Substantiation of protection of a neurovascular unit in the clinical model of cardiopulmonary bypass
https://doi.org/10.17802/2306-1278-2022-11-4-177-183
Abstract
This analytical review presents data on brain injury in surgical management of congenital heart disease. A brief description of mechanisms of brain injury and methods of its prevention are given, moreover, a clinical case applying such techniques is given. The neurovascular unit in vitro model and its advantages are presented. The protocol for modelling, the further application of the model, and the prospects of using it for studying intraoperative hypoxia and systemic inflammatory response on the patient`s brain are described.
About the Authors
A. A. IvkinRussian Federation
Ivkin Artem A., MD, Research Assistant at the Laboratory of Anesthesiology and Resuscitation, Intensive Care and Pathophysiology of Critical Illness, Department of Cardiovascular Surgery
6, Sosnoviy Blvd., Kemerovo, 650002
E. V. Grigoriev
Russian Federation
Grigoriev Evgeny V., PhD, Professor of the Russian Academy of Sciences, Deputy Director for Medicine and Scientific Work
6, Sosnoviy Blvd., Kemerovo, 650002
A. V. Morgun
Russian Federation
Morgun Andrey V., PhD, Dean of the Faculty of Pediatrics, Head of the Department of Polyclinic Pediatrics and Propaedeutics of Childhood Diseases
1, Partizan Zheleznyak St., Krasnoyarsk, 660022
References
1. Calderon J., Bellinger D.C. Executive function deficits in congenital heart disease: why is intervention important? Cardiology in the Young. 2015; 25(7): 1238‐1246. doi:10.1017/S1047951115001134
2. Alvarez R.V., Palmer C., Czaja A.S., Peyton C., Silver G., Traube C., Mourani P.M., Kaufman J. Delirium is a Common and Early Finding in Patients in the Pediatric Cardiac Intensive Care Unit. The Journal of pediatrics. 2018; 195: 206-212. doi:10.1016/j.jpeds.2017.11.064
3. Ivkin А.А., Grigoriev E.V., Tsepokina А.V., Shukevich D.L. Postoperative delirium in children in undergoing treatment of congenital septal heart defects. Messenger of Anesthesiology and Resuscitation. 2021;18(2):62-68. (In Russian) doi: 10.21292/2078-5658-2021-18-2-62-68
4. Ferraris V.A., Ballert E.Q., Mahan A. The relationship between intraoperative blood transfusion and postoperative systemic inflammatory response syndrome. The American Journal of Surgery. 2013; 205 (4): 457-465. doi:10.1016/j.amjsurg.2012.07.042
5. Torbett B.E., Baird A., Eliceiri B.P. Understanding the rules of the road: proteomic approaches to interrogate the blood brain barrier. Frontiers in Neuroscience. 2015; 9:70. doi:10.3389/fnins.2015.00070
6. Hansen T.G. Anesthesia-related neurotoxicity and the developing animal brain is not a significant problem in children. Paediatric Anaesthesia. 2015;25(1):65-72. doi: 10.1111/pan.12548
7. Jevtovic-Todorovic V. General Anesthetics and Neurotoxicity: How Much Do We Know? Anesthesiology Clinics. 2016;34(3):439-451. doi:10.1016/j.anclin.2016.0 4.001
8. Denes A., Vidyasagar R., Feng J., Narvainen J., McColl B.W., Kauppinen R.A., Allan S.M.J. Proliferating resident microglia after focal cerebral ischaemia in mice. Journal of Cerebral Blood Flow and Metabolism. 2007;27(12): 1941 1953. doi:10.1038/sj.jcbfm.9600 495
9. Kaushal V., Schlichter L.C. Mechanisms of microgliamediated neurotoxicity in a new model of the stroke penumbra. Journal of Neuroscience. 2008;28(9):2221-2230. doi:10.1523/JNEUROSCI.5643-07.2008
10. Christov A., Ottman J.T., Grammas P. Vascular inflammatory, oxidative and protease-based processes: implications for neuronal cell death in Alzheimer’s disease. Neurological Research. 2004;26(5):540-546. doi:10.1179/016164104225016218
11. Botwinski C.A. Systemic inflammatory response syndrome. Neonatal Network. 2001;20(5):21-8. doi:110.1891/0730-0832.20.5.21.
12. Wang Y., Lin X., Yue H., Kissoon N., Sun B. Evaluation of systemic inflammatory response syndrome-negative sepsis from a Chinese regional pediatric network. Collaborative Study Group for Pediatric Sepsis in Huai’an BMC Pediatric. 2019; 8; 19 (1): 11. doi:10.1186/s12887-018-1364-8.
13. Toomasian C.J., Aiello S.R.., Drumright B.L., Major T.C., Bartlett R.H., Toomasian J.M. The effect of air exposure on leucocyte and cytokine activation in an in-vitro model of cardiotomy suction. Perfusion. 2018; 33: 538–545. doi:10.1177/0267659118766157
14. Guvener M., Korun O., Demirturk O.S. Risk factors for systemic inflammatory response after congenital cardiac surgery. Journal of Cardiac Surgery. 2015; 30: 92–96. doi:10.1111/jocs.12465.
15. Boettcher W., Merkle F., Huebler M., Koster A., Schulz F., Kopitz M., Kuppe H., Lange P., Hetzer R. Transfusion-free cardiopulmonary bypass in Jehovah's Witness patients weighing less than 5 kg. J Extra Corpor Technol. 2005; 37(3):282-5. PMID: 16350381 PMCID: PMC4680786
16. Delaney M., Stark P.C., Suh M., Triulzi D.J., Hess J.R., Steiner M.E., Stowell C.P., Sloan S.R. The Impact of Blood Component Ratios on Clinical Outcomes and Survival. Anesthesia and Analgesia. 2017; 124(6): 1777-1782. doi:10.1213/ANE.0000000000001926
17. Grigoriev E.V., Shukevich D.L., Borisenko D.V., Ivkin A.A., Kornelyuk R.A. The method of vacuum ultrafiltration of extracorporeal circuit perfusate in children with blood reinfusion. Russia patent RU2773741C1. 2022 Jun 08 (In Russian)
18. Ivkin A.A., Borisenko D.V., Tsepokina A.V., Grigoryev E.V., Shukevich D.L. Renouncement of red blood cells for heartlung machine filling for perioperative prevention of cerebral injury in children undergoing cardiac surgery. Russian Journal of Anaesthesiology and Reanimatology [Anesteziologiya i Reanimatologiya]. 2021;4:56–63. (In Russian). doi:10.17116/anaesthesiology202104156
19. Borisenko D.V., Ivkin A.A., Shukevich D.L., Kornelyuk R.A. The Effect of Erythrocyte-Containing Donor Blood Components in the Priming of the Cardiopulmonary Bypass Circuit on the Development of Systemic Inflammation During Correction of Congenital Heart Defects in Children. Obshchaya Reanimatologiya [General Reanimatology]. 2022; 18 (3): 30–37. (In Russian) doi:10.15360/1813-9779-2022-3-30-37
20. Rothoerl R. D., Brawanski A., Woertgen C. S100B protein serum levels after controlled cortical impact injury in the rat. Acta Neurochir. (Wien) 2001; 142 (2): 199—203.
21. Schafer B. W., Fritschy J. M., Murmann P., Troxler H., Durussel I., Heizmann C.W., Cox J.A. Brain S100A5 is a novel calciumzinc and copper ionbinding protein of the EFhand super family. J. Biol. Chem. 2000; 275 (39): 30623—30630. doi:10.1074/jbc.M002260200
Review
For citations:
Ivkin A.A., Grigoriev E.V., Morgun A.V. Substantiation of protection of a neurovascular unit in the clinical model of cardiopulmonary bypass. Complex Issues of Cardiovascular Diseases. 2022;11(4):177-183. (In Russ.) https://doi.org/10.17802/2306-1278-2022-11-4-177-183