Yiin G.S.C., Li L., Bejot Y., Rothwell P.M. Time Trends in Atrial Fibrillation-Associated Stroke and Premorbid Anticoagulation: Population-Based Study and Systematic Review. Stroke. 2019;50(1):21-27. doi: 10.1161/STROKEAHA.118.022249.
5. Di L., Natale A., Romero J.. Thrombogenic and Arrhythmogenic Roles of the Left Atrial Appendage in Atrial Fibrillation. Circulation. 2018;138(18):2036-2050. doi:10.1161/CIRCULATIONAHA.118.034187
6. Cresti A., García-Fernández M.A., Sievert H., Mazzone P., Baratta P., Solari M., Geyer A., De Sensi F., Limbruno U. Prevalence of extra-appendage thrombosis in non-valvular atrial fibrillation and atrial flutter in patients undergoing cardioversion: a large transoesophageal echo study. EuroIntervention. 2019;15(3):e225-e230. doi:10.4244/EIJ-D-19-00128
7. Bazira P.J. Clinically applied anatomy of the heart. Surgery (Oxford). 2021; 39(3):117-125. doi:10.1016/j.mpsur.2021.01.004
8. Ueda A., McCarthy K.P., Sánchez-Quintana D., Ho S.Y. Right atrial appendage and vestibule: further anatomical insights with implications for invasive electrophysiology. Europace. 2013;15(5):728-34. doi:10.1093/europace/eus382
9. Hensey M., O'Neill L., Mahon C., Keane S., Fabre A., Keane D. A Review of the Anatomical and Histological Attributes of the Left Atrial Appendage with Descriptive Pathological Examination of Morphology and Histology. J Atr Fibrillation. 2018;10(6):1650. doi:10.4022/jafib.1650
10. Beigel R., Wunderlich N.C., Ho S.Y., Arsanjani R., Siegel R.J. The left atrial appendage: anatomy, function, and noninvasive evaluation. JACC Cardiovasc Imaging. 2014;7(12):1251-65. doi:10.1016/j.jcmg.2014.08.009
11. Stepanchuk A. P., Royko N. V., Fylenko B. M., Pryshlyak A. M. Morphofunctional purpose of human atrial auricles. World of medicine and biology. 2018;14(3):185-189. doi 10.26724/2079-8334-2018-3-65-185-189.
12. Ding W.Y., Gupta D., Lip G.Y.H. Atrial fibrillation and the prothrombotic state: revisiting Virchow’s triad in 2020. Heart . 2020t;106(19):1463-1468. doi:10.1136/heartjnl-2020-316977
13. Khe A., Vanina V., Cherevko A., Parshin D., Chebotnikov A., Chupakhin A., Boiko A., Tulupov A. 4D MR flowmetry of vortical fluid flows in elastic tubes. In Fomin, editor, 19th International Conference on the Methods of Aerophysical Research, ICMAR. 2018;2027. American Institute of Physics Inc. 2018. 030123. (AIP Conference Proceedings). doi: 10.1063/1.5065217.
14. Thomas B., Sumam,K. S. Blood Flow in Human Arterial System-A Review. Procedia Technology. 2016;24:339–346. doi:10.1016/j.protcy.2016.05.045
15. Baysan O., Ocakli E. P., Saglam Ya., Altuner T. K. Advances in echocardiography: global longitudinal strain, intra-cardiac multidirectional flow imaging and automated 3d volume analysis. Heart, Vessels and Transplantation. 2018; 2(4):113-122. doi: 10.24969/hvt.2018.83.
16. Li Y., Shi G., Du J., Wang J., Bian P. Analysis and preparation of rotational flow mechanism of artificial blood vessel with spiral folds on inner wall. Biomech Model Mechanobiol. 2019;18(2):411-423. doi:10.1007/s10237-018-1092-x
17. Demirkiran A., Hassell M.E.C.J., Garg P., Elbaz M.S.M., Delewi R., Greenwood J.P., Piek J.J., Plein S., van der Geest R.J., Nijveldt R. Left ventricular four-dimensional blood flow distribution, energetics, and vorticity in chronic myocardial infarction patients with/without left ventricular thrombus. Eur J Radiol. 2022;150:110233. doi: 10.1016/j.ejrad.2022.110233.
18. Kilner P. J., Yang G.-Z., Wilkes A. J., Mohiaddin R. H., Firmin D. N., Yacoub M. H. Asymmetric redirection of flow through the heart. Nature. 2000;404(6779):759–761. doi:10.1038/35008075
19. Callaghan F. M., Arnott C., Figtree G. A., Kutty S., Celermajer D. S., Grieve S. M. Quantifying right atrial filling and emptying: A 4D-flow MRI study. J Magn Reson Imaging. 2017;45(4):1046-1054. doi:10.1002/jmri.25457
20. Gaeta S., Dyverfeldt P., Eriksson J., Carlhäll C.-J., Ebbers T., Bolger A. F. Fixed volume particle trace emission for the analysis of left atrial blood flow using 4D Flow MRI. Magn Reson Imaging. 2018;47:83-88. doi:10.1016/j.mri.2017.12.008
21. Suwa K., Saitoh T., Takehara Y., Sano M., Nobuhara M., Saotome M., Urushida T., Katoh H., Satoh H., Sugiyama M., Wakayama T., Alley M., Sakahara H., Hayashi H. Characteristics of intra-left atrial flow dynamics and factors affecting formation of the vortex flow – analysis with phase-resolved 3-dimensional cine phase contrast magnetic resonance imaging. Circ J. 2015;79(1):144-52. doi:10.1253/circj.CJ-14-0562
22. Beigel, R., Wunderlich, N. C., Ho, S. Y., Arsanjani, R., Siegel, R. J. The Left Atrial Appendage: Anatomy, Function, and Noninvasive Evaluation. JACC Cardiovasc Imaging. 2014;7(12):1251-65. doi:10.1016/j.jcmg.2014.08.009
23. Kim Y. G., Shim J., Oh S.-K., Lee K.-N., Choi J.-I., Kim Y.-H. Electrical isolation of the left atrial appendage increases the risk of ischemic stroke and transient ischemic attack regardless of postisolation flow velocity. Heart Rhythm. 2018;15(12):1746–1753. doi:10.1016/j.hrthm.2018.09.012
24. Domínguez H., Madsen C. V., Westh O. N. H., Pallesen P. A., Carrranza C. L., Irmukhamedov A., Park-Hansen J. Does Left Atrial Appendage Amputation During Routine Cardiac Surgery Reduce Future Atrial Fibrillation and Stroke? Current Cardiology Reports. 2018; 20(10): doi:10.1007/s11886-018-1033-4
25. Patti G., Pengo V., Marcucci R., Cirillo P., Renda G., Santilli F., Calabrò P., De Caterina A.R., Cavallari I., Ricottini E., Parato V.M., Zoppellaro G., Di Gioia G., Sedati P., Cicchitti V., Davì G., Golia E., Pariggiano I., Simeone P., Abbate R., Prisco D., Zimarino M., Sofi F., Andreotti F., De Caterina R.; Working Group of Thrombosis of the Italian Society of Cardiology. The left atrial appendage: from embryology to prevention of thromboembolism. Eur Heart J. 2017;38(12):877-887. doi:10.1093/eurheartj/ehw159
26. Zhang L. T., Gay M. Characterizing left atrial appendage functions in sinus rhythm and atrial fibrillation using computational models. Journal of Biomechanics. 2008;41(11):2515–2523. doi:10.1016/j.jbiomech.2008.05.01
27. Agafonov A.V., Talygin E.A., Bockeria L.A., Gorodkov A.Y. The Hydrodynamics of a Swirling Blood Flow in the Left Heart and Aorta. Acta Naturae. 2021;13(4):4-16.doi:10.32607/actanaturae.11439
28. Ptaszynska-Kopczynska K., Kiluk I., Sobkowicz B. Atrial Fibrillation in Patients with Acute Pulmonary Embolism: Clinical Significance and Impact on Prognosis. Biomed Res Int. 2019;2019:7846291., doi:10.1155/2019/7846291
29. Naksuk N., Padmanabhan D., Yogeswaran V., Asirvatham S. J. Left Atrial Appendage. JACC: Clinical Electrophysiology. 2016;2(4): 403–412. doi:10.1016/j.jacep.2016.06.006
30. Richardson A.C,. Omar M., Velarde G., Missov E., Percy R., Sattiraju S. Right Atrial Appendage Thrombus in Atrial Fibrillation: A Case Report and Review of the Literature. J Investig Med High Impact Case Rep. 2021;9:23247096211010048. doi:10.1177/23247096211010048
31. Yamamoto M., Seo Y., Kawamatsu N., Sato K., Sugano A., Machino-Ohtsuka T., Kawamura R., Nakajima H., Igarashi M, Sekiguchi Y, Ishizu T, Aonuma K. Complex left atrial appendage morphology and left atrial appendage thrombus formation in patients with atrial fibrillation. Circ Cardiovasc Imaging. 2014;7(2):337-43. doi:10.1161/CIRCIMAGING.113.001317
32. Shinoda K., Hayashi S., Fukuoka D., Torii R., Watanabe T., Nakano T. Structural Comparison between the Right and Left Atrial Appendages Using Multidetector Computed Tomography. Biomed Res Int. 2016;2016:6492183. doi:10.1155/2016/6492183
33. Koizumi R., Funamoto K., Hayase T., Kanke Y., Shibata M., Shiraishi Y., Yambe T. Numerical analysis of hemodynamic changes in the left atrium due to atrial fibrillation. Journal of Biomechanics. 2015; 48(3):472–478. doi:10.1016/j.jbiomech.2014.12.02
34. Yildirim T., Akin F., Avci E., Altun I., Yildirim S. E., Soylu M. O. Paroxysmal Atrial Fibrillation and Stroke. The American Journal of Cardiology. 2018;121(8): e42. doi:10.1016/j.amjcard.2018.03.119
35. Whiteman S., Saker E., Courant V., Salandy S., Gielecki J., Zurada A., Loukas M. An anatomical review of the left atrium. Translational Research in Anatomy. 2019;17:100052. doi:10.1016/j.tria.2019.100052.
36. Garcia J., Sheitt H., Bristow M.S., Lydell C., Howarth A.G., Heydari B., Prato F.S., Drangova M., Thornhill R.E., Nery P., Wilton S.B., Skanes A., White J.A. Left atrial vortex size and velocity distributions by 4D flow MRI in patients with paroxysmal atrial fibrillation: Associations with age and CHA2 DS2 -VASc risk score. J Magn Reson Imaging. 2020;51(3):871-884.doi:10.1002/jmri.26876
37. Di Biase L., Santangeli P., Anselmino M., Mohanty P., Salvetti I., Gili S., Horton R., Sanchez J.E., Bai R., Mohanty S., Pump A., Cereceda Brantes M., Gallinghouse G.J., Burkhardt J.D., Cesarani F., Scaglione M., Natale A., Gaita F. Does the left atrial appendage morphology correlate with the risk of stroke in patients with atrial fibrillation? Results from a multicenter study. J Am Coll Cardiol. 2012;60(6):531-8. doi:10.1016/j.jacc.2012.04.032
38. He J., Fu Z., Yang L., Liu W., Tian Y., Liu Q., Jiang Z., Tian L., Huang J., Tian S., Zhao Y. The predictive value of a concise classification of left atrial appendage morphology to thrombosis in non-valvular atrial fibrillation patients. Clin Cardiol. 2020;43(7):789-795. doi:10.1002/clc.23381
39. Bosi G.M., Cook A., Rai R., Menezes L.J., Schievano S., Torii R., Burriesci G. Burriesci. Computational Fluid Dynamic Analysis of the Left Atrial Appendage to Predict Thrombosis Risk. Front Cardiovasc Med. 2018;5:34. doi:10.3389/fcvm.2018.00034
40. Khurram I.M., Dewire J., Mager M., Maqbool F., Zimmerman S.L., Zipunnikov V., Beinart R., Marine J.E., Spragg D.D., Berger R.D., Ashikaga H., Nazarian S., Calkins H. Relationship between left atrial appendage morphology and stroke in patients with atrial fibrillation. Heart Rhythm. 2013;10(12):1843-9.doi:10.1016/j.hrthm.2013.09.065
41. Masci A., Barone L., Dedè L., Fedele M., Tomasi C., Quarteroni A., Corsi C. The Impact of Left Atrium Appendage Morphology on Stroke Risk Assessment in Atrial Fibrillation: A Computational Fluid Dynamics Study. Front Physiol. 2019;9:1938. doi:10.3389/fphys.2018.01938
42. Kim I.C., Hong G.R. Intraventricular Flow: More than Pretty Pictures. Heart Fail Clin. 2019;15(2):257-265. doi:10.1016/j.hfc.2018.12.005
Supplementary files
Review
For citations:
Milyukov V.E., Bryukhanov V.A., Sharifova H.M., Nguyen C.C. ROLE OF PECTINATE MUSCLES IN HEMODYNAMICS IN THE CAVITIES OF THE HUMAN HEART. Complex Issues of Cardiovascular Diseases. 2024;13(3):111-117. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-3-111-117