Preview

Complex Issues of Cardiovascular Diseases

Advanced search

Prognostic value of matrix metalloproteinases in patients with anthracycline-induced heart failure

https://doi.org/10.17802/2306-1278-2022-11-3-72-83

Abstract

Highlights. Elevated levels of matrix metalloproteinases 2 and 9 are associated with the initiation and severity of CHF developed after breast cancer therapy with anthracyclines, which may contribute to cardiac remodeling and the progression of systolic dysfunction. Concentrations of matrix metalloproteinases-2 and -9 in blood serum serve as predictors of the unfavorable course of anthracycline-induced heart failure.

Aim. To assess the role of matrix metalloproteinases-2 (MMP-2) and 9 (MMP-9) in the development and course of anthracycline-induced chronic heart failure (CHF) during 24 months of observation.

Methods. The study included 114 women 12 months after completion of chemotherapy (CT) for breast cancer and developed CHF. The control group (n = 70) consisted of women (mean age 45.0 [42.0; 50.0] years old) who received doxorubicin as part of chemotherapy, but they did not develop CHF 12 months after completion of chemotherapy. The levels of biomarkers (MMP-2, MMP-9, NT-proBNP) in blood serum were determined using a sandwich immunoassay.

Results. Patients with CHF had signs of cardiac remodeling and higher values of NT-proBNP, MMP-2 and MMP-9 (p<0.001) than women from the control group. After 24 months of observation, all patients with CHF were divided into 2 groups: group 1 – women with an unfavorable course of CHF (n = 54), group 2 – women with favorable course of pathology (n = 60). Criteria for the unfavorable course of CHF: the emergence of new or worsening of existing symptoms/signs of heart failure; and/or hospitalization due to HF decompensation; decrease in left ventricular ejection fraction by more than 10%; or an increase in the functional class of CHF by 1 or more. Baseline echocardiographic parameters and NT-proBNP values did not differ in groups 1 and 2. Levels of MMP-2 were higher by 8% (p = 0.017) and MMP-9 by 18.4% (p<0.001) in group 1. In 1 group the level of MMP-2 decreased after 24 months of observation. In group 2 the level of MMP-2 increased by the end of the observation period. MMP-2 levels ≥388.2 pg/ml (sensitivity 46%, specificity 80%; AUC = 0.64; p = 0.013) and MMP-9 ≥21.3 pg/ml (sensitivity 86%, specificity 84.4%; AUC = 0.9; p<0.001) were determined as predictors of an unfavorable course of CHF.

Conclusion. Remodeling of the extracellular matrix may play an important role in the pathogenesis of CHF initiated by drugs of the anthracycline class. Elevated levels of MMP-2 and MMP-9 in the blood serum are associated with an unfavorable course of anthracycline-induced CHF and can be recommended when assessing the risk of an unfavorable course of pathology.

About the Authors

A. T. Teplyakov
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences (Tomsk NRMC)
Russian Federation

Alexander T. Teplyakov - PhD, Professor, Chief Researcher of the Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences (Tomsk NRMC).

111a, Kievskaya St., Tomsk, 634012.


Competing Interests:

А.Т. Тепляков входит в редакционную коллегию журнала «Комплексные проблемы сердечно-сосудистых заболеваний».



S. N. Shilov
Novosibirsk State Medical University
Russian Federation

Sergey N. Shilov - PhD, Professor at the Department of Pathological Physiology and Clinical Pathophysiology, Novosibirsk State Medical University, the Ministry of Health of the Russian Federation.

52, Krasny Ave., Novosibirsk, 630091.


Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



E. V. Grakova
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences (Tomsk NRMC)
Russian Federation

Elena V. Grakova - PhD, leading researcher at the Department of Myocardial Pathology, the Research Institute of Cardiology, Tomsk National Research Medical Center of the Russian Academy of Sciences (Tomsk NRMC).

111a, Kievskaya St., Tomsk, 634012.


Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



K. V. Kopeva
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences (Tomsk NRMC)
Russian Federation

Kristina V. Kopeva - PhD, Researcher at the Department of Myocardial Pathology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences (Tomsk NRMC).

111a, Kievskaya St., Tomsk, 634012.


Competing Interests:

Автор заявляет   об   отсутствии   конфликта   интересов.



E. T. Bobyleva
Novosibirsk State Medical University
Russian Federation

Elena T. Ratushnyak - a lecturer assistant at the Department of Pathological Physiology and Clinical Pathophysiology, Novosibirsk State Medical University, the Ministry of Health of the Russian Federation.

52, Krasny Ave., Novosibirsk, 630091.


Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



E. N. Berezikova
Novosibirsk State Medical University
Russian Federation

Ekaterina N. Beresikova - PhD,  Associate  Professor  at the Department of Polyclinic Therapy and General Medical Practice, Novosibirsk  State  Medical  University, the Ministry of Health of the Russian Federation.

52, Krasny Ave., Novosibirsk, 630091.


Competing Interests:

Е.Н. Березикова заявляет об отсутствии конфликта интересов.



A. A. Popova
Novosibirsk State Medical University
Russian Federation

Anna A. Popova - PhD, Head of the Department of Polyclinic  Therapy  and  General  Medical  Practice, Novosibirsk State Medical University, the Ministry of Health of the Russian Federation.

52, Krasny Ave., Novosibirsk, 630091.


Competing Interests:

А.А. Попова заявляет об отсутствии конфликта интересов.



E. N. Samsonova
Novosibirsk State Medical University
Russian Federation

Elena N. Samsonova - PhD, Professor at the Department of Pathological Physiology and Clinical Pathophysiology, Novosibirsk State Medical University, the Ministry of Health of the Russian Federation.

52, Krasny Ave., Novosibirsk, 630091.


Competing Interests:

Е.Н. Самсонова заявляет об отсутствии конфликта интересов.



References

1. Saleh Y., Abdelkarim O., Herzallah K., Abela G.S. Anthracycline-induced cardiotoxicity: mechanisms of action, incidence, risk factors, prevention, and treatment. Heart Fail Rev. 2021;26(5):1159-1173. doi: 10.1007/s10741-020-09968-2

2. Mahmood S.S., Fradley M.G., Cohen J.V., Nohria A., Reynolds K.L., Heinzerling L.M., Sullivan R.J., Damrongwatanasuk R., Chen C.L., Gupta D., Kirchberger M.C., Awadalla M., Hassan M.Z.O., Moslehi J.J., Shah S.P., Ganatra S., Thavendiranathan P., Lawrence D.P., Groarke J.D., Neilan T.G. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71(16):1755–1764. doi: 10.1016/j.jacc.2018.02.037

3. Meijers W.C., de Boer R.A. Common risk factors for heart failure and cancer. Cardiovasc Res. 2019;115(5):844–853. doi: 10.1093/cvr/cvz035

4. Biasillo G., Cipolla C.M., Cardinale D. Cardio-oncology: gaps in knowledge, goals, advances, and educational efforts. Curr Oncol Rep. 2017;19(8):55. doi: 10.1007/s11912-017-0610-9

5. Cardinale D., Colombo A., Bacchiani G., Tedeschi I., Meroni C.A., Veglia F., Civelli M., Lamantia G., Colombo N., Curigliano G., Fiorentini C., Cipolla C.M. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–1988. doi: 10.1161/CIRCULATIONAHA.114.013777

6. Curigliano G., Cardinale D., Suter T., Plataniotis G., de Azambuja E., Sandri M.T., Criscitiello C., Goldhirsch A., Cipolla C., Roila F. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol. 2012;23(7):i155–66. doi: 10.1093/annonc/mds293

7. Plana J.C., Galderisi M., Barac A., Ewer M.S., Ky B., Scherrer-Crosbie M., Ganame J., Sebag I.A., Agler D.A., Badano L.P., Banchs J., Cardinale D., Carver J., Cerqueira M., DeCara J.M., Edvardsen T., Flamm S.D., Force T., Griffin B.P., Jerusalem G., Liu J.E., Magalhães A., Marwick T., Sanchez L.Y., Sicari R., Villarraga H.R., Lancellotti P. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15(10):1063-93. doi: 10.1093/ehjci/jeu192

8. Murkamilov I.T., Aitbaev K.A., Fomin V.V., Kudaibergenova I.O., Yusupov F.A., Murkamilova Z.A. Cardiovascular complications in patients with cancer: focus on anthracycline-induced cardiotoxicity. Cardiovascular Therapy and Prevention. 2021;20(2):2583. (In Russian). doi:10.15829/1728-8800-2021-2583

9. Vasyuk Yu.A., Gendlin G.E., Emelina E.I., Shupenina E.Yu., Ballyuzek M.F., Barinova I.V., Vitsenya M.V., Davydkin I.L., Dundua D.P., Duplyakov D.V., Zateishchikov D.A., Zolotovskaya I.A., Konradi A.O., Lopatin Yu.M., Moiseeva O.M., Nedogoda S.V., Nedoshivin A.O., Nikitin I.G., Poltavskaya M.G., Potievskaya V.I., Repin A.N., Sumin А.N., Zotova L.A., Tumyan G.S., Shlyakhto E.V., Khatkov I.E., Yakushin S.S., Belenkov Yu.N. Сonsensus statement of Russian experts on the prevention, diagnosis and treatment of cardiotoxicity of anticancer therapy. Russian Journal of Cardiology. 2021;26(9):4703. (In Russian). doi:10.15829/1560-4071-2021-4703

10. Bhakta N., Liu Q., Ness K.K., Baassiri M., Eissa H., Yeo F., Chemaitilly W., Ehrhardt M.J., Bass J., Bishop M.W., Shelton K., Lu L., Huang S., Li Z., Caron E., Lanctot J., Howell C., Folse T., Joshi V., Green D.M., Mulrooney D.A., Armstrong G.T., Krull K.R., Brinkman T.M., Khan R.B., Srivastava D.K., Hudson M.M., Yasui Y., Robison L.L. The cumulative burden of surviving childhood cancer: An initial report from the St Jude lifetime cohort study (SJLIFE). Lancet. 2017;390(10112):2569–2582. doi: 10.1016/S0140-6736(17)31610-0

11. Chan B.Y.H., Roczkowsky A., Cho W.J., Poirier M., Sergi C., Keschrumrus V., Churko J.M., Granzier H., Schulz R. MMP inhibitors attenuate doxorubicin cardiotoxicity by preventing intracellular and extracellular matrix remodelling. Cardiovasc Res. 2021;117(1):188-200. doi: 10.1093/cvr/cvaa017

12. van der Pal H.J., van Dalen E.C., Hauptmann M., Kok W.E., Caron H.N., van den Bos C., Oldenburger F., Koning C.C., van Leeuwen F.E., Kremer L.C. Cardiac function in 5-year survivors of childhood cancer: a long-term follow-up study. Arch Intern Med. 2010;170(14):1247-55. doi: 10.1001/archinternmed.2010.233

13. Aminkeng F., Ross C.J., Rassekh S.R., Hwang S., Rieder M.J., Bhavsar A.P., Smith A., Sanatani S., Gelmon K.A., Bernstein D., Hayden M.R., Amstutz U., Carleton B.C. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br J Clin Pharmacol. 2016;82(3):683–695. doi: 10.1111/bcp.13008

14. Lipshultz S.E., Alvarez J.A., Scully R.E. Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart. 2008;94(4):525–533. doi: 10.1136/hrt.2007.136093

15. E.V. Grakova, S.N. Shilov, K.V. Kopeva, E.N. Berezikova, A.A. Popova, M.N. Neupokoeva, Elena T. Ratushnyak, Alexander T. Teplyakov. Anthracycline-Induced Cardiotoxicity:TheRoleofEndothelialDysfunction.Cardiology (S. Karger AG). 2021;146:315–323. doi: 10.1159/000512771

16. Cabral-Pacheco G.A., Garza-Veloz I., Castruita-De la Rosa C., Ramirez-Acuña J.M., Perez-Romero B.A., Guerrero-Rodriguez J.F., Martinez-Avila N., Martinez-Fierro M.L. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci. 2020;21(24):9739. doi: 10.3390/ijms21249739

17. Wang X., Khalil R.A. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Adv Pharmacol. 2018;81:241-330. doi: 10.1016/bs.apha.2017.08.002

18. Octavia Y., Tocchetti C.G., Gabrielson K.L., Janssens S., Crijns H.J., Moens A.L. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol. 2012;52(6):1213-1225. doi: 10.1016/j.yjmcc.2012.03.006

19. Bassiouni W., Ali M., Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease. FEBS J. 2021;288(24):7162-7182. doi: 10.1111/febs.15701

20. Chen L.C., Shibu M.A., Liu C.J., Han C.K., Ju D.T, Chen P.Y, Viswanadha V.P., Lai C.H., Kuo W.W., Huang C.Y. ERK1/2 mediates the lipopolysaccharide-induced upregulation of FGF-2, uPA, MMP-2, MMP-9 and cellular migration in cardiac fibroblasts. Chem Biol Interact. 2019;306:62-69. doi: 10.1016/j.cbi.2019.04.010

21. Spallarossa P., Altieri P., Garibaldi S., Ghigliotti G., Barisione C., Manca V., Fabbi P., Ballestrero A., Brunelli C., Barsotti A. Matrix metalloproteinase-2 and -9 are induced differently by doxorubicin in H9c2 cells: The role of MAP kinases and NAD(P)H oxidase. Cardiovascular Research. 2006;69(3):736–745. doi: 10.1016/j.cardiores.2005.08.009

22. Alfonso-Jaume M.A., Bergman M.R., Mahimkar R., Cheng S., Jin Z.Q., Karliner J.S., Lovett D.H. Cardiac ischemia-reperfusion injury induces matrix metalloproteinase-2 expression through the AP-1 components FosB and JunB. Am J Physiol Heart Circ Physiol. 2006;291(4):H1838-46. doi: 10.1152/ajpheart.00026.2006

23. Chan B.Y.H., Roczkowsky A., Moser N., Poirier M., Hughes B.G., Ilarraza R., Schulz R. Doxorubicin induces de novo expression of N-terminal-truncated matrix metalloproteinase-2 in cardiac myocytes. Can J Physiol Pharmacol. 2018;96(12):1238-1245. doi: 10.1139/cjpp-2018-0275

24. Adamcová M., Potáčová A., Popelová O., Štěrba M., Mazurová Y., Aupperle H., Geršl V. Cardiac remodeling and MMPs on the model of chronic daunorubicin-induced cardiomyopathy in rabbits. Physiol Res. 2010;59(5):831-836. doi: 10.33549/physiolres.931797

25. Toro-Salazar O.H., Lee J.H., Zellars K.N., Perreault P.E., Mason K.C., Wang Z., Hor K.N., Gillan E., Zeiss C.J., Gatti D.M., Davey B.T., Kutty S., Liang B.T., Spinale F.G. Use of integrated imaging and serum biomarker profiles to identify subclinical dysfunction in pediatric cancer patients treated with anthracyclines. Cardiooncology. 2018;4:4. doi: 10.1186/s40959-018-0030-5

26. Vuong J.T., Stein-Merlob A.F, Cheng R.K., Yang E.H. Novel Therapeutics for Anthracycline Induced Cardiotoxicity. Front Cardiovasc Med. 2022;9:863314. doi: 10.3389/fcvm.2022.863314

27. Ayuna A., Abidin N. The role of neurohormonal blockers in the primary prevention of acute, early-, and late-onset anthracycline-induced cardiotoxicity. Egypt Heart J. 2020;72(1):59. doi: 10.1186/s43044-020-00090-0

28. Cabral-Pacheco G.A., Garza-Veloz I., Castruita-De la Rosa C., Ramirez-Acuña J.M., Perez-Romero B.A., Guerrero-Rodriguez J.F., Martinez-Avila N., Martinez-Fierro M.L. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci. 2020;21(24):9739. doi: 10.3390/ijms21249739


Review

For citations:


Teplyakov A.T., Shilov S.N., Grakova E.V., Kopeva K.V., Bobyleva E.T., Berezikova E.N., Popova A.A., Samsonova E.N. Prognostic value of matrix metalloproteinases in patients with anthracycline-induced heart failure. Complex Issues of Cardiovascular Diseases. 2022;11(3):72-83. (In Russ.) https://doi.org/10.17802/2306-1278-2022-11-3-72-83

Views: 427


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)