Blood monocytes in maintaining the balance of vascular endothelial injury and repair process in ischemic cardiomyopathy
https://doi.org/10.17802/2306-1278-2022-11-3-84-96
Abstract
Highlights. The features of subsets of monocytes in combination with the levels of desquamated endotheliocytes, endothelial damage and regeneration mediators and progenitor cell migration-enhancing factors in patients with coronary heart disease and with/without ischemic cardiomyopathy were analyzed. For the first time it was shown that in patients with ischemic cardiomyopathy, compared with CHD patients without cardiomyopathy, higher desquamation of the endothelium is associated with a deficiency of non-classical monocytes and reduced migration of progenitor endothelial cells (VEGFR2+-monocytes) with regenerative potential across the bone marrow due to a deficiency of the HIF-1α mediator in the blood.
Background. The development of ischemic cardiomyopathy (ICM) is an understudied process, and one of its elements may be insufficient regeneration of blood vessels due to an imbalance of subsets of monocytes in the blood.
Aim. To assess subsets of monocytes and desquamated endothelial cells in combination with endothelial damage and regeneration mediators in the blood of patients with coronary heart disease (CHD) and with/without ICM.
Methods. The study included 30 patients with ICM, 22 patients with coronary heart disease without cardiomyopathy aged 55–69 years, and 18 healthy donors. In whole blood, the populations of CD45–CD146+ desquamated endothelial cells and progenitor endothelial cells related to CD14+VEGFR2+ monocytes, intermediate CD14++CD16+ and non-classical CD14+CD16++ monocytes were assessed by flow cytometry using the appropriate monoclonal antibodies (BD Biosciens, USA). In blood plasma, the levels of hypoxia-inducible factor HIF-1α, monocyte chemoattractant protein MCP-1 and matrix metalloproteinase MMP-9 were assessed by enzyme immunoassay. The results of the analysis were considered significant at p<0.05.
Results. The number of progenitor and desquamated endothelial cells was increased in both groups of patients with coronary artery disease. At the same time, in patients with ICM, the number of progenitor endothelial cells did not reach the number noted in patients with CHD without cardiomyopathy, while the number of desquamated endothelial cells reached the number noted in CHD patients without cardiomyopathy. There was a deficiency of non-classical monocytes and HIF-1α in the blood of patients with ICM, and an excess of intermediate monocytes and MCP-1 was observed in CHD patients without cardiomyopathy. The concentration of MMP-9 in patients with CHD corresponded to the norm, regardless of the presence of ICM.
Conclusion. In ICM, in contrast to CHD without cardiomyopathy, vascular damage is associated with a deficiency of nonclassical monocytes and reduced endothelial repair due to insufficient migration of progenitor endothelial cells across the bone marrow due to HIF-1α deficiency in the blood.
About the Authors
S. P. ChumakovaRussian Federation
Svetlana P. Chumakova - PhD, Professor at the Pathophysiology Department, Siberian State Medical University of the Ministry of Health of the Russian Federation.
2, Moscow tract St., Tomsk, 634050.
Competing Interests:
С.П. Чумакова входит в редакционную коллегию журнала «Комплексные проблемы сердечно-сосудистых заболеваний»
O. I. Urazova
Russian Federation
Olga I. Urazova - PhD, Professor, Corresponding Member of Russian Academy of Sciences, Head of the Pathophysiology Department, Siberian State Medical University of the Ministry of Health of the Russian Federation; Professor at the Department of Complex Information Security of Computer Systems, Tomsk State University of Control Systems and Radioelectronics.
2, Moscow tract St., Tomsk, 634050; 40, Lenina Ave., Tomsk, 634050.
Competing Interests:
Автор заявляет об отсутствии конфликта интересов.
O. A. Denisenko
Russian Federation
Olga A. Denisenko - Diagnostic Laboratory Specialist at the Tomsk Regional Blood Center.
45, Vershinin St., Tomsk, 634045.
Competing Interests:
Автор заявляет об отсутствии конфликта интересов.
D. A. Pogonchenkova
Russian Federation
Daria A. Pogonchenkova - Assistant Lecturer at the Pathophysiology Department, Siberian State Medical University of the Ministry of Health of the Russian Federation.
2, Moscow tract St., Tomsk, 634050.
Competing Interests:
Автор заявляет об отсутствии конфликта интересов.
V. M. Shipulin
Russian Federation
Vladimir M. Shipulin - PhD, Professor, Honored Scientist of the Russian Federation, Professor at the Department of Faculty Surgery, Siberian State Medical University of the Ministry of Health of the Russian Federation; Leading Researcher at the Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences.
2, Moscow tract St., Tomsk, 634050; 111a, Kievskaya St., Tomsk, 634012.
Competing Interests:
Автор заявляет об отсутствии конфликта интересов.
A. S. Pryakhin
Russian Federation
Andrey S. Pryakhin - Cardiovascular Surgeon at the Cardiovascular Department No. 1, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences.
111a, Kievskaya St., Tomsk, 634012.
Competing Interests:
Автор заявляет об отсутствии конфликта интересов.
K. V. Nevskaya
Russian Federation
Ksenia V. Nevskaya - PhD, Research assistant at the Central Research Laboratory, Siberian State Medical University of the Ministry of Health of the Russian Federation.
2, Moscow tract St., Tomsk, 634050.
Competing Interests:
Автор заявляет об отсутствии конфликта интересов.
M. V. Gladkovskaya
Russian Federation
Margarita V. Gladkovskay - sixth-year student at the Faculty of Medicine and Biology, Siberian State Medical University of the Ministry of Health of the Russian Federation.
2, Moscow tract St., Tomsk, 634050.
Competing Interests:
Автор заявляет об отсутствии конфликта интересов.
References
1. Adhyapak S.M., Parachuri V.R. Tailoring therapy for ischemic cardiomyopathy: is Laplace's law enough? Ther Adv Cardiovasc Dis. 2017; 11 (9): 231–234. doi:10.1177/1753944717718719.
2. Shipulin V.M., Pryakhin A.S., Andreev S.L., Shipulin V.V., Chumakova S.P., Ryabova T.R., Stelmashenko A.I., Belyaeva S.A., Lelik E.V. Modern clinical and fundamental aspects in the diagnosis and treatment of patients with ischemic cardiomyopathy (review). Siberian Journal of Clinical and Experimental Medicine. 2021; 36 (1): 20–29. doi: 10.29001/2073-8552-2021-36-1-20-29 (In Russian)
3. Dang H, Ye Y, Zhao X, Zeng Y. Identification of candidate genes in ischemic cardiomyopathy by gene expression omnibus database. BMC Cardiovasc Disord. 2020; 20 (1): 320. doi: 10.1186/s12872-020-01596-w.
4. Gyöngyösi M., Winkler J., Ramos I., Do QT., Firat H., McDonald K., González A., Thum T., Díez J., Jaisser F., Pizard A., Zannad F. Myocardial fibrosis: biomedical research from bench to bedside. Eur J Heart Fail. 2017; 19 (2): 177–191. doi: 10.1002/ejhf.696.
5. Kaski J.-C., Crea F., Gersh B. J., Camici P.G. Reappraisal of Ischemic Heart Disease. Fundamental Role of Coronary Microvascular Dysfunction in the Pathogenesis of Angina Pectoris. Circulation. 2018; 138: 1463-1480 doi: 10.1161/CIRCULATIONAHA.118.031373
6. Poston R.N. Atherosclerosis: integration of its pathogenesis as a self-perpetuating propagating inflammation: a review. Cardiovasc Endocrinol Metab. 2019; 8 (2): 51–61. doi: 10.1097/XCE.0000000000000172.
7. Melnikova Yu.S., Makarova T.P. Endothelial dysfunction as a central link in the pathogenesis of chronic diseases. Kazan Medical Journal 2015; 96 (4): 659–665. doi: 10.17750/KMJ2015-65. (In Russian)
8. Eligini S., Cosentino N., Fiorelli S., Fabbiocchi F., Niccoli G., Refaat H., Camera M., Calligaris G., De Martini S., Bonomi A., Veglia F., Fracassi F., Crea F., Marenzi G., Tremoli E. Biological profile of monocyte-derived macrophages in coronary heart disease patients: implications for plaque morphology. Sci Rep. 2019; 9 (1): 8680. doi: 10.1038/s41598-019-44847-3.
9. Xu H., Jiang J., Chen W., Li W., Chen Z. Vascular Macrophages in Atherosclerosis. J Immunol Res. 2019: 4354786. doi: 10.1155/2019/4354786.
10. Moroni F., Ammirati E., Norata G.D., Magnoni M., Camici P.G. The Role of Monocytes and Macrophages in Human Atherosclerosis, Plaque Neoangiogenesis, and Atherothrombosis. Mediators Inflamm. 2019: 7434376. doi: 10.1155/2019/7434376.
11. Dick S.A., Zaman R. Epelman S. Using High-Dimensional Approaches to Probe Monocytes and Macrophages in Cardiovascular Disease. Front Immunol. 2019; 10: 2146. doi: 10.3389/fimmu.2019.02146
12. Hamers A.A.J., Dinh H.Q., Thomas G.D., Marcovecchio P., Blatchley A., Nakao C.S., Kim C., McSkimming C., Taylor A.M., Nguyen A.T., McNamara C.A., Hedrick C.C.. Human Monocyte Heterogeneity as Revealed by High-Dimensional Mass Cytometry. Arterioscler Thromb Vasc Biol. 2019; 39 (1): 25–36. doi: 10.1161/ATVBAHA.118.311022
13. Rojas J., Salazar J., Martínez M.S., Palmar J., Bautista J., Chávez-Castillo M., Gómez A., Bermúdez V. Macrophage heterogeneity and plasticity: impact of macrophage biomarkers on atherosclerosis. Scientifica (Cairo). 2015; 2015: 851252. doi: 10.1155/2015/851252.
14. Jaipersad A.S., Lip G.Y., Silverman S, Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol. 2014; 63 (1): 1–11. doi:10.1016/j.jacc.2013.09.019
15. Li D.W., Liu Z.Q., Wei J., Liu Y., Hu L.S. Contribution of endothelial progenitor cells to neovascularization (Review). Int J Mol Med. 2012; 30 (5): 1000-1006. doi:10.3892/ijmm.2012.1108
16. Esquiva G., Grayston A., Rosell A. Revascularization and endothelial progenitor cells in stroke. Am J Physiol Cell Physiol. 2018; 315 (5): 664–674. doi: 10.1152/ajpcell.00200.2018.
17. Ozkok A., Yildiz A. Endothelial Progenitor Cells and Kidney Diseases. Kidney Blood Press Res. 2018; 43 (3): 701–718. doi: 10.1159/000489745.
18. Denisenko O.A., Chumakova S.P., Urazova O.I. Endothelial progenitor cells: origin and role in angiogenesis in cardiovascular pathology. Siberian Journal of Clinical and Experimental Medicine. 2021; 36 (2): 23–29. doi: 10.29001/2073-8552-2021-36-2-23-29. (In Russian)
19. Felker G.M., Shaw G.M., O’Connor C.M. A standardized definition of ischemic cardiomyopathy for use in clinical research. Journal of the American College of Cardiology. 2002; 39 (2): 208–210. doi: 10.1016/s0735-1097(01)01738-7.
20. Mitruţ R., Stepan A.E., Mărgăritescu C., Andreiana B.C., Kesse A.M., Simionescu C.E., Militaru C. Immunoexpression of MMP-8, MMP-9 and TIMP-2 in dilated cardiomyopathy. Rom J Morphol Embryol. 2019; 60 (1): 119–124.
21. Shahid F., Gregory Y., Lip H., Shantsila E. Role of Monocytes in Heart Failure and Atrial Fibrillation J Am Heart Assoc. 2018; 7 (3) doi: 10.1161/JAHA.117.007849.
22. Lin N., Simon M.C. Hypoxia-inducible factors: key regulators of myeloid cells during inflammation. J Clin Invest. 2016; 126 (10): 3661–3671. doi: 10.1172/JCI84426.
23. Chumakova S.P., Urazova O.I., Vins M.V., Shipulin V.M., Pryakhin A.S., Bukreeva E.B., Bulanova A.A., Koshel A.P., Novitsky V.V. The content of hypoxia-induced factors and mediators of immunosuppression in the blood in diseases associated with hypoxia. Bulletin of Siberian medicine. 2020; 19 (3): 105–112. doi: 10.20538/1682-0363-2020-3-105-112. (In Russian)
24. Lafuse W.P., Wozniak D.J., Rajaram M.V.S. Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair. Cells. 2020; 10 (1): 51. doi: 10.3390/cells10010051.
25. Kolotov K.A., Rasputin P.G. Monocytic chemotactic protein-1 in physiology and medicine. Perm Medical Journal. 2018; 35 (4): 99–105. doi: 10.17816/pmj35399-105. (In Russian)
Review
For citations:
Chumakova S.P., Urazova O.I., Denisenko O.A., Pogonchenkova D.A., Shipulin V.M., Pryakhin A.S., Nevskaya K.V., Gladkovskaya M.V. Blood monocytes in maintaining the balance of vascular endothelial injury and repair process in ischemic cardiomyopathy. Complex Issues of Cardiovascular Diseases. 2022;11(3):84-96. (In Russ.) https://doi.org/10.17802/2306-1278-2022-11-3-84-96