THE EFFECT OF VARIOUS COMPOSITE COATINGS OF TITANIUM MATRIX ON OSTEOGENIC DIFFERENTIATION OF INTERSTITIAL CELLS OF THE HUMAN AORTIC VALVE
https://doi.org/10.17802/2306-1278-2024-13-3-73-82
Abstract
Highlights
The study involves experiments with titanium substrates with various composite coatings. The aim of the study was to assess different methods of diagnostics of artificial implant materials and evaluate the effect of coatings on osteogenic differentiation in interstitial cells of the human aortic valve.
Background. Currently, the only medical treatment for aortic stenosis is aortic valve replacement. At the same time, calcific aortic stenosis is the third most prevalent cardiovascular disease that affects up to 10% of the population by the age of 80. In this regard, it is important to develop materials for aortic valve prostheses that would be highly biocompatible, chemically stable, non-thrombogenic, non-immunogenic and non-osteogenic.
Aim. To assess the impact of composite coatings of titanium bases on osteogenic differentiation of valve`s interstitial cells and to analyze the methods of express diagnostics of artificial implant materials.
Methods. The study examined titanium samples with three different coatings. The interstitial cells of the aortic valve were cultured on the studied materials. Using the PCR-RT method, the level of changes in the expression of osteogenic markers RUNX2, COL1a1, ALP under the influence of osteogenic stimuli was analyzed. To determine the level of calcification in cells, we stained the samples with alizarin red and conducted spectrophotometric analysis. Several RNA isolation methods were evaluated.
Results. The most optimal RNA isolation method involves the use of a poly(A) tails. Moreover, we developed a protocol for the absorption of calcium from composite materials. We noted multidirectional changes in the expression of RUNX2, ALP, and COL1A1 genes in cells cultured on coated titanium samples compared to controls. The intensity of expression differed depending on the type of coatings; these data correlated with the intensity of staining with alizarin. Thus, different types of coatings affect the processes of osteogenic differentiation in cells in different ways.
Conclusion. The duration of express diagnostics was 21 days and included the study of gene expression of osteodifferentiation markers at a time point of 96 hours and staining with alizarin red on day 21 from the start of osteodifferentiation. It has been established that polymer coatings affect osteogenic differentiation, however, all the studied coatings cannot be recommended for valve prostheses, it is advisable to use them to enhance osteogenic processes.
About the Authors
Nadezhda V. BoyarskayaRussian Federation
Junior Researcher at the Laboratory of Diseases with Excessive Calcification, Federal State Budgetary Institution “V. A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation, St. Petersburg, Russian Federation; Junior Researcher at the Laboratory of Regenerative Biomedicine, Federal State Budgetary Institution of Science “Institute of Cytology of the Russian Academy of Sciences”, St. Petersburg, Russian Federation
Olga S. Kachanova
Russian Federation
Research Assistant at the Laboratory of Diseases with Excessive Calcification, Federal State Budgetary Institution “V. A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation, St. Petersburg, Russian Federation
Anastasia A. Shishkova
Russian Federation
Junior Researcher at the Laboratory of Diseases with Excessive Calcification, Federal State Budgetary Institution “V. A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation, St. Petersburg, Russian Federation
Vladimir E. Uspenskij
Russian Federation
PhD, Head of the Laboratory of Aortic and Aortic Valve Diseases, Federal State Budgetary Institution “V. A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation, St. Petersburg, Russian Federation
Alexey A. Filippov
Russian Federation
Junior Researcher at the Laboratory of Diseases with Excessive Calcification, Federal State Budgetary Institution “V. A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation, St. Petersburg, Russian Federation
Dmitry S. Tolpygin
Russian Federation
Senior Researcher at the Laboratory of Diseases with Excessive Calcification, Federal State Budgetary Institution “V. A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation, St. Petersburg, Russian Federation
Arseniy A. Lobov
Russian Federation
Researcher at the Laboratory of Regenerative Biomedicine, Federal State Budgetary Institution of Science “Institute of Cytology of the Russian Academy of Sciences”, St. Petersburg, Russian Federation; Junior Researcher at the Center for the Development of Molecular and Cellular Technologies, Federal State Budgetary Educational Institution of Higher Education “St. Petersburg State University”, St. Petersburg, Russian Federation
Anna B. Malashicheva
Russian Federation
PhD, Head of the Laboratory of Molecular Cardiology, Institute of Molecular Biology and Genetics, Federal State Budgetary Institution “V. A. Almazov National Medical Research Center” of the Ministry of Health of the Russian Federation, St. Petersburg, Russian Federation; Senior Researcher, Head of the Laboratory of Regenerative Biomedicine, Federal State Budgetary Institution of Science “Institute of Cytology of the Russian Academy of Sciences”, St. Petersburg, Russian Federation; Associate Professor at the Department of Embryology, Federal State Budgetary Educational Institution of Higher Education “St. Petersburg State University”, St. Petersburg, Russian Federation
References
1. Natorska, J., Kopytek M., Undas A. Review. Aortic valvular stenosis: Novel therapeutic strategies. Eur J Clin Invest. 2021;51(7):e13527. doi: 10.1111/eci.13527.
2. Kraler, S., Blaser, M. S., Aikawa, E., Camici, G.G., Lüscher, T. F. Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy. Eur Heart J. 2022;43(7):683-697. doi:10.1093/eurheartj/ehab757
3. Moncla, L.-H. M., Briend, M., Bossé, Y., Mathieu, P. Calcific aortic valve disease: mechanisms, prevention and treatment. Nat Rev Cardiol. 2023; 20(8):546-559. doi:10.1038/s41569-023-00845-7
4. Nishimura, R. A., Otto, C. M., Bonow, R. O., Carabello, B. A., Erwin, J. P., Fleisher, L. A., Jneid, H., Mack, M. J., McLeod, C. J., O'Gara, P. T., Rigolin, V. H., Sundt, T. M., Thompson A. AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;70(2): 252-289. doi: 10.1016/j.jacc.2017.03.011.
5. Zigelman, C. Z., Edelstein, P. M. Aortic valve stenosis. Anesthesiol Clin. 2009;27(3): 519-32. doi:10.1016/j.anclin.2009.07.012
6. Rabkin-Aikawa, E., Aikawa, M., Farber, M., Kratz, J. R., Garcia-Cardena, G., Kouchoukos, N. T., Mitchell, M. B., Jonas, R. A., Schoen F. J. Clinical pulmonary autograft valves: Pathologic evidence of adaptive remodeling in the aortic site. Surgery for Acquired Cardiovascular Disease.2004;128(4):552-61. doi:10.1016/j.jtcvs.2004.04.016
7. Rutkovskiy, A., Malashicheva, A., Sullivan, G., Bogdanova, M., Kostareva, A., Stensløkken, K.-O., Fiane, A., Vaage, J. Valve Interstitial Cells: The Key to Understanding the Pathophysiology of Heart Valve Calcification. J Am Heart Assoc.2017;6(9):e006339. doi:10.1161/JAHA.117.006339
8. Cheng, S.-L., Shao, J.-S., Behrmann, A., Krchma, K., Towler, D. A. Dkk1 and MSX2-Wnt7b signaling reciprocally regulate the endothelial-mesenchymal transition in aortic endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33(7): 1679–89. doi:10.1161/ATVBAHA.113.300647
9. Hjortnaes, J., Shapero, K., Goettsch, C., Hutcheson, J. D., Keegan, J., Kluin, J., Aikawa, E. Valvular interstitial cells suppress calcification of valvular endothelial cells. Atherosclerosis.2015;242(1):251–260. doi:10.1016/j.atherosclerosis.2015.07.008
10. Summerhill, V. I., Moschetta, D., Orekhov, A. N., Poggio, P., Myasoedova, V. A. Sex-Specific Features of Calcific Aortic Valve Disease. Int J Mol Sci. 2020; 21(16):5620. doi:10.3390/ijms21165620
11. Yao, M., Wang, X., Wang, X., Zhang, T., Chi, Y., Gao, F. The Notch pathway mediates the angiotensin II-induced synthesis of extracellular matrix components in podocytes. Int J Mol Med. 2015;36(1): 294-300. doi:10.3892/ijmm.2015.2193
12. Akat, K., Borggrefe, M., Kaden, J. J. Aortic valve calcification: basic science to clinical practice. Heart.2009; 95 (8): 616-23. doi:10.1136/hrt.2007.134783
13. Goody, P.R., Hosen, M.R., Christmann, D., Niepmann, S.T., Zietzer, A, Adam, M., Bönner, F., Zimmer, S., Nickenig, G., Jansen, F. Aortic Valve Stenosis: From Basic Mechanisms to Novel Therapeutic Targets. Arterioscler Thromb Vasc Biol.2020; 40(4):885-900. doi:10.1161/ATVBAHA.119.313067
14. Helske, S., Kupari, M., Lindstedt, K. A., Kovanen, P. T. Aortic valve stenosis: an active atheroinflammatory process. Curr Opin Lipidol. 2007;18 (5): 483-91. doi:10.1097/MOL.0b013e3282a66099
15. Mohler, E. R. Mechanisms of aortic valve calcification. The American Journal of Cardiology. 2004; 94(11): 1396–1402. doi:10.1016/j.amjcard.2004.08.013
16. de Oliveira Sá, M. P.B., Cavalcanti, L. R. P., Perazzo, A. M., Gomes, R. A. F., Clavel, M.-A., Pibarot, P., Biondi-Zoccai, G., Zhigalov, K., Weymann, A., Ruhparwar, A., Lima, R.C. Calcific Aortic Valve Stenosis and Atherosclerotic Calcification. Curr Atheroscler Rep.2020;7;22(2):2. doi: 10.1007/s11883-020-0821-7
17. Bogdanova, M., Zabirnyk, A., Malashicheva, A., Semenova, D., Kvitting, J.-P. E., Kaljusto, M.-L., Del Mar Perez, M., Kostareva, A., Stensløkken, K.-O., Sullivan, G. J., Rutkovskiy, A., Vaage. J. Models and Techniques to Study Aortic Valve Calcification in Vitro, ex Vivo and in Vivo. An Overview. Front Pharmacol. 2022;13:835825. doi:10.3389/fphar.2022.835825
18. Jian, B., Jones, P. L., Li, Q., Mohler, E. R., Schoen, F. J., Levy, R. J. Matrix metalloproteinase-2 is associated with tenascin-C in calcific aortic stenosis. Am J Pathol.2001;159 (1): 321-7. doi:10.1016/S0002-9440(10)61698-7
19. Zhiduleva, E. V., Irtyuga, O. B., Shishkova, A. A., Ignat'eva, E. V., Kostina, A. S., Levchuk, K. A., Golovkin, A. S., Rylov, A. Yu., Kostareva, A. A., Moiseeva, O. M., Malashicheva, A. B., Gordeev, M. L. Cellular Mechanisms of Aortic Valve Calcification. Bull Exp Biol Med. 2018;164(3):371-375. doi: 10.1007 /s10517-018-3992-2
20. Benton, J. A., Kern, H. B., Anseth, K. S. Substrate properties influence calcification in valvular interstitial cell culture. J Heart Valve Dis. 2008;17(6): 689-99.
21. Ghanbari, H., Viatge, H., Kidane, A. G., Burriesci, G., Tavakoli, M., Seifalian, A. M. Polymeric heart valves: new materials, emerging hopes. Trends Biotechnol. 2009;27(6):359-367. doi: 10.1016/j.tibtech.2009.03.002
22. Rajput F. A., Zeltser R. Review. Aortic Valve Replacement. StatPearls Publishing. 2020. Available at: https://www.ncbi.nlm.nih.gov/books/NBK537136/ (accessed 23.06.2024)
23. Ueshima, D., Fovino, L.N., Brener, S.J., Fabris, T., Scotti, A., Barioli, A., Giacoppo, D., Pavei, A., Fraccaro, C., Napodano, M., Tarantini, G. Transcatheter aortic valve replacement for bicuspid aortic valve stenosis with first- and new-generation bioprostheses: A systematic review and meta-analysis. Int J Cardiol. 2020;298:76-82. doi:10.1016/j.ijcard.2019.09.003
24. Fadeev A.A. Structural forms and functional properties of heart valve prosthesis. Russian Annals of Surgery. 2013;3: 9-18. (In Russian)
25. Jiang, T., Hasan, S.M., Faluk, M., Patel, J. Evolution of Transcatheter Aortic Valve Replacement | Review of Literature. Curr Probl Cardiol. 2021;46(3):100600. doi:10.1016/j.cpcardiol.2020.100600
26. Joseph, J., Naqvi, S.Y., Giri, J., Goldberg, S. Review Aortic Stenosis: Pathophysiology, Diagnosis, and Therapy. The American Journal of Medicine. 2017;130 (3): 253-263. doi:10.1016/j.amjmed.2016.10.005
27. Tully A., Chowdhury Y.S. Bioprosthetic Stented Pericardial Porcine Aortic Valve Replacement. StatPearls Publishing. 2021. Available at: https://www.ncbi.nlm.nih.gov/books/NBK563200/ (accessed 23.06.2024)
28. Bogdanova, M., Zabirnyk, A., Malashicheva, A., Zihlavnikova Enayati K., Karlsen T.A., Kaljusto M-L., Kvitting J-P. E., Dissen E., Sullivan G. J., Kostareva A., Stensløkken K-O., Rutkovskiy A., Vaage J., Interstitial cells in calcified aortic valves have reduced differentiation potential and stem cell-like properties. Scientific Reports. 2019; 9(1):12934. doi:10.1038/s41598-019-49016-0
Supplementary files
Review
For citations:
Boyarskaya N.V., Kachanova O.S., Shishkova A.A., Uspenskij V.E., Filippov A.A., Tolpygin D.S., Lobov A.A., Malashicheva A.B. THE EFFECT OF VARIOUS COMPOSITE COATINGS OF TITANIUM MATRIX ON OSTEOGENIC DIFFERENTIATION OF INTERSTITIAL CELLS OF THE HUMAN AORTIC VALVE. Complex Issues of Cardiovascular Diseases. 2024;13(3):73-82. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-3-73-82