Activation of Notch signaling in endothelium cause upregulation of N-terminal acetylated histone 1
https://doi.org/10.17802/2306-1278-2022-11-4-98-104
Abstract
Highlights. Notch signaling is known to be important regulator of endothelium homeostasis and cardiovascular disease. Particularly, Notch seems to be associated with pathological changes in endothelium epigenome although no such Notch effects have been found. We have discovered that activation of Notch signaling alters histone 1 repertoire in the human endothelial cells and this is the first example of epigenomic Notch targets.
Aim. The disturbance of blood flow and alteration of physiological shear stress is one of the main reasons for endothelial dysfunction. Mechanosensitive and dosedependent Notch pathway is assumed to be an important player of endothelial dysfunction progression, but the molecular mechanisms of the influence of Notch dysregulation on endothelium are still not understood. In particular, there is no data about possible targets of Notch in the endothelial epigenome.
Methods. Here we focused on the analysis of changes in histone code of human umbilical vein endothelial cells (HUVEC) after activation of Notch. For this purpose, we transduced cells by lentiviruses with construction for Notch 1 intracellular domain (N1ICD) overexpression or by empty vector (control). Then we isolated histone enriched fraction and secretome proteins and performed their shotgun proteomics analysis on timsToF Pro instrument. Proteomics data are available via ProteomeXchange with identifier PXD032978.
Results. We found the shift in proteomics profile of HUVEC caused by Notch activation and, particularly, the increase in the levels of N-terminal acetylated forms of histone 1: H1-0, H1-3, H1-4, H1-5, H1-10. We also found changes in the cell secretome profile which are associated with the decrease in proangiogenic effect of HUVEC secretome.
Conclusion. Our data identified epigenomic Notch targets and we assume that changes in H1 repertoire might be associated with cardiovascular disease progression in vivo.
About the Authors
A. A. LobovRussian Federation
Lobov Arseniy A., Ph.D., senior researcher, Laboratory of regenerative biomedicine, Institute of Cytology of the Russian Academy of Science
4, Tikhoretsky Ave., St. Petersburg, 194064
D. A. Perepletchikova
Russian Federation
Perepletchikova Daria A., junior researcher, Laboratory of regenerative biomedicine
4, Tikhoretsky Ave., St. Petersburg, 194064
E. A. Repkin
Russian Federation
Repkin Egor A., specialist, Resource center “Development of molecular and cell technologies
7-9, Universitetskaya Embankment, St. Petersburg, 199034
A. B. Malashicheva
Russian Federation
Malashicheva Anna B., Ph.D., Head of the Laboratory of regenerative biomedicine
4, Tikhoretsky Ave., St. Petersburg, 194064
References
1. Fortini F, Vieceli Dalla Sega F, Marracino L, Severi P., Rapezzi C., Rizzo P., Ferrari R. Well-Known and Novel Players in Endothelial Dysfunction: Updates on a Notch(ed) Landscape. Biomedicines. 2021; 9(8):997. doi:10.3390/biomedicines9080997
2. Souilhol C, Serbanovic-Canic J, Fragiadaki M, Chico T.J., Ridger V., Roddie H., Evans P.C.Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol. 2020; 17(1):52-63. doi:10.1038/s41569-019-0239-5
3. Endemann D.H., Schiffrin E.L. Endothelial Dysfunction. Journal of the American Society of Nephrology. 2004; 15(8):1983-1992. doi:10.1097/01.ASN.0000132474.50966.DA
4. Sprinzak D., Blacklow S.C. Biophysics of Notch Signaling. Annu Rev Biophys. 2021; 50(1):157-189. doi:10.1146/annurev-biophys-101920-082204
5. Mack J.J., Mosqueiro T.S., Archer B.J., Jones W. M., Sunshine H., Faas G. C., Briot A., Aragón R. L., Su T., Romay M. C., McDonald A. I., Kuo C. H., Lizama C. O., Lane T. F., Zovein A. C., Fang Y., Tarling E. J., De Aguiar Vallim T. Q., Navab M., Fogelman A.M.,. Bouchard L.S, Iruela-Arispe M. L. NOTCH1 is a mechanosensor in adult arteries. Nat Commun. 2017; 8(1):1620. doi:10.1038/s41467-017-01741-8
6. Semenova D., Bogdanova M., Kostina A., Golovkin A., Kostareva A., Malashicheva A. Dose-dependent mechanism of Notch action in promoting osteogenic differentiation of mesenchymal stem cells. Cell Tissue Res. 2020; 379(1):169-179. doi:10.1007/s00441-019-03130-7
7. Theodoris C.V., Zhou P., Liu L., Zhang Y., Nishino T., Huang Y., Kostina A., Ranade S.S., Gifford C.A., Uspenskiy V., Malashicheva A., Ding S., Srivastava D. Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease. Science. 2021; 371(6530):eabd0724. doi:10.1126/science.abd0724
8. Jiang Y.Z., Manduchi E., Jiménez J.M., Davies P.F. Endothelial Epigenetics in Biomechanical Stress: Disturbed Flow–Mediated Epigenomic Plasticity In vivo and In vitro. ATVB. 2015; 35(6):1317-1326. doi:10.1161/ATVBAHA.115.303427
9. Malashicheva A., Kanzler B., Tolkunova E., Trono D., Tomilin A. Lentivirus as a tool for lineage-specific gene manipulations. genesis. 2007; 45(7):456-459. doi:10.1002/dvg.20313
10. Kostina A.S., Uspensky V.Е., Irtyuga O.B., Ignatieva E.V., Freylikhman O., Gavriliuk N.D., Moiseeva O.M., Zhuk S., Tomilin A., Kostareva А.А., Malashicheva A.B. Notchdependent EMT is attenuated in patients with aortic aneurysm and bicuspid aortic valve. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2016; 1862(4):733-740. doi:10.1016/j.bbadis.2016.02.006
11. R Core Team. R: A language and environment for statistical computing. Published online 2021. https://www.rproject.org/index.html 21.12.2022
12. Katoh M., Katoh M. Precision medicine for human cancers with Notch signaling dysregulation (Review). Int J Mol Med. 2019; 4. doi:10.3892/ijmm.2019.4418
13. Zhang R., Engler A., Taylor V. Notch: an interactive player in neurogenesis and disease. Cell Tissue Res. 2018; 371(1):73-89. doi:10.1007/s00441-017-2641-9
14. Ting H.A., de Almeida Nagata D., Rasky A.J., Malinczak C.A., Maillard I.P., Schaller M.A., Lukacs N.W. Notch ligand Delta-like 4 induces epigenetic regulation of Treg cell differentiation and function in viral infection. Mucosal Immunol. 2018; 11(5):1524-1536. doi:10.1038/s41385-018-0052-1
15. Kim H.A., Koo B.K., Cho J.H., Kim Y.Y., Seong J., Chang H.J., Oh Y.M., Stange D.E., Park J.G., Hwang D., Kong Y.Y. Notch1 counteracts WNT/β-catenin signaling through chromatin modification in colorectal cancer. J Clin Invest. 2012; 122(9):3248-3259. doi:10.1172/JCI61216
16. Demetriadou C., Koufaris C., Kirmizis A. Histone N-alpha terminal modifications: genome regulation at the tip of the tail. Epigenetics & Chromatin. 2020; 13(1):29. doi:10.1186/s13072-020-00352-w
17. Chikhirzhina E., Starkova T., Polyanichko A. The Role of Linker Histones in Chromatin Structural Organization. 1. H1 Family Histones. Biophysics. 2018; 63(6):858-865. doi:10.1134/S0006350918060064
18. Kamieniarz K., Izzo A., Dundr M., Tropberger P., Ozretic L., Kirfel J., Scheer E., Tropel P., Wisniewski J.R., Tora L., Viville S., Buettner R., Schneider R. A dual role of linker histone H1.4 Lys 34 acetylation in transcriptional activation. Genes Dev. 2012; 26(8):797-802. doi:10.1101/gad.182014.111
19. Yoneda M., Yasui K., Nakagawa T., Hattori N., Ito T. Nucleosome assembly protein 1 is a regulator of histone H1 acetylation. The Journal of Biochemistry. 2021; 170(6):763-773. doi:10.1093/jb/mvab098
20. Holt S.E., Aisner D.L., Baur J., Tesmer V.M., Dy M., Ouellette M., Trager J.B., Morin G.B., Toft D.O., Shay J.W., Wright W.E., White M.A. Functional requirement of p23 and Hsp90 in telomerase complexes. Genes & Development. 1999; 13(7):817-826. doi:10.1101/gad.13.7.817
21. Minamino T., Miyauchi H., Yoshida T., Ishida Y., Yoshida H., Komuro I. Endothelial Cell Senescence in Human Atherosclerosis: Role of Telomere in Endothelial Dysfunction. Circulation. 2002; 105(13):1541-1544. doi:10.1161/01.CIR.0000013836.85741.17
22. Suresh Babu S., Wojtowicz A., Freichel M., Birnbaumer L., Hecker M., Cattaruzza M. Mechanism of Stretch-Induced Activation of the Mechanotransducer Zyxin in Vascular Cells. Sci Signal. 2012; 5(254). doi:10.1126/scisignal.2003173
23. Torregrosa-Carrión R., Luna-Zurita L., García-Marqués F., D'Amato G., Piñeiro-Sabarís R., Bonzón-Kulichenko E., Vázquez J., de la Pompa J.L. NOTCH Activation Promotes Valve Formation by Regulating the Endocardial Secretome. Molecular & Cellular Proteomics. 2019; 18(9):1782-1795. doi:10.1074/mcp.RA119.001492
24. Münch J., Grivas D., González-Rajal Á., TorregrosaCarrión R., de la Pompa J.L. Notch signalling restricts inflammation and serpine1 in the dynamic endocardium of the regenerating zebrafish heart. Development. 2017; dev.143362. doi:10.1242/dev.143362
25. Yamashiro Y., Thang B.Q., Ramirez K., Shin S.J., Kohata T., Ohata S., Nguyen T.A.V., Ohtsuki S., Nagayama K., Yanagisawa H. Matrix mechanotransduction mediated by thrombospondin-1/integrin/YAP in the vascular remodeling. Proc Natl Acad Sci USA. 2020; 117(18):9896-9905. doi:10.1073/pnas.1919702117
Review
For citations:
Lobov A.A., Perepletchikova D.A., Repkin E.A., Malashicheva A.B. Activation of Notch signaling in endothelium cause upregulation of N-terminal acetylated histone 1. Complex Issues of Cardiovascular Diseases. 2022;11(4):98-104. (In Russ.) https://doi.org/10.17802/2306-1278-2022-11-4-98-104