Preview

Complex Issues of Cardiovascular Diseases

Advanced search

Extracorporeal therapy in critically ill patients with COVID-19: a single-center experience

https://doi.org/10.17802/2306-1278-2022-11-2-72-83

Abstract

Highlights. Plasma separation and cytokine hemoperfusion effectively stop cytokine shock, but prolonged extracorporeal therapy in patients with COVID-19 has demonstrated effectiveness in reducing organ dysfunction without significantly affecting extent of lung parenchyma damage.

Aim. To assess the safety and efficacy of extracorporeal therapy in patients with COVID-19.

Methods. The study included 27 patients aged 67±9.7 [min 38, max 87] years with a laboratory-confirmed SARS-CoV-2 and bilateral polysegmental pneumonia, various concomitant chronic diseases who were admitted to Intensive Care Unit and received extracorporeal therapies. All patients had the mean NEWS score of 6.9±2.7 [min 4, max 9] and the mean SOFA score of 8.1±3.1 [min 3, max 16] at admission to the ICU. 19 patients (70.4%) had severe lung lesions over 75% according to the chest CT scans. 48 extracorporeal therapies were performed using the Multifiltrate (Fresenius Medical Care, Germany) and Aquarius (Nikkiso Aquarius RCA, Great Britain) medical devices. Indications for extracorporeal therapy initiation included cytokine storm associated with acute respiratory distress syndrome and septic shock.

Results. Generally, each patient received at least one extracorporeal therapy. 11 patients underwent 2 to 6 sessions. Isolated plasma separation and hemoperfusion helped to reduce vasopressor / cardiotonic support, slightly improved ventilation parameters, with a significant, but not long-term decrease in the levels of inflammation markers. Combining different modalities of extracorporeal therapy that provide rapid elimination of agents, controlled temperature response and hydration, maintaining homeostasis and detoxification, appeared to be most optimal. Extracorporeal therapy did not improve the volume of lung parenchyma or lung parenchyma damage. However, 19 (70.4%) patients who received extracorporeal therapy transitioned from mechanical ventilation to spontaneous breathing, whereas 8 (29.6%) patients had severe lung lesions (over 75%) according to the repeated chest CT scans. The mean length of stay in the ICU among survivors was 9±3.5 [min 4, max 22]. The 28-day mortality and in-hospital mortality rate was 25.9% (7).

Conclusion. Prolonged extracorporeal therapy in patients with SARS-Cov-2 has demonstrated efficacy in relieving organ dysfunctions and shock states, but did not significantly affect the remaining lung parenchyma damage.

About the Authors

A. Sh. Revishvili
Federal State Budgetary Institution “National Medical Research Center of Surgery named after A. Vishnevsky” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Revishvili Amiran Sh., Academician of the Russian Academy of Sciences, Professor, Director

27, Bolshaya Serpuhovskaya St., Moscow, 117997


Competing Interests:

Author declares no conflict of interest.



G. P. Plotnikov
Federal State Budgetary Institution “National Medical Research Center of Surgery named after A. Vishnevsky” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Plotnikov Georgy P., MD, PhD, Head of the Department of Anesthesiology and Intensive Care

27, Bolshaya Serpuhovskaya St., Moscow, 117997


Competing Interests:

Author declares no conflict of interest.



M. S. Rubtsov
Federal State Budgetary Institution “National Medical Research Center of Surgery named after A. Vishnevsky” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Rubtsov Mihail S., Intensivist at the Department of Anesthesiology and Intensive Care

27, Bolshaya Serpuhovskaya St., Moscow, 117997


Competing Interests:

Author declares no conflict of interest.



A. V. Geyze
Federal State Budgetary Institution “National Medical Research Center of Surgery named after A. Vishnevsky” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Geyze Anton V., PhD, Intensivist at the Department of Anesthesiology and Intensive Care

27, Bolshaya Serpuhovskaya St., Moscow, 117997


Competing Interests:

Author declares no conflict of interest.



A. V. Galstyan
Federal State Budgetary Institution “National Medical Research Center of Surgery named after A. Vishnevsky” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Galstyan Andronik V., Intensivist at the Department of Anesthesiology and Intensive Care

27, Bolshaya Serpuhovskaya St., Moscow, 117997


Competing Interests:

Author declares no conflict of interest.



A. N. Kudryavcev
Federal State Budgetary Institution “National Medical Research Center of Surgery named after A. Vishnevsky” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Kudryavtsev Anton N., Intensivist at the Department of Anesthesiology and Intensive Care

27, Bolshaya Serpuhovskaya St., Moscow, 117997


Competing Interests:

Author declares no conflict of interest.



A. A. Kleuzovich
Federal State Budgetary Institution “National Medical Research Center of Surgery named after A. Vishnevsky” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Kleuzovich Artem A., Intensivist at the Department of Anesthesiology and Intensive Care

27, Bolshaya Serpuhovskaya St., Moscow, 117997


Competing Interests:

Author declares no conflict of interest.



References

1. Ma X, Liang M, Ding M, Liu W, Ma H, Zhou X, Ren H. Extracorporeal Membrane Oxygenation (ECMO) in Critically Ill Patients with Coronavirus Disease 2019 (COVID-19) Pneumonia and Acute Respiratory Distress Syndrome (ARDS). Med Sci Monit. 2020;26:e925364. doi: 10.12659/MSM.925364

2. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5.

3. Abrams D., Schmidt M., Pham T., Beitler J.R., Fan E., Goligher E.C., McNamee J.J., Patroniti N., Wilcox M.E., Combes A., Ferguson N.D., McAuley D.F., Pesenti A., Quintel M., Fraser J., Hodgson C.L., Hough C.L., Mercat A., Mueller T., Pellegrino V., Ranieri V.M., Rowan K., Shekar K., Brochard L., Brodie D. Mechanical Ventilation for Acute Respiratory Distress Syndrome during Extracorporeal Life Support. Research and Practice. Am J Respir Crit Care Med. 2020;201(5):514-525. doi: 10.1164/rccm.201907-1283CI.

4. Combes A., Peek G.J., Hajage D., Hardy P., Abrams D., Schmidt M., Dechartres A., Elbourne D. ECMO for severe ARDS: systematic review and individual patient data metaanalysis. Intensive Care Med. 2020;46(11):2048-2057. doi: 10.1007/s00134-020-06248-3.

5. Falcoz P.E., Monnier A., Puyraveau M., Perrier S., Ludes P.O., Olland A., Mertes P.M., Schneider F., Helms J., Meziani F. Extracorporeal Membrane Oxygenation for Critically Ill Patients with COVID-19-related Acute Respiratory Distress Syndrome: Worth the Effort? Am J Respir Crit Care Med. 2020;202(3):460-463. doi: 10.1164/rccm.202004-1370LE.

6. Li X., Guo Z., Li B., Zhang X., Tian R., Wu W., Zhang Z., Lu Y., Chen N., Clifford S.P., Huang J. Extracorporeal Membrane Oxygenation for Coronavirus Disease 2019 in Shanghai, China. ASAIO J. 2020;66(5):475-481. doi: 10.1097/MAT.0000000000001172.

7. Sultan I., Habertheuer A., Usman A.A., Kilic A., Gnall E., Friscia M.E., Zubkus D., Hirose H., Sanchez P., Okusanya O., Szeto W.Y., Gutsche J. The role of extracorporeal life support for patients with COVID-19: Preliminary results from a statewide experience. J Card Surg. 2020;35(7):1410-1413. doi: 10.1111/jocs.14583.

8. World Health Organization. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: interim guidance, 13 March 2020. Available at: https://apps.who.int/iris/handle/10665/331446. (accessed 09.04.2022)

9. Prakticheskie rekomendacii Associacii anesteziologovreanimatologov i obshchestvennoj organizacii «Rossijskij sepsis-forum» po ispol'zovaniyu ekstrakorporal'noj gemokorrekcii u pacientov s COVID-19 (Versiya 1.0 ot 20.04.2020) Available at: https://association-ar.ru/wp-content/uploads/2020/04/ЭМЛ-при-COVID-рекомендации.pdf (accessed 09.04.2022) (In Russian)

10. Ministerstvo Zdravoohraneniya RF Vremennye metodicheskie rekomendacii: profilaktika, diagnostika i lechenie novoj koronavirusnoj infekcii (COVID-19). Available at: http://static-0.rosminzdrav.ru/system/attachments/attaches/000/050/584/original/03062020_%D0%9CR_COVID-19_v7.pdf (accessed 19.03.2022) (In Russian)

11. Connors J.M., Levy J.H. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033- 2040. doi: 10.1182/blood.2020006000.

12. Hong L.Z., Shou Z.X., Zheng D.M. Jin X. The most important biomarker associated with coagulation and inflammation among COVID-19 patients. Mol Cell Biochem. 2021;476(7):2877-2885. doi: 10.1007/s11010-021-04122-4.

13. Görlinger K., Dirkmann D., Gandhi A., Simioni P. COVID-19-Associated Coagulopathy and Inflammatory Response: What Do We Know Already and What Are the Knowledge Gaps?. Anesth Analg. 2020;131(5):1324-1333. doi:10.1213/ANE.0000000000005147

14. Umemura Y., Yamakawa K., Kiguchi T., Nishida T., Kawada M., Fujimi S. Hematological Phenotype of COVID-19-Induced Coagulopathy: Far from Typical Sepsis-Induced Coagulopathy. J Clin Med. 2020;9(9):2875. doi:10.3390/jcm9092875

15. Thachil J, Cushman M, Srivastava A. A Proposal for Staging COVID-19 Coagulopathy. Res Pract Thromb Haemost. 2020 Jul 6;4(5):731– 736. doi: 10.1002/rth2.12372.

16. Helms J., Tacquard C., Severac F., Leonard-Lorant I., Ohana M., Delabranche X., Merdji H., Clere-Jehl R., Schenck M., Fagot Gandet F., Fafi-Kremer S., Castelain V., Schneider F., Grunebaum L., Anglés-Cano E., Sattler L., Mertes P.M., Meziani F.; CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089-1098. doi: 10.1007/s00134-020-06062-x.

17. Llitjos J.F., Leclerc M., Chochois C., Monsallier J.M., Ramakers M., Auvray M., Merouani K. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost. 2020;18(7):1743- 1746. doi: 10.1111/jth.14869.

18. Tal S., Spectre G., Kornowski R., Perl L. Venous Thromboembolism Complicated with COVID-19: What Do We Know So Far? Acta Haematol. 2020;143(5):417-424. doi: 10.1159/000508233.

19. Zhai Z., Li C., Chen Y., Gerotziafas G., Zhang Z., Wan J., Liu P., Elalamy I., Wang C.; Prevention Treatment of VTE Associated with COVID-19 Infection Consensus Statement Group. Prevention and Treatment of Venous Thromboembolism Associated with Coronavirus Disease 2019 Infection: A Consensus Statement before Guidelines. Thromb Haemost. 2020;120(6):937-948. doi: 10.1055/s-0040-1710019.

20. Wool G.D., Miller J.L. The Impact of COVID-19 Disease on Platelets and Coagulation. Pathobiology. 2021;88:15-27. doi: 10.1159/000512007

21. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., Xia J., Yu T., Zhang X., Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513. doi: 10.1016/S0140-6736(20)30211-7.

22. Zhang L., Yan X., Fan Q., Liu H., Liu X., Liu Z., Zhang Z. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020;18(6):1324- 1329. doi: 10.1111/jth.14859.

23. Diab M., Platzer S., Guenther A., Sponholz C., Scherag A., Lehmann T., Velichkov I., Hagel S., Bauer M., Brunkhorst F.M., Doenst T. Assessing efficacy of CytoSorb haemoadsorber for prevention of organ dysfunction in cardiac surgery patients with infective endocarditis: REMOVE-protocol for randomised controlled trial. BMJ Open. 2020;10(3):e031912. doi: 10.1136/bmjopen-2019-031912.

24. Khamis F., Al-Zakwani I., Al Hashmi S., Al Dowaiki S., Al Bahrani M., Pandak N., Al Khalili H., Memish Z. Therapeutic plasma exchange in adults with severe COVID-19 infection. Int J Infect Dis. 2020;99:214-218. doi:10.1016/j.ijid.2020.06.064

25. Gucyetmez B., Atalan H.K., Sertdemir I., Cakir U., Telci L.; COVID-19 Study Group. Therapeutic plasma exchange in patients with COVID-19 pneumonia in intensive care unit: a retrospective study. Crit Care. 2020;24(1):492. doi: 10.1186/s13054-020-03215-8.

26. Keith P., Day M., Perkins L., Moyer L., Hewitt K., Wells A. A novel treatment approach to the novel coronavirus: an argument for the use of therapeutic plasma exchange for fulminant COVID-19. Crit Care. 2020;24(1):128. doi: 10.1186/s13054-020-2836-4.

27. Napp L.C., Bauersachs J. Extracorporeal Hemoadsorption: An Option for COVID-19-Associated Cytokine Storm Syndrome. Shock. 2020;54(5):700-701. doi:10.1097/SHK.0000000000001568

28. Masmouei B., Harorani M., Bazrafshan M.R., Karimi Z. COVID-19: Hyperinflammatory Syndrome and Hemoadsorption with CytoSorb. Blood Purif 2021;50(6):976- 978. doi: 10.1159/000512199.

29. National Health Commission of the People’s Republic of China. Guidelines for novel coronavirus infection prevention and treatment (trial 7th edition). 2020. Available at: https://wwwchinalawtranslatecom/en/coronavirus‐treatment‐plan‐7/. (accessed 08.05.2021)

30. Tay M.Z., Poh C.M., Rénia L., MacAry P.A., Ng L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363-374. doi:10.1038/s41577-020-0311-8

31. Ma J., Xia P., Zhou Y., Wang J., Li T., Yan X., Chen L., Zhang S., Qin Y., Li X. Potential effect of blood purification therapy in reducing cytokine storm as a late complication of critically ill COVID-19. Clin Immunol. 2020;214:108408. doi:10.1016/j.clim.2020.108408

32. Asgharpour M., Mehdinezhad H., Bayani M., Zavareh M.S.H., Hamidi S.H., Akbari R., Ghadimi R., Bijani A., Mouodi S. Effectiveness of extracorporeal blood purification (hemoadsorption) in patients with severe coronavirus disease 2019 (COVID-19). BMC Nephrol. 2020;21(1):356. doi:10.1186/s12882-020-02020-3

33. Liu L.Y., Zhu Y.J., Li X.L., Liang Y.F., Liang Z.P., Xia Y.H. Blood hemoperfusion with resin adsorption combined continuous veno-venous hemofiltration for patients with multiple organ dysfunction syndrome. World J Emerg Med. 2012;3(1):44- 8. doi: 10.5847/wjem.j.issn.1920-8642.2012.01.008.

34. Davenport A., Tolwani A. Citrate anticoagulation for continuous renal replacement therapy (CRRT) in patients with acute kidney injury admitted to the intensive care unit. NDT Plus. 2009;2(6):439-47. doi: 10.1093/ndtplus/sfp136.

35. Kolesnikov S., Borisov A., Kornilov I., Lomivorotov V. Continuous Renal Replacement Therapy and Extracorporeal Membrane Oxygenation in Cardias Surgery. General Reanimatology. 2014;3:75-84. https://doi.org/10.15360/1813-9779-2014-3-75-84 (In Russian)

36. Revishvili A.S., Kаrmаzаnovsky G.G., Plotnikov G.P., Zamyatina K.A., Geise A.V., Galstyan A.V., Rubtsov M.S. Dynamics of pulmonary injury and extracorporeal methods of hemocorrection in patients with Sars-CoV-2. Medical Visualization. 2020;3:12-25. https://doi.org/10.24835/1607-0763-2020-3-12-2537. (In Russian)

37. Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S., Mehra M.R., Schuepbach R.A., Ruschitzka F., Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020 May 2;395(10234):1417-1418. doi:10.1016/S0140-6736(20)30937-5


Review

For citations:


Revishvili A.Sh., Plotnikov G.P., Rubtsov M.S., Geyze A.V., Galstyan A.V., Kudryavcev A.N., Kleuzovich A.A. Extracorporeal therapy in critically ill patients with COVID-19: a single-center experience. Complex Issues of Cardiovascular Diseases. 2022;11(2):72-83. (In Russ.) https://doi.org/10.17802/2306-1278-2022-11-2-72-83

Views: 640


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)