Preview

Complex Issues of Cardiovascular Diseases

Advanced search

Spontaneous endothelial-to-mesenchymal transition in human primary umbilical vein endothelial cells

https://doi.org/10.17802/2306-1278-2022-11-3-97-114

Abstract

Highlights. Spontaneous endothelial-to-mesenchymal transition of primary human umbilical vein endothelial cells (HUVEC) is characterized by an acquired expression of SNAI2 and TWIST1 genes, loss of endothelial markers and transcription factors (CD31/PECAM1, VE-cadherin, and ERG transcription factor), pronounced expression of S100A4 and ACTA2 genes, and active production of type I collagen, a major component of the extracellular matrix.

An optimal algorithm to detect endothelial-to-mesenchymal transition includes gene expression profiling of endothelial lineage markers (PECAM1, CDH5, VWF, ERG), SNAI2 and TWIST1 transcription factors, mesenchymal specification markers (FAP, S100A4, ACTA2) and markers of extracellular matrix synthesis (COL1A1, COL1A2) along with the subsequent negative staining for CD31/PECAM1, VE-cadherin, or ERG and positive staining for intracellular type I collagen.

Aim. To  develop  an  algorithm  and  tools  to  determine  endothelial-to-mesenchymal transition (EndoMT) in vitro.

Methods. We examined two batches of human umbilical vein endothelial cells (HUVEC) where the first cell batch had a conventional endothelial morphology and the second cell batch underwent a spontaneous EndoMT. Human coronary artery endothelial cells (HCAEC) and human internal thoracic artery endothelial cells (HITAEC) were used as the negative control for EndoMT. Molecular profile was assessed by means of reverse transcription-quantitative polymerase chain reaction, Western blotting, and immunofluorescence staining with the further confocal microscopy.

Results. In contrast to HUVEC with the physiological profile and arterial ECs, HUVEC undergoing EndoMT lost the expression of endothelial lineage markers (PECAM1, CDH5, VWF, ERG) and acquired the expression of EndoMT transcription factors (SNAI2, TWIST1), mesenchymal markers (FAP, S100A4, ACTA2), and extracellular matrix components (COL1A1, COL1A2) while retaining expression of the common vascular  markers  (HES1,  NRP1).  Western  blotting  analysis  confirmed  the loss of endothelial markers (CD31/PECAM1, VE-cadherin/CDH5, ERG) and demonstrated retained expression of abovementioned vascular markers. Negligible expression of MYH11 and SMTN genes encoding specific contractile markers (smooth muscle myosin heavy chain and smoothelin) in combination with the acquired expression of ACTA2 gene encoding less specific contractile marker alpha smooth muscle actin indicated the phenotypic identity of EndoMT-transformed HUVEC to myofibroblasts but not contractile vascular smooth muscle cells. Loss of immunofluorescence staining of endothelial markers (CD31/PECAM-1, VE-cadherin, and ERG transcription factor) and pronounced intracellular staining of type I collagen testified to the ongoing EndoMT.

Conclusion. An  algorithm  to  assess  EndoMT  implies  measurement  of  the  expression  of PECAM1, CDH5, VWF, ERG, SNAI2, TWIST1, FAP, S100A4, ACTA2, COL1A1, and COL1A2 genes in combination with the respective immunofluorescence staining for CD31/PECAM-1, VE-cadherin, or ERG transcription factor and type I collagen.

About the Authors

D. K. Shishkova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Daria K. Shishkova - PhD,  Researcher  at  the  Laboratory for Molecular, Translational, and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002.


Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



A. V. Sinitskaya
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Anna V. Sinitskaya - PhD, Researcher at the Laboratory for Genomic Medicine, Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002.


Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



M. Yu. Sinitsky
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Maxim Yu. Sinitsky - PhD, Senior Researcher at the Laboratory for Genomic Medicine, Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002.


Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



V. G. Matveeva
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Vera G. Matveeva - MD, PhD, Senior  Researcher  at the Laboratory for Tissue Engineering, Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002.


Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



E. A. Velikanova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Elena A. Velikanova - PhD, Researcher at the Laboratory for Tissue Engineering, Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002.


Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



V. E. Markova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Victoria E. Markova - PhD, Researcher at the Laboratory for Molecular, Translational, and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002.


Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



A. G. Kutikhin
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Anton G. Kutikhin - MD, PhD, Head of the Laboratory for Molecular, Translational, and Digital Medicine, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002.


Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



References

1. Li Y., Lui K.O., Zhou B. Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases. Nat Rev Cardiol. 2018;15(8):445-456. doi: 10.1038/s41569-018-0023-y.

2. Kovacic J.C., Dimmeler S., Harvey R.P., Finkel T.,Aikawa E., Krenning G., Baker A.H. Endothelial to Mesenchymal Transition in Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019;73(2):190-209. doi: 10.1016/j.jacc.2018.09.089.

3. Chen P.Y., Schwartz M.A., Simons M. Endothelial-to-Mesenchymal Transition, Vascular Inflammation, and Atherosclerosis. Front Cardiovasc Med. 2020;7:53. doi: 10.3389/fcvm.2020.00053.

4. Alvandi Z., Bischoff J. Endothelial-Mesenchymal Transition in Cardiovascular Disease. Arterioscler Thromb Vasc Biol. 2021;41(9):2357-2369. doi: 10.1161/ATVBAHA.121.313788.

5. Peng Q., Shan D., Cui K., Li K., Zhu B., Wu H., Wang B., Wong S., Norton V., Dong Y., Lu Y.W., Zhou C., Chen H. The Role of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Cells. 2022;11(11):1834. doi: 10.3390/cells11111834.

6. Kutikhin A.G., Shishkova D.K., Velikanova E.A., Sinitsky M.Y., Sinitskaya A.V., Markova V.E. Endothelial Dysfunction in the Context of Blood-Brain Barrier Modeling. J Evol Biochem Physiol. 2022;58(3):781-806. doi: 10.1134/S0022093022030139.

7. Kutikhin A.G., Tupikin A.E., Matveeva V.G., Shishkova D.K., Antonova L.V., Kabilov M.R., Velikanova E.A. Human Peripheral Blood-Derived Endothelial Colony-Forming Cells Are Highly Similar to Mature Vascular Endothelial Cells yet Demonstrate a Transitional Transcriptomic Signature. Cells. 2020;9(4):876. doi: 10.3390/cells9040876.

8. Khanova M.Yu., Velikanova E.A., Matveeva V.G., Krivkina E.O., Glushkova T.V., Sevostianova V.V., Kutikhin A.G., Antonova L.V. Endothelial cell monolayer formation on a small-diameter vascular graft surface under pulsatile flow conditions. Bulletin of Transplantology and Artificial Organs. 2021;3(23):101-114. doi: 10.15825/1995-1191-2021-3-101-114.

9. Mukhamadiyarov R.A., Bogdanov L.A., Glushkova T.V., Shishkova D.K., Kostyunin A.E., Koshelev V.A., Shabaev A.R., Frolov A.V., Stasev A.N., Lyapin A.A., Kutikhin A.G. EMbedding and Backscattered Scanning Electron Microscopy: A Detailed Protocol for the Whole-Specimen, High-Resolution Analysis of Cardiovascular Tissues. Front Cardiovasc Med. 2021;8:739549. doi: 10.3389/fcvm.2021.739549.

10. Ma J., Sanchez-Duffhues G., Goumans M.J., Ten Dijke P. TGF-β-Induced Endothelial to Mesenchymal Transition in Disease and Tissue Engineering. Front Cell Dev Biol. 2020;8:260. doi: 10.3389/fcell.2020.00260.

11. Ma J., van der Zon G., Gonçalves M.A.F.V., van Dinther M., Thorikay M., Sanchez-Duffhues G., Ten Dijke P. TGF-β-Induced Endothelial to Mesenchymal Transition Is Determined by a Balance Between SNAIL and ID Factors. Front Cell Dev Biol. 2021;9:616610. doi: 10.3389/fcell.2021.616610.

12. Ma J., van der Zon G., Sanchez-Duffhues G., Ten Dijke P. TGF-β-mediated Endothelial to Mesenchymal Transition (EndMT) and the Functional Assessment of EndMT Effectors using CRISPR/Cas9 Gene Editing. J Vis Exp. 2021;(168). doi: 10.3791/62198.

13. Krishnamoorthi M.K., Thandavarayan R.A., Youker K.A., Bhimaraj A. An In Vitro Platform to Study Reversible Endothelial-to-Mesenchymal Transition. Front Pharmacol. 2022;13:912660. doi: 10.3389/fphar.2022.912660.

14. Tang R., Li Q., Lv L., Dai H., Zheng M., Ma K., Liu B. Angiotensin II mediates the high-glucose-induced endothelial-to-mesenchymal transition in human aortic endothelial cells. Cardiovasc Diabetol. 2010;9:31. doi: 10.1186/1475-2840-9-31

15. Noseda M., McLean G., Niessen K., Chang L., Pollet I., Montpetit R., Shahidi R., Dorovini-Zis K., Li L., Beckstead B., Durand R.E., Hoodless P.A., Karsan A. Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. Circ Res. 2004;94(7):910-7. doi: 10.1161/01.RES.0000124300.76171.C9.

16. Chang A.C., Fu Y., Garside V.C., Niessen K., Chang L., Fuller M., Setiadi A., Smrz J., Kyle A., Minchinton A., Marra M., Hoodless P.A., Karsan A. Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Dev Cell. 2011;21(2):288-300. doi: 10.1016/j.devcel.2011.06.022.

17. Kostina A.S., Uspensky V.Е., Irtyuga O.B., Ignatieva E.V., Freylikhman O., Gavriliuk N.D., Moiseeva O.M., Zhuk S., Tomilin A., Kostareva А.А., Malashicheva A.B. Notch-dependent EMT is attenuated in patients with aortic aneurysm and bicuspid aortic valve. Biochim Biophys Acta. 2016;1862(4):733-740. doi: 10.1016/j.bbadis.2016.02.006.

18. Xu X., Tan X., Tampe B., Sanchez E., Zeisberg M., Zeisberg E.M. Snail Is a Direct Target of Hypoxia-inducible Factor 1α (HIF1α) in Hypoxia-induced Endothelial to Mesenchymal Transition of Human Coronary Endothelial Cells. J Biol Chem. 2015;290(27):16653-64. doi: 10.1074/jbc.M115.636944.

19. Tang H., Babicheva A., McDermott K.M., Gu Y., Ayon R.J., Song S., Wang Z., GuptaA., Zhou T., Sun X., Dash S., Wang Z., Balistrieri A., Zheng Q., Cordery A.G., Desai A.A., Rischard F., Khalpey Z., Wang J., Black S.M., Garcia J.G.N., Makino A., Yuan J.X. Endothelial HIF-2α contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol. 2018;314(2):L256-L275. doi: 10.1152/ajplung.00096.2017.

20. Dejana E., Hirschi K.K., Simons M. The molecular basis of endothelial cell plasticity. Nat Commun. 2017;8:14361. doi: 10.1038/ncomms14361.

21. Piera-Velazquez S., Jimenez S.A. Endothelial to Mesenchymal Transition: Role in Physiology and in the PathogenesisofHumanDiseases.PhysiolRev.2019;99(2):1281-1324. doi: 10.1152/physrev.00021.2018.

22. Gao Y., Galis Z.S. Exploring the Role of Endothelial Cell Resilience in Cardiovascular Health and Disease. Arterioscler Thromb Vasc Biol. 2021;41(1):179-185. doi: 10.1161/ATVBAHA.120.314346.

23. Greenspan L.J., Weinstein B.M. To be or not to be: endothelial cell plasticity in development, repair, and disease. Angiogenesis. 2021;24(2):251-269. doi: 10.1007/s10456-020-09761-7.

24. Velikanova E.A., Kutikhin A.G., Matveeva V.G., Tupikin A.E., Kabilov M.R., Antonova L.V. Comparison of gene expression profiles of human peripheral blood derived endothelial colony-forming cells and coronary artery endothelial cells. Complex Issues of Cardiovascular Diseases. 2020;9(2):74-81. doi: 10.17802/2306-1278-2020-9-2-74-81.

25. Niklason L., Dai G. Arterial Venous Differentiation for Vascular Bioengineering. Annu Rev Biomed Eng. 2018;20:431-447. doi: 10.1146/annurev-bioeng-062117-121231.

26. Wolf K., Hu H., Isaji T., Dardik A. Molecular identity of arteries, veins, and lymphatics. J Vasc Surg. 2019;69(1):253-262. doi: 10.1016/j.jvs.2018.06.195.

27. Marziano C., Genet G., Hirschi K.K. Vascular endothelial cell specification in health and disease. Angiogenesis. 2021;24(2):213-236. doi: 10.1007/s10456-021-09785-7.

28. Corbett A.H. Post-transcriptional regulation of gene expression and human disease. Curr Opin Cell Biol. 2018;52:96-104. doi: 10.1016/j.ceb.2018.02.011.

29. Evrard S.M., Lecce L., Michelis K.C., Nomura-Kitabayashi A., Pandey G., Purushothaman K.R., d'Escamard V., Li J.R., Hadri L., Fujitani K., Moreno P.R., Benard L., Rimmele P., Cohain A., Mecham B., Randolph G.J., Nabel E.G., Hajjar R., Fuster V., Boehm M., Kovacic J.C. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853. doi: 10.1038/ncomms11853.

30. Yap C., MieremetA., de Vries C.J.M., Micha D., de Waard V. Six Shades of Vascular Smooth Muscle Cells Illuminated by KLF4 (Krüppel-Like Factor 4). Arterioscler Thromb Vasc Biol. 2021;41(11):2693-2707. doi: 10.1161/ATVBAHA.121.316600.


Review

For citations:


Shishkova D.K., Sinitskaya A.V., Sinitsky M.Yu., Matveeva V.G., Velikanova E.A., Markova V.E., Kutikhin A.G. Spontaneous endothelial-to-mesenchymal transition in human primary umbilical vein endothelial cells. Complex Issues of Cardiovascular Diseases. 2022;11(3):97-114. (In Russ.) https://doi.org/10.17802/2306-1278-2022-11-3-97-114

Views: 435


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)