Preview

Complex Issues of Cardiovascular Diseases

Advanced search

Booster vaccination against SARS-CoV-2: current challenges and solutions

https://doi.org/10.17802/2306-1278-2022-11-2-196-203

Abstract

Highlights. Nowadays the only way to prevent a new coronavirus infection is vaccination. Overcoming such problems as a gradual decrease in the effectiveness of post-vaccination immunity and the emergence of new strains of SARS-CoV-2 is possible due to booster vaccination. The review highlights the current data on the effectiveness and immunogenicity of various booster vaccination regimens and prospects for studying this issue in the Russian Federation.

Abstract. The COVID-19 pandemic is going on, which makes it crucial to prevent the spread of coronavirus disease. Vaccination is the only way of specific prevention of COVID-19. The SARS-CoV-2 virus is continuously evolving and new variants appear. Moreover, the effectiveness of protective immunity after vaccination tends to decrease over several months. Booster vaccination may be the solution to these problems. The booster is an extra vaccination that helps to reactivate the immunity against COVID-19. Booster doses can be homologous (the same as the primary vaccine) and heterologous (different from the primary vaccine). It is of current interest to study heterologous vaccination as the injection of different vaccines may result in a more intense immune response. Furthermore, the same vaccine may not be available at the time of booster vaccination. This review is aimed at summarizing the key research findings in the field of booster vaccination against COVID-19.

About the Authors

O. M. Drapkina
Federal State Budgetary Institution National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthсare of the Russian Federation
Russian Federation

Drapkina Oksana M., Academician of the Russian Academy of Sciences, PhD, Professor, Director

10, building 3, Petroverigsky Lane, Moscow, 101990



S. A. Berns
Federal State Budgetary Institution National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthсare of the Russian Federation
Russian Federation

Berns Svetlana A., PhD, Head of the Pathogenetic Aspects of Comorbidity Laboratory, Professor at the Department of Therapy, Institute for Professional Education and Accreditation

10, building 3, Petroverigsky Lane, Moscow, 101990



A. Yu. Gorshkov
Federal State Budgetary Institution National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthсare of the Russian Federation
Russian Federation

Gorshkov Alexander Yu., PhD, Deputy Director for Science and Outpatient Clinical Care

10, building 3, Petroverigsky Lane, Moscow, 101990



A. A. Ivanova
Federal State Budgetary Institution National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthсare of the Russian Federation
Russian Federation

Ivanova Anna A., Resident

10, building 3, Petroverigsky Lane, Moscow, 101990



L. N. Ryzhakova
Federal State Budgetary Institution National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthсare of the Russian Federation
Russian Federation

Ryzhakova Lydia N., PhD, Head Doctor at the Consultative and Diagnostic Center

10, building 3, Petroverigsky Lane, Moscow, 101990



V. S. Bashnyak
Federal State Budgetary Institution National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthсare of the Russian Federation
Russian Federation

Bashnyak Vladislav S., Postgraduate Student at the Department of Fundamental and Applied Aspects of Obesity

10, building 3, Petroverigsky Lane, Moscow, 101990



References

1. Avdeev S.N., Adamyan L.V., Alekseeva E.I., Bagienko S.F., Baranov A.A., Baranova N.N., Belevsky A.S., Belkin A.A. et al. Prevention, diagnostics and treatment of coronavirus disease 2019 (COVID-19): Update 15 22.02.2022. Moscow: Ministry of Health of Russian Federation; 20022. (In Russian)

2. Drapkina O.M., Burns S.A., Gorshkov A.Yu., Shishkova V.N., Ryzhakova L.N., Litinskaya O.A., Ivanova A.A., Veretennikova A.V., Bashnyak V.S., Tatarevich E.Yu.Long-term dynamics of the levels of anti-SARS-CoV-2 S-protein IgG antibodies in vaccinated individuals. Cardiovascular Therapy and Prevention. 2021;20(8):3124. doi:10.15829/1728-8800-2021-3124 (In Russian)

3. Polack F.P., Thomas S.J., Kitchin N., Absalon J., Gurtman A.,Lockhart S., Perez J.L., Pérez Marc G., Moreira E.D., Zerbini C., Bailey R., Swanson K.A., Roychoudhury S., Koury K., Li P., Kalina W.V., Cooper D., Frenck R.W. Jr., Hammitt L.L., Türeci Ö., Nell H., Schaefer A., Ünal S., Tresnan D.B., Mather S., Dormitzer P.R., Şahin U., Jansen K.U., Gruber W.C.; C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383(27):2603-2615. doi: 10.1056/NEJMoa2034577.

4. Baden L.R., El Sahly H.M., Essink B., Kotloff K., Frey S., Novak R., Diemert D., Spector S.A., Rouphael N., Creech C.B., McGettigan J., Khetan S., Segall N., Solis J., Brosz A., Fierro C., Schwartz H., Neuzil K., Corey L., Gilbert P., Janes H., Follmann D., Marovich M., Mascola J., Polakowski L., Ledgerwood J., Graham B.S., Bennett H., Pajon R., Knightly C., Leav B., Deng W., Zhou H., Han S., Ivarsson M., Miller J., Zaks T.; COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403-416. doi: 10.1056/NEJMoa2035389.

5. Zhang Y., Zeng G., Pan H., Li C., Hu Ya., Chu K., Han W., Chen Z., Tang R., Yin W., Chen X., Hu Yu., Liu X., Jiang C., Li J., Yang M., Song Y., Wang X., Gao Q., Zhu F. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebocontrolled, phase 1/2 clinical trial. The Lancet. Infectious diseases. 2021; 21(2): 181-192. doi:10.1016/S1473-3099(20)30843-4

6. Madhi S.A., Baillie V., Cutland C.L., Voysey M., Koen A.L., Fairlie L., Padayachee S.D., Dheda K.; Wits-VIDA COVID Group. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. N Engl J Med. 2021;384(20):1885- 1898. doi: 10.1056/NEJMoa2102214.

7. Collie S., Champion J., Moultrie H., Bekker L.G., Gray G. Effectiveness of BNT162b2 Vaccine against Omicron Variant in South Africa. N Engl J Med. 2022;386(5):494-496. doi:10.1056/NEJMc2119270

8. Bayart J.L., Douxfils J., Gillot C., David C., Mullier F., Elsen M., Eucher C., Van Eeckhoudt S., Roy T., Gerin V., Wieers G., Laurent C., Closset M., Dogné J.M., Favresse J. Waning of IgG, Total and Neutralizing Antibodies 6 Months PostVaccination with BNT162b2 in Healthcare Workers. Vaccines (Basel). 2021;9(10):1092. doi:10.3390/vaccines9101092

9. Feikin, D.R., Higdon, M.M., Abu-Raddad, L.J., Andrews N., Araos R., Goldberg Y., Groome M.J., Huppert A., O'Brien K.L., Smith P.G., Wilder-Smith A., Zeger S., Knoll D.M., Patel M.K. Duration of Effectiveness of Vaccines Against SARS-CoV-2 Infection and COVID-19 Disease: Results of a Systematic Review and Meta-Regression. The Lancet (preprint). 2021; 399(10328}:924-944 doi:10.2139/ssrn.3961378.

10. WHO. Interim statement on booster doses for COVID-19 vaccination 2021 Available at: https://www.who.int/news/item/22-12-2021-interim-statement-on-booster-doses-for-covid-19-vaccination---Update-22-December-2021(accessed 9.04.2022)

11. Gevorkyan T.G., Gordeev S.S., Gorshkov A. Yu., Grabelnikov K.V., Dolgushina N.V., Drapkina O.M., Kaprin A.D., Laktionov K.K., et al. Vaccination for adults against coronavirus disease 2019 (COVID-19). 2021. Moscow, Ministry of Health of Russian Federation

12. Zeng G., Wu Q., Pan H., Li M., Yang J., Wang L., Wu Z., Jiang D., Deng X., Chu K., Zheng W., Wang L., Lu W., Han B., Zhao Y., Zhu F., Yu H., Yin W. Immunogenicity and safety of a third dose of CoronaVac, and immune persistence of a two-dose schedule, in healthy adults: interim results from two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials. Lancet Infect Dis. 2022;22(4):483-495. doi: 10.1016/S1473-3099(21)00681-2.

13. Barda N., Dagan N., Cohen C., Hernán M.A., Lipsitch M., Kohane I.S., Reis B.Y., Balicer R.D. Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study. Lancet. 2021 Dec 4;398(10316):2093-2100. doi: 10.1016/S0140-6736(21)02249-2.

14. Saciuk Y., Kertes J., Shamir Stein N., Ekka Zohar A. Effectiveness of a third dose of BNT162b2 mRNA vaccine. The Journal of Infectious Diseases. 2022;225(1):30-33. doi:10.1093/infdis/jiab556

15. Accorsi E.K., Britton A., Fleming-Dutra K.E., Smith Z.R., Shang N., Derado G., Miller J., Schrag S.J., Verani J.R. Association Between 3 Doses of mRNA COVID-19 Vaccine and Symptomatic Infection Caused by the SARS-CoV-2 Omicron and Delta Variants. JAMA. 2022;327(7):639-651. doi: 10.1001/jama.2022.0470.

16. Benotmane I., Gautier G., Perrin P., Olagne J., Cognard N., Fafi-Kremer S., Caillard S. Antibody Response After a Third Dose of the mRNA-1273 SARS-CoV-2 Vaccine in Kidney Transplant Recipients With Minimal Serologic Response to 2 Doses. JAMA. 2021;326(11):1063–5. doi: 10.1001/jama.2021.12339.

17. Skowronski D.M., Setayeshgar S., Febriani Y., Ouakki M., Zou M., Talbot D., Prystajecky N., Tyson J.R., Gilca R., Brousseau N., Deceuninck G., Galanis E., Fjell C.D., Sbihi H., Fortin E., Barkati S., Sauvageau C., Naus M., Patrick D.M., Henry B., Hoang L.M.N., De Wals P., Garenc C., Carignan A., Drolet M., Jassem A.N., Sadarangani M., Brisson M., Krajden M., De Serres G. Two-dose SARS-CoV-2 vaccine effectiveness with mixed schedules and extended dosing intervals: test-negative design studies from British Columbia and Quebec, Canada. Clin Infect Dis. 2022:ciac290. doi: 10.1093/cid/ciac290.

18. *. Jara A., Undurraga E.A. , Zubizarreta J.R., Gonzalez C., Pizarro A., Acevedo J., Leo K., Paredes F., Bralic T., Vergara V., Mosso M., Leon F., Parot I., Leighton P., Suarez P., Rios J. C., García-Escorza H., Araos R. Effectiveness of Homologous and Heterologous Booster Shots for an Inactivated SARSCoV-2 Vaccine: A Large-Scale Observational Study. Available at SSRN: https://ssrn.com/abstract=4005130 or http://dx.doi.org/10.2139/ssrn.4005130

19. *. Angkasekwinai N., Niyomnaitham S., Sewatanon J., Phumiamorn S., Sukapirom K., Senawong S., Mahasirimongkol S., Toh Z.Q., Umrod P., Somporn. T., Chumpol S., Ritthitham K., Chokephaibulkit K. The immunogenicity and safety of different COVID-19 booster vaccination following CoronaVac or ChAdOx1 nCoV-19 primary series. (preprint) medRxiv. doi: 10.1101/2021.11.29.21266947

20. Normark J., Vikström L., Gwon Y.-D., Persson I.L., Edin A., Björsell T., Dernstedt A., Christ W., Tevell S., Evander M., Klingström J., Ahlm C., Forsell M. Heterologous ChAdOx1 nCoV-19 and mRNA-1273 Vaccination. N Eng J Med. 2021; 385(11):1049-1051. doi: 10.1056/NEJMc2110716.

21. *. Sablerolles R.S.G., Rietdijk W.J.R., Goorhuis A., Postma D.F., Visser L.G., Geers D., . Schmitz K.S, Garcia Garrido H.M., Koopmans M.P.G., Dalm V.A.S.H., Kootstra N.A., Huckriede A.L.W., Lafeber M., van Baarle D., GeurtsvanKessel C.H., de Vries R.D., van der Kuy P.H.M. on behalf of the SWITCH research group. Immunogenicity and reactogenicity of booster vaccinations after Ad26.COV2.S priming. medRxiv. doi: 10.1101/2021.10.18.21264979

22. *. Li J., Hou L., Guo X, Jin P., Wu S., Zhu J., Pan H., Wang X., Song Z., Wan J., Cui L., Li J., Wang X., Jin L., Liu J., Shi F., Xu X., Chen Y., Zhu T., Chen W., Zhu F. Heterologous prime-boost immunization with CoronaVac and Convidecia. medRxiv. doi: 10.1101/2021.09.03.21263062

23. Atmar R.L., Lyke K.E., Deming M.E., Jackson L.A., Branche A.R., El Sahly H.M., Rostad C.A., Martin J.M., Johnston C., Rupp R.E., Mulligan M.J., Brady R.C., et al., for the DMID 21-0012 Study Group. Homologous and Heterologous Covid-19 Booster Vaccinations. N Engl J Med 2022; 386:1046-1057 doi: 10.1056/NEJMoa2116414

24. *. Buchan S.A., Seo C.Y., Johnson C., Alley S., Kwong J.C., Nasreen S., Calzavara A., Lu D., Harris T.M., Yu K., Wilson S.E. Epidemiology of myocarditis and pericarditis following mRNA vaccines in Ontario, Canada: by vaccine product, schedule and interval. medRxiv. doi:10.1101/2021.12.02.21267156

25. Drapkina OM, Berns SA, Gorshkov AYu, Yavelov IS, Shishkova VN, Ryzhakova LN, Ivanova AA, Veretennikova AV, Karateev RA, Arablinskiy NA. Thrombodynamics parameters in individuals vaccinated against SARS-CoV-2. Profilakticheskaya Meditsina. 2021;24(12):24-30. (In Russian)


Review

For citations:


Drapkina O.M., Berns S.A., Gorshkov A.Yu., Ivanova A.A., Ryzhakova L.N., Bashnyak V.S. Booster vaccination against SARS-CoV-2: current challenges and solutions. Complex Issues of Cardiovascular Diseases. 2022;11(2):196-203. (In Russ.) https://doi.org/10.17802/2306-1278-2022-11-2-196-203

Views: 398


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)