ДИАГНОСТИЧЕСКАЯ ЗНАЧИМОСТЬ ОПРЕДЕЛЕНИЯ ОТДЕЛЬНЫХ СУБПОПУЛЯЦИЙ ВНЕКЛЕТОЧНЫХ ВЕЗИКУЛ В КЛИНИЧЕСКОЙ ПРАКТИКЕ
https://doi.org/10.17802/2306-1278-2024-13-3-200-214
Аннотация
Основные положения
В обзоре рассмотрены вопросы, связанные с диагностической ценностью определения уровня внеклеточных везикул, а также переносимого ими груза нуклеиновых кислот и белков, у пациентов с различными заболеваниями и патологическими состояниями. Оценены представленные в литературе данные о диагностической значимости отдельных видов микроРНК при злокачественных новообразованиях.
Аннотация
Накопление большого массива информации о биологической природе внеклеточных везикул, а также их участии во многих биологических и патологических процессах в организме предопределяет необходимость трансляции полученных знаний в практическую медицину. Очевидно, что на данном этапе наиболее перспективной представляется разработка диагностических и прогностических алгоритмов, основанных на исследовании уровня целевых внеклеточных везикул у пациентов при различных патологических состояниях. В данном обзоре предпринята попытка систематизации имеющихся данных об опыте и/или перспективах использования отдельных классов внеклеточных везикул в диагностике ряда наиболее распространенных заболеваний и патологических состояний (ишемические и реперфузионные повреждения тканей и органов, инфекционные и неинфекционные воспалительные заболевания, злокачественные опухоли). Отдельно рассмотрены потенциально применимые с диагностической целью внеклеточные везикулы – их белковый состав, а также репертуар переносимых нуклеиновых кислот (в первую очередь микроРНК).
Об авторах
Игорь Владимирович КудрявцевРоссия
кандидат биологических наук заведующий лабораторией аутоиммунных и аутовоспалительных заболеваний научного центра мирового уровня «Центр персонализированной медицины» федерального государственного бюджетного учреждения «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации, Санкт-Петербург, Российская Федерация; заведующий лабораторией клеточной иммунологии федерального государственного бюджетного научного учреждения «Институт Экспериментальной Медицины», Санкт-Петербург, Российская Федерация
Алексей Сергеевич Головкин
Россия
доктор медицинских наук руководитель группы генно-клеточной инженерии института молекулярной биологии и генетики федерального государственного бюджетного учреждения «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации, Санкт-Петербург, Российская Федерация
Арег Артемович Тотолян
Россия
академик РАН, доктор медицинских наук, профессор директор федерального бюджетного учреждения науки «Санкт-Петербургский научно-исследовательский институт эпидемиологии и микробиологии им. Пастера» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Санкт-Петербург, Российская Федерация
Список литературы
1. Kalra H., Drummen G.P.C., Mathivanan S. Focus on extracellular vesicles: Introducing the next small big thing. Int J Mol Sci. 2016;17(2): 170. doi: 10.3390/ijms17020170
2. Shah R., Patel T., Freedman J.E. Circulating extracellular vesicles in human disease. N Engl J Med. 2018;379(10):958–66. doi: 10.1056/NEJMra1704286.
3. Великонивцев Ф.С., Головкин А.С. Терапия внеклеточными везикулами: возможности, механизмы и перспективы применения. Российский кардиологический журнал. 2020;25(10): 221–31. doi: 10.15829/1560-4071-2020-4081
4. Liu Y., Wang S., Xia H., Tan X., Song S., Zhang S., Meng D., Chen Q., Jin Y. The potential applications of microparticles in the diagnosis, treatment, and prognosis of lung cancer. J Transl Med. 2022;20(1):404. doi: 10.1186/s12967-022-03599-x
5. Wang Y., Zhang M. Urinary Exosomes: A Promising Biomarker for Disease Diagnosis. Lab Med. 2023. 7;54(2):115-125. doi: 10.1093/labmed/lmac087
6. Witwer K.W., Théry C. Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J Extracell vesicles. 2019;8(1):1648167. doi: 10.1080/20013078.2019.1648167.
7. Verdi V., Bécot A., van Niel G., Verweij F.J. In vivo imaging of EVs in zebrafish: New perspectives from “the waterside.” FASEB BioAdvances. 2021;3(11):918–29. doi: 10.1096/fba.2021-00081.
8. Melentijevic I., Toth M.L., Arnold M.L., Guasp R.J., Harinath G., Nguyen K.C., Taub D., Parker J.A., Neri C., Gabel C.V., Hall D.H., Driscoll M. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature. 2017;542(7641):367–71. doi: 10.1038/nature21362.
9. Pedrioli G., Paganetti P. Hijacking Endocytosis and Autophagy in Extracellular Vesicle Communication: Where the Inside Meets the Outside. Front Cell Dev Biol. 2021;8(8):595515. doi: 10.3389/fcell.2020.595515.
10. Sugiura A., McLelland G., Fon E.A., McBride H.M. A new pathway for mitochondrial quality control: mitochondrial‐derived vesicles. EMBO J. 2014;33(19):2142–56.
11. Ma L., Li Y., Peng J., Wu D., Zhao X., Cui Y., Chen L., Yan X., Du Y., Yu L. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res. 2015;25(1):24–38. doi: 10.1038/cr.2014.135.
12. Kondratov K., Nikitin Y., Fedorov A., Kostareva A., Mikhailovskii V., Isakov D., Ivanov A., Golovkin A. Heterogeneity of the nucleic acid repertoire of plasma extracellular vesicles demonstrated using high-sensitivity fluorescence-activated sorting. J Extracell Vesicles. 2020;9(1):1743139. doi: 10.1080/20013078.2020.1743139.
13. Théry C., Witwer K.W., Aikawa E., Alcaraz M.J., Anderson J.D., Andriantsitohaina R., Antoniou A., Arab T., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1) :1535750. doi: 10.1080/20013078.2018.1535750.
14. Johnsen K.B., Gudbergsson J.M., Andresen T.L., Simonsen J.B. What is the blood concentration of extracellular vesicles? Implications for the use of extracellular vesicles as blood-borne biomarkers of cancer. Biochim Biophys Acta Rev Cancer. 2019;1871(1):109-116. doi: 10.1016/j.bbcan.2018.11.006
15. Coumans F.A.W., Brisson A.R., Buzas E.I., Dignat-George F., Drees E.E.E., El-Andaloussi S., Emanueli C., Gasecka A., et al. Methodological guidelines to study extracellular vesicles. Circ Res. 2017;120(10):1632–48. doi: 10.1161/CIRCRESAHA.117.309417.
16. Gardiner C., Di Vizio D., Sahoo S., Théry C., Witwer K.W., Wauben M., Hill A.F. Techniques used for the isolation and characterization of extracellular vesicles: Results of a worldwide survey. J Extracell Vesicles. 2016;5(1):32945. doi: 10.3402/jev.v5.32945.
17. Zhou B., Xu K., Zheng X., Chen T., Wang J., Song Y., Shao Y., Zheng S. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther. 2020;5(1):144 doi:10.1038/s41392-020-00258-9
18. Головкин А.С., Кудрявцев И.В., Федотов П.А., Калинина О.В. Новые аспекты влияния факторов иммунитета и микробиома на реакции отторжения трансплантированного сердца. Российский кардиологический журнал. 2022;27(8):4806. doi:10.15829/1560-4071-2022-4806
19. Urabe F, Kosaka N, Ito K, Kimura T, Egawa S, Ochiya T. Extracellular vesicles as biomarkers and therapeutic targets for cancer. Am J Physiol - Cell Physiol. 2020;318(1):C29–39.
20. Ghafarian F., Pashirzad M., Khazaei M., Rezayi M., Hassanian S.M., Ferns G.A., Avan A. The clinical impact of exosomes in cardiovascular disorders: From basic science to clinical application. J Cell Physiol. 2019;234(8):12226–36. doi: 10.1002/jcp.27964
21. Salomon C., Scholz K., Kobayashi M., Duncombe G., Perez-Sepulveda A., Illanes S.E., Longo S., Fortunato S., Mitchell M., Rice G.E. Hypoxia Regulates the Response of Trophoblast-Derived Exosomes To Hyperglycemia and Displays a Difference Placental Exosome Profile in Plasma From Patients With Gestational Diabetes Mellitus. Reprod Sci. 2015;22 (Suppl 1): A 257- A 258.
22. Liu Q., Rojas-Canales D.M., Divito S.J., Shufesky W.J., Stolz D.B., Erdos G., Sullivan M.L., Gibson G.A., Watkins S.C., Larregina A.T., Morelli A.E. Donor dendritic cell-derived exosomes promote allograft-targeting immune response. J Clin Invest. 2016;126(8):2805-20. doi: 10.1172/JCI84577.
23. Burlingham W.J. “Cross-Dressing” Becomes Fashionable Among Transplant Recipients. Am J Transplant. 2017;17(1):5–6. doi: 10.1111/ajt.14032.
24. Morelli A.E., Bracamonte-Baran W., Burlingham W.J. Donor-derived exosomes: The trick behind the semidirect pathway of allorecognition. Curr Opin Organ Transplant. 2017;22(1):46–54. doi: 10.1097/MOT.0000000000000372.
25. Gonzalez-Nolasco B., Wang M., Prunevieille A., Benichou G. Emerging role of exosomes in allorecognition and allograft rejection. Curr Opin Organ Transplant. 2018;23(1):22–7. doi: 10.1097/MOT.0000000000000489.
26. Benichou G., Wang M., Ahrens K., Madsen J.C. Extracellular vesicles in allograft rejection and tolerance. Cell Immunol. 2020;349(5):104063. doi: 10.1016/j.cellimm.2020.104063.
27. Marino J., Babiker-Mohamed M.H., Crosby-Bertorini P., Paster J.T., LeGuern C., Germana S., Abdi R., Uehara M., Kim J.I., Markmann J.F., Tocco G., Benichou G. Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation. Sci Immunol. 2016;1(1):aaf8759. doi: 10.1126/sciimmunol.aaf8759.
28. Vallabhajosyula P., Korutla L., Habertheuer A., Yu M., Rostami S., Yuan C.X., Reddy S., Liu C., Korutla V., Koeberlein B., Trofe-Clark J., Rickels M.R., Naji A.Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue. J Clin Invest. 2017;127(4):1375–91. doi: 10.1172/JCI87993.
29. Logozzi M., De Milito A., Lugini L., Borghi M., Calabrò L., Spada M., Perdicchio M., Marino M.L., Federici C., Iessi E., Brambilla D., Venturi G., Lozupone F., Santinami M., Huber V., Maio M., Rivoltini L., Fais S. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One. 2009;4(4):e5219. doi: 10.1371/journal.pone.0005219.
30. Jørgensen M.M., Bæk R., Varming K. Potentials and capabilities of the extracellular vesicle (EV) array. J Extracell Vesicles. 2015;4:26048. doi: 10.3402/jev.v4.26048.
31. Dragovic R.A., Collett G.P., Hole P., Ferguson D.J.P., Redman C.W., Sargent I.L., Tannetta D.S. Isolation of syncytiotrophoblast microvesicles and exosomes and their characterisation by multicolour flow cytometry and fluorescence Nanoparticle Tracking Analysis. Methods. 2015;87:64–74. doi: 10.1016/j.ymeth.2015.03.028.
32. Pillay P, Maharaj N, Moodley J, Mackraj I. Placental exosomes and pre-eclampsia: Maternal circulating levels in normal pregnancies and, early and late onset pre-eclamptic pregnancies. Placenta. 2016;46:18–25. doi: 10.1016/j.placenta.2016.08.078.
33. Sun Y., Huo C., Qiao Z., Shang Z., Uzzaman A., Liu S., Liu S., Jiang X., Fan L.Y., Ji L., Guan X., Cao C.X., Xiao H. Comparative Proteomic Analysis of Exosomes and Microvesicles in Human Saliva for Lung Cancer. J Proteome Res. 2018;17(3):1101–7. doi: 10.1021/acs.jproteome.7b00770.
34. Shao H., Chung J., Balaj L, Charest A., Bigner D.D., Carter B.S., Hochberg F.H., Breakefield X.O., Weissleder R., Lee H. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med. 2012;18(12):1835–40. doi: 10.1038/nm.2994.
35. Im H., Shao H., Park Y. Il., Peterson V.M., Castro C.M., Weissleder R., Lee H. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol. 2014;32(5):490–5. doi: 10.1038/nbt.2886.
36. Yoshioka Y., Kosaka N., Konishi Y., Ohta H., Okamoto H., Sonoda H., Kosaka N., Konishi Y., et al. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat Commun. 2014;5(1):3591. doi:10.1038/ncomms4591
37. Möller A., Lobb R.J. The evolving translational potential of small extracellular vesicles in cancer. Nat Rev Cancer. 2020;20(12):697–709. doi: 10.1038/s41568-020-00299-w.
38. Chen G., Huang A.C., Zhang W., Zhang G., Wu M., Xu W., Yu Z., Yang J., et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560(7718):382–6. doi: 10.1038/s41586-018-0392-8
39. Theodoraki M.N., Yerneni S.S., Hoffmann T.K., Gooding W.E., Whiteside T.L. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients. Clin Cancer Res. 2018;24(4):896–905. doi: 10.1158/1078-0432.CCR-17-2664.
40. Capello M., Vykoukal J.V., Katayama H., Bantis L.E., Wang H., Kundnani D.L., Aguilar-Bonavides C., Aguilar M., et al. Exosomes harbor B cell targets in pancreatic adenocarcinoma and exert decoy function against complement-mediated cytotoxicity. Nat Commun. 2019;10(1):254. doi: 10.1038/s41467-018-08109-6.
41. Aung T., Chapuy B., Vogel D., Wenzel D., Oppermann M., Lahmann M., Weinhage T., Menck K., Hupfeld T., Koch R., Trümper L., Wulf G.G. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc Natl Acad Sci U S A. 2011;108(37):15336–41. doi: 10.1073/pnas.1102855108.
42. Peinado H., Alečković M., Lavotshkin S., Matei I., Costa-Silva B., Moreno-Bueno G., Hergueta-Redondo M,, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883-891. doi: 10.1038/nm.2753.
43. Costa-Silva B., Aiello N.M., Ocean A.J., Singh S., Zhang H., Thakur B.K., Becker A., Hoshino A., et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17(6):816–26. doi: 10.1038/ncb3169.
44. Melo S.A., Luecke L.B., Kahlert C., Fernandez A.F., Gammon S.T., Kaye J., LeBleu V.S., Mittendorf E.A., Weitz J., Rahbari N., Reissfelder C., Pilarsky C., Fraga M.F., Piwnica-Worms D., Kalluri R. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523(7559):177–82. doi: 10.1038/nature14581.
45. Bradshaw A.D. Diverse biological functions of the SPARC family of proteins. Int J Biochem Cell Biol. 2012;44(3):480–8. doi: 10.1016/j.biocel.2011.12.021.
46. Li J., Chen Y., Guo X., Zhou L., Jia Z., Peng Z., Tang Y., Liu W., Zhu B., Wang L., Ren C. GPC1 exosome and its regulatory miRNAs are specific markers for the detection and target therapy of colorectal cancer. J Cell Mol Med. 2017;21(5):838–47. doi: 10.1111/jcmm.12941.
47. Tertel T., Tomić S., Đokić J., Radojević D., Stevanović D., Ilić N., Giebel B., Kosanović M. Serum-derived extracellular vesicles: Novel biomarkers reflecting the disease severity of COVID-19 patients. J Extracell vesicles. 2022;11(8):e12257. doi: 10.1002/jev2.12257.
48. Cappellano G., Raineri D., Rolla R., Giordano M., Puricelli C., Vilardo B., Manfredi M., Cantaluppi V., Sainaghi P.P., Castello L., De Vita N., Scotti L., Vaschetto R., Dianzani U., Chiocchetti A. Circulating Platelet-Derived Extracellular Vesicles Are a Hallmark of Sars-Cov-2 Infection. Cells. 2021;10(1): 85. doi: 10.3390/cells10010085.
49. Kudryavtsev I., Kalinina O., Bezrukikh V., Melnik O., Golovkin A. The significance of phenotyping and quantification of plasma extracellular vesicles levels using high-sensitivity flow cytometry during covid-19 treatment. Viruses. 2021;13(5):767. doi: 10.3390/v13050767.
50. Rosell A., Havervall S., Von Meijenfeldt F., Hisada Y., Aguilera K., Grover S.P., Lisman T., Mackman N., Thålin C. Patients with COVID-19 Have Elevated Levels of Circulating Extracellular Vesicle Tissue Factor Activity That Is Associated with Severity and Mortality - Brief Report. Arterioscler Thromb Vasc Biol. 2021; 41(2):878-882. doi: 10.1161/ATVBAHA.120.315547.
51. Raineri D., Venegoni C., Calella M.G., Vaschetto R., Scotti L., Canciani E., Manfredi M., Gavelli F., Castello L., Chiocchetti A., Cappellano G. Worse Disease Prognosis Is Associated to an Increase of Platelet-Derived Extracellular Vesicles in Hospitalized SARS-CoV-2 Patients. Dis Markers. 2022;2022:8074655. doi: 10.1155/2022/8074655.
52. Puhm F., Flamand L., Boilard E. Platelet extracellular vesicles in COVID-19: Potential markers and makers. J Leukoc Biol. 2022;111(1):63–74. doi: 10.1002/JLB.3MIR0221-100R.
53. Ogata-Kawata H., Izumiya M., Kurioka D., Honma Y., Yamada Y., Furuta K., Gunji T., Ohta H., Okamoto H., Sonoda H., Watanabe M., Nakagama H., Yokota J., Kohno T., Tsuchiya N. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One. 20144;9(4):e92921. doi: 10.1371/journal.pone.0092921.
54. Matsumura T., Sugimachi K., Iinuma H., Takahashi Y., Kurashige J., Sawada G., Ueda M., Uchi R., Ueo H., Takano Y., Shinden Y., Eguchi H., Yamamoto H., Doki Y., Mori M., Ochiya T., Mimori K. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer. 2015 Jul 9;113(2):275–81. doi: 10.1038/bjc.2015.201.
55. Huang X., Yuan T., Liang M., Du M., Xia S., Dittmar R., Wang D., See W., Costello B.A., Quevedo F., Tan W., Nandy D., Bevan G.H., Longenbach S., Sun Z., Lu Y., Wang T., Thibodeau S.N., Boardman L., Kohli M., Wang L. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol. 2015;67(1):33–41. A doi: 10.1016/j.eururo.2014.07.035.
56. Hannafon B.N., Trigoso Y.D., Calloway C.L., Zhao Y.D., Lum D.H., Welm A.L., Zhao Z.J., Blick K.E., Dooley W.C., Ding W.Q. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 2016;18(1):90. doi: 10.1186/s13058-016-0753-x.
57. Skog J., Würdinger T., van Rijn S., Meijer D.H., Gainche L., Curry W.T.Jr., Carter B.S., Krichevsky A.M., Breakefield X.O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6. doi: 10.1038/ncb1800.
58. Silva J., García V., Zaballos Á., Provencio M., Lombardía L., Almonacid L., García J.M., Domínguez G., Peña C., Diaz R., Herrera M., Varela A., Bonilla F. Vesicle-related microRNAs in plasma of nonsmall cell lung cancer patients and correlation with survival. Eur Respir J. 2011;37(3):617–23. doi: 10.1183/09031936.00029610.
59. Taylor D.D., Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110(1):13–21. doi: 10.1016/j.ygyno.2008.04.033.
60. Dokhanchi M., Pakravan K., Zareian S., Hussen B.M., Farid M., Razmara E., Mossahebi-Mohammadi M., Cho W.C., Babashah S. Colorectal cancer cell-derived extracellular vesicles transfer miR-221-3p to promote endothelial cell angiogenesis via targeting suppressor of cytokine signaling 3. Life Sci. 2021;285:119937. doi: 10.1016/j.lfs.2021.119937.
61. Yang M., Chen J., Su F., Yu B., Su F., Lin L., Liu Y., Huang J.D., Song E. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer. 2011;10:117. doi: 10.1186/1476-4598-10-117.
62. Li X., Zhang Y., Zhang H., Liu X., Gong T., Li M., Sun L., Ji G., Shi Y., Han Z., Han S., Nie Y., Chen X., Zhao Q., Ding J., Wu K., Daiming F. miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol Cancer Res. 2011;9(7):824–33. doi: 10.1158/1541-7786.MCR-10-0529.
63. Tran Y.K., Bögler O., Gorse K.M., Wieland I., Green M.R., Newsham I.F. A novel member of the NF2/ERM/4.1 superfamily with growth suppressing properties in lung cancer. Cancer Res. 1999;59(1):35–43.
64. Laios A., O’Toole S., Flavin R., Martin C., Kelly L., Ring M., Finn S.P., Barrett C., Loda M., Gleeson N., D'Arcy T., McGuinness E., Sheils O., Sheppard B., O' Leary J. Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer. 2008;7(7):35. doi: 10.1186/1476-4598-7-35.
65. Foj L., Ferrer F., Serra M., Arévalo A., Gavagnach M., Giménez N., Filella X. Exosomal and Non-Exosomal Urinary miRNAs in Prostate Cancer Detection and Prognosis. Prostate. 2017;77(6):573–83. doi: 10.1002/pros.23295.
66. Strømme O., Heck K.A., Brede G., Lindholm H.T., Otterlei M., Arum C.J. Differentially expressed extracellular vesicle-contained micrornas before and after transurethral resection of bladder tumors. Curr Issues Mol Biol. 2021 Jun 4;43(1):286–300. doi: 10.3390/cimb43010024.
67. Li M., Zeringer E., Barta T., Schageman J., Cheng A., Vlassov A.V. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philos Trans R Soc B Biol Sci. 2014;369(1652):20130502. doi: 10.1098/rstb.2013.0502.
68. El-Mogy M., Lam B., Haj-Ahmad T.A., McGowan S., Yu D., Nosal L., Rghei N., Roberts P., Haj-Ahmad Y. Diversity and signature of small RNA in different bodily fluids using next generation sequencing. BMC Genomics. 2018;19(1):408. doi: 10.1186/s12864-018-4785-8.
69. Leidinger P., Backes C., Meder B., Meese E., Keller A. The human miRNA repertoire of different blood compounds. BMC Genomics. 2014;15(1): 474. doi: 10.1186/1471-2164-15-474.
70. Pan Y.Y., Liang H., Liu H., Li D., Chen X.X., Li L., Zhang C.Y., Zen K. Platelet-Secreted MicroRNA-223 Promotes Endothelial Cell Apoptosis Induced by Advanced Glycation End Products via Targeting the Insulin-like Growth Factor 1 Receptor. J Immunol. 2014;192(1):437–46. doi: 10.4049/jimmunol.1301790.
71. Emanueli C., Shearn A.I.U., Laftah A., Fiorentino F., Reeves B.C., Beltrami C., Mumford A., Clayton A., Gurney M., Shantikumar S., Angelini G.D. Coronary artery-bypass-graft surgery increases the plasma concentration of exosomes carrying a cargo of cardiac microRNAs: An example of exosome trafficking out of the human heart with potential for cardiac biomarker discovery. PLoS One. 2016;11(4):e0154274. doi: 10.1371/journal.pone.0154274.
72. Eitel I., Adams V., Dieterich P., Fuernau G., De Waha S., Desch S., Schuler G., Thiele H. Relation of circulating MicroRNA-133a concentrations with myocardial damage and clinical prognosis in ST-elevation myocardial infarction. Am Heart J. 2012;164(5):706–14. doi: 10.1016/j.ahj.2012.08.004.
73. Widera C., Gupta S.K., Lorenzen J.M., Bang C., Bauersachs J., Bethmann K., Kempf T., Wollert K.C., Thum T. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol.. 2011 Nov;51(5):872–5. doi: 10.1016/j.yjmcc.2011.07.011.
74. Chan Y.C., Banerjee J., Choi S.Y., Sen C.K. miR-210: The Master Hypoxamir. Microcirculation. 2012 Apr;19(3):215–23. doi: 10.1111/j.1549-8719.2011.00154.x.
75. Femminò S., Penna C., Margarita S., Comità S., Brizzi M.F., Pagliaro P. Extracellular vesicles and cardiovascular system: Biomarkers and Cardioprotective Effectors. Vascul Pharmacol. 2020;135:106790. doi: 10.1016/j.vph.2020.106790.
76. Escate R., Padró T., Suades R., Camino S., Muñiz O., Diaz-Diaz J.L., Sionis A., Mata P., Badimon L. High miR-133a levels in the circulation anticipates presentation of clinical events in familial hypercholesterolaemia patients. Cardiovasc Res. 2021 Jan 1;117(1):109–22. doi: 10.1093/cvr/cvaa039
77. Qi Z., Zhao Y., Su Y., Cao B., Yang J.J., Xing Q. Serum Extracellular Vesicle–Derived miR-124-3p as a Diagnostic and Predictive Marker for Early-Stage Acute Ischemic Stroke. Front Mol Biosci. 2021;8:685088. doi: 10.3389/fmolb.2021.685088.
78. Eyileten C., Jakubik D., Shahzadi A., Gasecka A., van der Pol E., De Rosa S., Siwik D., Gajewska M., Mirowska-Guzel D., Kurkowska-Jastrzebska I., Czlonkowska A., Postula M. Diagnostic Performance of Circulating miRNAs and Extracellular Vesicles in Acute Ischemic Stroke. Int J Mol Sci. 2022;23(9):4530. doi: 10.3390/ijms23094530.
79. Yuan Z., Bedi B., Sadikot R.T. Bronchoalveolar lavage exosomes in lipopolysaccharide-induced septic lung injury. J Vis Exp. 2018;2018(135):57737. doi: 10.3791/57737.
80. Yang K., Gao B., Wei W., Li Z., Pan L., Zhang J., Zhao Q., Chen W., Xu Z. Changed profile of microRNAs in acute lung injury induced by cardio-pulmonary bypass and its mechanism involved with SIRT1. Int J Clin Exp Pathol. 2015;8(2):1104–15.
81. Pinkerton M., Chinchilli V., Banta E., Craig T., August A., Bascom R., Cantorna M., Harvill E., Ishmael F.T. Differential expression of microRNAs in exhaled breath condensates of patients with asthma, patients with chronic obstructive pulmonary disease, and healthy adults. J Allergy Clin Immunol. 2013;132(1):217–219. doi: 10.1016/j.jaci.2013.03.006.
82. Bastarache J.A., Fremont R.D., Kropski J.A., Bossert F.R., Ware L.B. Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome. Am J Physiol - Lung Cell Mol Physiol. 2009;297(6):L1035–1041. doi: 10.1152/ajplung.00214.2009.
83. Guervilly C., Lacroix R., Forel J.M., Roch A., Camoin-Jau L., Papazian L., Dignat-George F. High levels of circulating leukocyte microparticles are associated with better outcome in acute respiratory distress syndrome. Crit Care. 2011;15(1):R31. doi: 10.1186/cc9978.
84. Shaver C.M., Woods J., Clune J.K., Grove B.S., Wickersham N.E., McNeil J.B., Shemancik G., Ware L.B., Bastarache J.A. Circulating microparticle levels are reduced in patients with ARDS. Crit Care. 2017;21(1):120. doi: 10.1186/s13054-017-1700-7.
85. Amabile N., Heiss C., Real W.M., Minasi P., McGlothlin D., Rame E.J., Grossman W., De Marco T., Yeghiazarians Y. Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am J Respir Crit Care Med. 2008;177(11):1268–75. doi: 10.1164/rccm.200710-1458OC.
86. Thomashow M.A., Shimbo D., Parikh M.A., Hoffman E.A., Vogel-Claussen J., Hueper K., Fu J., Liu C.Y., Bluemke D.A, Ventetuolo CE, Doyle MF, Barr RG. Endothelial microparticles in mild chronic obstructive pulmonary disease and emphysema: The multi-ethnic study of atherosclerosis chronic obstructive pulmonary disease study. Am J Respir Crit Care Med. 2013;188(1):60–8. doi: 10.1164/rccm.201209-1697OC.
87. Qiu G., Fan J., Zheng G., He J., Lin F., Ge M., Huang L., Wang J., Xia J., Huang R., Shu Q., Xu J. Diagnostic Potential of Plasma Extracellular Vesicle miR-483-3p and Let-7d-3p for Sepsis. Front Mol Biosci. 2022;9:814240. doi: 10.3389/fmolb.2022.814240.
88. Brook A.C., Jenkins R.H., Clayton A., Kift-Morgan A., Raby A.C., Shephard A.P., Mariotti B., Cuff S.M., Bazzoni F., Bowen T., Fraser D.J., Eberl M. Neutrophil-derived miR-223 as local biomarker of bacterial peritonitis. Sci Rep. 2019;9(1):10136. doi: 10.1038/s41598-019-46585-y.
89. Hermann S., Brandes F., Kirchner B., Buschmann D., Borrmann M., Klein M., Kotschote S., Bonin M., Reithmair M., Kaufmann I., Schelling G., Pfaffl M.W. Diagnostic potential of circulating cell-free microRNAs for community-acquired pneumonia and pneumonia-related sepsis. J Cell Mol Med. 2020;24(20):12054–64. doi: 10.1111/jcmm.15837.
90. Nik Mohamed Kamal N.N.S., Awang R.A.R., Mohamad S., Shahidan W.N.S. Plasma- and Saliva Exosome Profile Reveals a Distinct MicroRNA Signature in Chronic Periodontitis. Front Physiol. 2020;11:587381. doi: 10.3389/fphys.2020.587381.
91. Salomon C., Guanzon D., Scholz-Romero K., Longo S., Correa P., Illanes S.E., Rice G.E. Placental exosomes as early biomarker of preeclampsia: Potential role of exosomalmicrornas across gestation. J Clin Endocrinol Metab. 2017;102(9):3182–94. doi: 10.1210/jc.2017-00672.
Дополнительные файлы
Рецензия
Для цитирования:
Кудрявцев И.В., Головкин А.С., Тотолян А.А. ДИАГНОСТИЧЕСКАЯ ЗНАЧИМОСТЬ ОПРЕДЕЛЕНИЯ ОТДЕЛЬНЫХ СУБПОПУЛЯЦИЙ ВНЕКЛЕТОЧНЫХ ВЕЗИКУЛ В КЛИНИЧЕСКОЙ ПРАКТИКЕ. Комплексные проблемы сердечно-сосудистых заболеваний. 2024;13(3):202-216. https://doi.org/10.17802/2306-1278-2024-13-3-200-214
For citation:
Kudryavtsev I.V., Golovkin A.S., Totolyan A.A. DIAGNOSTIC POTENTIAL OF DETERMINING INDIVIDUAL EXTRACELLULAR VESICLES SUBSETS IN CLINICAL PRACTICE. Complex Issues of Cardiovascular Diseases. 2024;13(3):202-216. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-3-200-214