Preview

Complex Issues of Cardiovascular Diseases

Advanced search

Non-invasive methods of in vivo functioning analysis of the “TiAra” stentless valve prosthesis

https://doi.org/10.17802/2306-1278-2022-11-3-143-151

Abstract

Highlights. Non-invasive method for the assessment of the mobility and deformation of the wire element of the bioprosthesis in the cardiac cycle based on the developed mathematical algorithm is presented. Numerical analysis of the behavior of the wire element of the “TiAra” bioprosthesis is shown for the first time. The developed method can be used for other medical devices as well.

Aim. To develop a method for non-invasive assessment of the mobility and deformation of the wire element of the aortic heart valve bioprosthesis in the cardiac cycle based on mathematical processing of visual medical data.

Methods. Multidetector computed tomography data of patient P. (male, 66 years old), who received the “TiAra” aortic bioprosthesis (NeoCor CJSC, Kemerovo), were used for the study. Using the built-in tools in the Mimics Medical Image Processing Software (Materialize, Belgium), based on the radio density, 5 stages of movement of  the  wire  element  of  the  bioprosthesis  were  reconstructed  in  the  form  of 3D-models.  The  differences between  the  models,  characterizing  deformation in the cardiac cycle, were quantitatively assessed using a proprietary Matlab algorithm (The MathWorks, USA), calculating the distance between similar points. Moreover, obtained data on displacements was used in the numerical study of the stress-strain state of a 3D-model of the wire element by the finite element method in the Abaqus/CAE software (Dassault Systèmes SE, France).

Results. The proposed method for assessing the mobility of the wire element made it possible to quantitatively evaluate the biomechanics of the “TiAra” stentless bioprosthesis based on multidetector computed tomography, a non-invasive clinical tool. The movements that the bioprosthesis undergoes during the cardiac cycle (the maximum value is 2.04 mm in the radial direction) are comparable to the movement of the aortic root of a healthy patient. The results of the numerical modeling of the stress state of the wire element did not indicate high amplitudes (peak value – 564 MPa) that would be capable of causing critical damage to the wire. It allows us to confirm the clinical safety of the bioprosthesis in real conditions like asymmetric and uneven loads. Moreover, deformations observed in the bioprosthesis are similar in the amplitude to the displacements of the aortic root described in the literature, which highlights the main feature of the bioprosthesis – ensuring the physiological biomechanics throughout the cardiac cycle.

Conclusion. The presented method of qualitative computer assessment of the movement of the wire element of heart valve prosthesis using the “TiAra” bioprosthesis as an example demonstrates its validity as a tool for studying prosthesis functioning.

About the Authors

P. S. Onishchenko
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Pavel S. Onishchenko - Junior Researcher at the Laboratory for Novel Biomaterials, Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002.


Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



K. Yu. Klyshnikov
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Kirill Yu. Klyshnikov - Researcher at the Laboratory for Novel Biomaterials, Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002.


Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



E. A. Ovcharenko
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Evgeny A. Ovcharenko - Head of the Laboratory for Novel Biomaterials, Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002.


Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



A. N. Stasev
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Alexander N. Stasev - Researcher at the Laboratory of Heart Defects, Department of Cardiovascular Surgery, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002.


Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



A. N. Kokov
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Alexander N. Kokov - Head of the Laboratory of Radiation Diagnostic Methods, Department of Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002.


Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



N. K. Brel
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Natalia K. Brel - Junior Researcher at the Laboratory of Radiation Diagnostic Methods, Department of Cardiovascular Surgery, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002.


Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



A. V. Yevtushenko
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Alexey V. Yevtushenko - Head of the Laboratory of Heart Defects, Department of Cardiovascular Surgery, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002.


Competing Interests:

Автор заявляет об отсутствии конфликта интересов.



L. S. Barbarash
Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний
Russian Federation

Leonid S. Barbarash - Leading Researcher at the Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002.


Competing Interests:

Research Institute for Complex Issues of Cardiovascular Diseases



References

1. Bokeriya L.A., Milievskaya E.B., Kudzoeva Z.F., Pryanishnikov V.V., Skopin A.I., YUrlov I.A. Serdechno-sosudistaya hirurgiya – 2018. Bolezni i vrozhdennye anomalii sistemy krovoobrashcheniya. Moscow; 2018. (In Russian)

2. Jaffer I.H., Whitlock R.P. A mechanical heart valve is the best choice. Heart Asia. 2016; 8(1): 62–64. doi:10.1136/heartasia-2015-010660

3. Kostyunin A.E., Ovcharenko E.A., Klyshnikov K.Yu. Modern understanding of mechanisms of bioprosthetic valve structural degeneration: a literature review. Russian Journal of Cardiology. 2018; 11: 145–152. doi:10.15829/1560-4071-2018-11-145-152 (In Russian)

4. Nkomo V.T., Gardin J.M., Skelton T.N., Gottdiener J.S., Scott C.G., Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006; 368(9540): 1005–1011. doi:10.1016/S0140-6736(06)69208-8

5. Dunning J., Gao H., Chambers J., Moat N., Murphy G., Pagano D., Ray S., Roxburgh J., Bridgewater B. Aortic valve surgery: Marked increases in volume and significant decreases in mechanical valve use - An analysis of 41,227 patients over 5 years from the Society for Cardiothoracic Surgery in Great Britain and Ireland National database. Journal of Thoracic and Cardiovascular Surgery. Mosby Inc. 2011; 142(4). doi:10.1016/j.jtcvs.2011.04.048

6. Nappi F., Mazzocchi L., Avtaar Singh S.S., Morganti S., Sablayrolles J.-L., Acar C., Auricchio F. Complementary Role of the Computed Biomodelling through Finite Element Analysis and Computed Tomography for Diagnosis of Transcatheter Heart Valve Thrombosis. BioMed research international. 2018; 2018: 1346308. doi:10.1155/2018/1346308

7. Bianchi M., Marom G., Ghosh R.P., Rotman O.M., Parikh P., Gruberg L., Bluestein D. Patient-specific simulation of transcatheter aortic valve replacement: impact of deployment options on paravalvular leakage. Biomechanics and modeling in mechanobiology. 2019; 18(2): 435–451. doi:10.1007/s10237-018-1094-8

8. Astapov D.A., Zhuravleva I.Yu., Klyshnikov K.Yu., Shcheglova N.A., Demidov D.P., Ovcharenko E.A., Zheleznev S.I. Eksperimental'noe i klinicheskoe obosnovanie effektivnosti implantacii v aortal'nuyu poziciyu bioproteza «TIARA» na karkase iz nitinola. Kompleksnye problemy serdechno-sosudistyh zabolevanij. 2013; (4): 12–21 (In Russian)

9. Nitinol Devices & Components. Material Data Sheet. Superelastic Nitinol Alloys. Available at: https://confluentmedical.com/wp-content/uploads/2016/01/Material-Data-Sheet-Superelastic.pdf. (accessed 23.02.2021).

10. Beller C.J., Labrosse M.R., Thubrikar M.J., Robicsek F. Role of Aortic Root Motion in the Pathogenesis of Aortic Dissection. Circulation. 2004; 109(6): 763–769. doi:10.1161/01.CIR.0000112569.27151.F7

11. Wei W., Evin M., Rapacchi S., Kober F., Bernard M., Jacquier A., Kahn C.J.F., Behr M. Investigating heartbeat-related in-plane motion and stress levels induced at the aortic root. BioMedical Engineering Online. 2019; 18(1):19. doi:10.1186/s12938-019-0632-7

12. Cheng A., Dagum P., Miller D.C. Aortic root dynamics and surgery: from craft to science. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 2007; 362(1484): 1407–1419. doi:10.1098/rstb.2007.2124

13. Klyshnikov K.U., Ovcharenko E.A., Nyshtaev D. V., Barbarash L.S. Fatigue strength of a novel heart valve bioprosthesis. Sovremennye Tehnologii v Medicine. 2017; 9(2): 46–51. doi:10.17691/stm2017.9.2.05 (In Russian)

14. SHatov D.V., Zahar'yan E.A. Diagnosticheskie vozmozhnosti pri disfunkcii protezov klapanov serdca (obzor literatury). Medicina neotlozhnyh sostoyanij. 2018; 5(92): 34–37. doi:10.22141/2224-0586.5.92.2018.143229 (In Russian)

15. Shil'ko S.V., Hizhenok V.F., Anichkin V.V. Biomekhanicheskie aspekty sozdaniya polimernogo proteza klapana serdca novogo pokoleniya. Problemy zdorov'ya i ekologii. 2010; 1(23): 136–141 (In Russian)

16. Sodhani D., Reese S., Aksenov A., Soğanci S., Jockenhövel S., Mela P., Stapleton S.E. Fluid-structure interaction simulation of artificial textile reinforced aortic heart valve: Validation with an in-vitro test. Journal of Biomechanics. 2018; 78: 52–69. doi:10.1016/j.jbiomech.2018.07.018.

17. Luraghi G., Wu W., De Gaetano F., Rodriguez Matas J.F., MoggridgeG.D.,SerraniM.,StasiakJ.,CostantinoM.L.,Migliavacca F. Evaluation of an aortic valve prosthesis: Fluid-structure interaction or structural simulation? Journal of Biomechanics. 2017; 58: 45–51. doi:10.1016/j.jbiomech.2017.04.004

18. Luraghi G., Migliavacca F., Rodriguez Matas J.F. Study on the Accuracy of Structural and FSI Heart Valves Simulations. Cardiovascular Engineering and Technology. Springer New York LLC; 2018; 9(4): 723–738. doi:10.1007/s13239-018-00373-3

19. Astapov D.A., Demidov D.P., Semenova E.I., Zheleznev S.I., Zorina I.G., Syrceva YA.V. Pervyj opyt implantacii ksenoperikardial'nogo proteza s karkasom peremennoj zhestkosti tiara v aortal'nuyu poziciyu. Patologiya krovoobrashcheniya i kardiohirurgiya. 2015; 17(2): 73–75. doi:10.21688/1681-3472-2013-2-73-75 (In Russian)


Review

For citations:


Onishchenko P.S., Klyshnikov K.Yu., Ovcharenko E.A., Stasev A.N., Kokov A.N., Brel N.K., Yevtushenko A.V., Barbarash L.S. Non-invasive methods of in vivo functioning analysis of the “TiAra” stentless valve prosthesis. Complex Issues of Cardiovascular Diseases. 2022;11(3):143-151. (In Russ.) https://doi.org/10.17802/2306-1278-2022-11-3-143-151

Views: 281


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)