Preview

Complex Issues of Cardiovascular Diseases

Advanced search

Evaluation of hemodynamic significance for paraprosthetic fistula after transcatheter aortic valve implantation

https://doi.org/10.17802/2306-1278-2022-11-4S-153-162

Abstract

Highlights. Using ECHO and MSCT data, a numerical assessment of hemodynamic effects of paraprosthetic regurgitation following transcatheter aortic valve replacement was performed. A significant increase in the fluid flow, wall and viscous shear stresses in the area of regurgitation is shown. The modeling technique described in the paper can be used prospectively in assessing the optimal treatment modality in terms of predicting the quantitative characteristics of the flow, associated with the risks of destruction of red blood cells and thrombosis

Aim. To make a numerical assessment of hemodynamic effects of paraprosthetic regurgitation following transcatheter aortic valve replacement based on retrospective clinical data.

Methods. The study included echocardiography and multi-slice computed tomography data as input data for modeling one pulsation of a fluid similar in properties to blood. Reconstruction of the paraprosthetic fistula and the ascending aorta was performed in the Mimics medium (Materialise, Belgium). The obtained 3D models were processed in the Salome software (OPEN CASCADE SAS, France), after which they were exported to HELYX-OS (ENGYS, Great Britain) to build a finite element mesh. The flows were modeled using the OpenFOAM software package version 6 (The OpenFOAM Foundation Ltd, UK).

Results. The simulation result, expressed quantitatively and qualitatively in the form of diagrams of the measured parameters – fluid flow velocities, wall and viscous shear stresses, shows a significant increase in indicators in the area of paraprosthetic regurgitation. Thus, the velocity in the affected area was 1.9–4.2 m/s, which is 3.8 higher than the average value in the entire computational area. The wall shear stress value was up to 61 Pa in the critical area, which may indicate an increased risk of thrombus formation due to the initiation of the clotting cascade through the von Willebrand factor. The value of viscous shear stress, the main component of the destruction of red blood cells in laminar flow, amounted to 20–26 Pa, which, in general, is not enough for mechanical hemolysis.

Conclusion. The modeling technique described in the paper can be used prospectively in assessing the optimal treatment modality in terms of predicting the quantitative characteristics of the flow, associated with the risks of destruction of red blood cells and thrombosis.

About the Authors

E. A. Ovcharenko
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Evgeny A. Ovcharenko - PhD, Head of the Laboratory for Novel Biomaterials, Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002


Competing Interests:

No



P. S. Onishchenko
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Pavel S. Onishchenko - Junior Researcher at the Laboratory for Novel Biomaterials, Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002


Competing Interests:

No



K. Yu. Klyshnikov
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Kirill Y. Klyshnikov - PhD, Researcher at the Laboratory for Novel Biomaterials, Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002


Competing Interests:

No



V. I. Ganyukov
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Vladimir I. Ganyukov - PhD, Head of the Department of Cardiovascular Surgery, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002


Competing Interests:

No



A. A. Shilov
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Alexander A. Shilov - PhD, Senior Researcher at the Laboratory of Endovascular and Reconstructive Cardiovascular Surgery, Department of Cardiovascular Surgery, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002


Competing Interests:

No



I. E. Vereshchagin
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Ivan E. Vereshchagin - PhD, Researcher at the Laboratory of Endovascular and Reconstructive Cardiovascular Surgery, Department of Cardiovascular Surgery, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002


Competing Interests:

No



A. N. Kokov
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Alexander N. Kokov - PhD, Head of the Laboratory of Diagnostic Radiology, Department of Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002


Competing Interests:

No



R. S. Tarasov
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Roman S. Tarasov - PhD, Head of the Laboratory of Endovascular and Reconstructive Cardiovascular Surgery, Department of Cardiovascular Surgery, Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002


Competing Interests:

No



L. S. Barbarash
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Leonid S. Barbarash - Academician of the Russian Academy of Sciences, Chief Researcher at the Research Institute for Complex Issues of Cardiovascular Diseases.

6, Sosnoviy Blvd., Kemerovo, 650002


Competing Interests:

Л.С. Барбараш является главным редактором журнала «Комплексные проблемы сердечно-сосудистых заболеваний»



References

1. Rocatello G., El Faquir N., De Santis G., Iannaccone F., Bosmans J., De Backer O., Sondergaard L., Segers P., De Beule M., De Jaegere P., Mortier P. Patient-Specific Computer Simulation to Elucidate the Role of Contact Pressure in the Development of New Conduction Abnormalities After Catheter-Based Implantation of a Self-Expanding Aortic Valve. Circulation. Cardiovascular interventions. Circ Cardiovasc Interv; 2018; 11(2). doi:10.1161/CIRCINTERVENTIONS.117.005344

2. Perlman G.Y., Blanke P., Webb J.G. Transcatheter aortic valve implantation in bicuspid aortic valve stenosis. EuroIntervention. EuroPCR; 2016; 12: Y42–Y45. doi:10.4244/EIJV12SYA10

3. Thyregod H.G.H., Steinbrüchel D.A., Ihlemann N., Nissen H., Kjeldsen B.J., Petursson P., Chang Y., Franzen O.W., Engstrøm T., Clemmensen P., Hansen P.B., Andersen L.W., Olsen P.S., Søndergaard L. Transcatheter Versus Surgical Aortic Valve Replacement in Patients With Severe Aortic Valve Stenosis: 1-Year Results From the All-Comers NOTION Randomized Clinical Trial. Journal of the American College of Cardiology. J Am Coll Cardiol; 2015; 65(20): 2184–2194. doi:10.1016/J.JACC.2015.03.014

4. Mao W., Wang Q., Kodali S., Sun W. Numerical Parametric Study of Paravalvular Leak Following a Transcatheter Aortic Valve Deployment Into a Patient-Specific Aortic Root. Journal of biomechanical engineering. J Biomech Eng; 2018; 140(10). doi:10.1115/1.4040457

5. Bosmans B., Famaey N., Verhoelst E., Bosmans J., Vander Sloten J. A validated methodology for patient specific computational modeling of self-expandable transcatheter aortic valve implantation. Journal of biomechanics. J Biomech; 2016; 49(13): 2824–2830. doi:10.1016/J.JBIOMECH.2016.06.024

6. Saeedi A. Energetic and Hemodynamic Characteristics of Paravalvular Leak Following Transcatheter Aortic Valve Replacement. Concordia University, Montreal, Quebec, Canada; 2015.

7. El Faquir N., Ren B., van Mieghem N.M., Bosmans J., de Jaegere P.P. Patient-specific computer modelling - its role in the planning of transcatheter aortic valve implantation. Netherlands heart journal : monthly journal of the Netherlands Society of Cardiology and the Netherlands Heart Foundation. Neth Heart J; 2017; 25(2): 100–105. doi:10.1007/S12471-016-0923-6

8. Ovcharenko E.A., Klyshnikov K.U., Yuzhalin A.E., Savrasov G. V., Kokov A.N., Batranin A. V., Ganyukov V.I., Kudryavtseva Y.A. Modeling of transcatheter aortic valve replacement: Patient specific vs general approaches based on finite element analysis. Computers in Biology and Medicine. 2016; doi:10.1016/j.compbiomed.2015.12.001

9. Samavat H., Evans J.A. An ideal blood mimicking fluid for doppler ultrasound phantoms. Journal of Medical Physics / Association of Medical Physicists of India. Wolters Kluwer -- Medknow Publications; 2006; 31(4): 275. doi:10.4103/0971-6203.29198

10. Ferziger J.H., Perić M. Computational Methods for Fluid Dynamics. Computational Methods for Fluid Dynamics. Berlin: Springer; 2002. doi:10.1007/978-3-642-56026-2

11. Issa R.I. Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics.Academic Press; 1986; 62(1): 40–65. doi:10.1016/0021-9991(86)90099-9

12. Рагулин В.В. К задаче о протекании вязкой жидкости сквозь ограниченную область при заданном перепаде давления или напора. Динамика сплошной среды. 1976; (27): 78.

13. Robertson A.M., Sequeira A., Owens R.G. Rheological models for blood. Modeling, Simulation and Applications. Springer, Milano; 2009; 1: 211–241. doi:10.1007/978-88-470-1152-6_6

14. Koos R., Mahnken A.H., Dohmen G., Brehmer K., Günther R.W., Autschbach R., Marx N., Hoffmann R. Association of aortic valve calcification severity with the degree of aortic regurgitation after transcatheter aortic valve implantation. International journal of cardiology. Int J Cardiol; 2011; 150(2): 142–145. doi:10.1016/J.IJCARD.2010.03.004

15. Mihara H., Shibayama K., Berdejo J., Harada K., Itabashi Y., Siegel R.J., Kashif M., Jilaihawi H., Makkar R.R., Shiota T. Impact of device landing zone calcification on paravalvular regurgitation after transcatheter aortic valve replacement: a real-time three-dimensional transesophageal echocardiographic study. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. J Am Soc Echocardiogr; 2015; 28(4): 404–414. doi:10.1016/J.ECHO.2014.11.013

16. Sakrana A.A., Nasr M.M., Ashamallah G.A., Abuelatta R.A., Naeim H.A., El Tahlawi M.A. Paravalvular leak after transcatheter aortic valve implantation: is it anatomically predictable or procedurally determined? MDCT study. Clinical radiology. Clin Radiol; 2016; 71(11): 1095–1103. doi:10.1016/J.CRAD.2016.07.016

17. Marwan M., Achenbach S., Ensminger S.M., Pflederer T., Ropers D., Ludwig J., Weyand M., Daniel W.G., Arnold M. CT predictors of post-procedural aortic regurgitation in patients referred for transcatheter aortic valve implantation: an analysis of 105 patients. The international journal of cardiovascular imaging. Int J Cardiovasc Imaging; 2013; 29(5): 1191–1198. doi:10.1007/S10554-013-0197-7

18. Sun W., Li K., Sirois E. Simulated elliptical bioprosthetic valve deformation: Implications for asymmetric transcatheter valve deployment. Journal of Biomechanics. J Biomech; 2010; 43(16): 3085–3090. doi:10.1016/j.jbiomech.2010.08.010

19. Morshed K.N., Bark D., Forleo M., Dasi L.P. Theory to Predict Shear Stress on Cells in Turbulent Blood Flow. PLOS ONE. Public Library of Science; 2014; 9(8): e105357. doi:10.1371/JOURNAL.PONE.0105357

20. Han S.I., Marseille O., Gehlen C., Blümich B. Rheology of blood by NMR. Journal of magnetic resonance (San Diego, Calif. : 1997). J Magn Reson; 2001; 152(1): 87–94. doi:10.1006/JMRE.2001.2387

21. Yen J.H., Chen S.F., Chern M.K., Lu P.C. The effect of turbulent viscous shear stress on red blood cell hemolysis. Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs. J Artif Organs; 2014; 17(2): 178– 185. doi:10.1007/S10047-014-0755-3

22. Jhun C.S., Stauffer M.A., Reibson J.D., Yeager E.E., Newswanger R.K., Taylor J.O., Manning K.B., Weiss W.J., Rosenberg G. Determination of Reynolds shear stress level for hemolysis. ASAIO Journal. Lippincott Williams and Wilkins; 2017; 64(1): 63–69. doi:10.1097/MAT.0000000000000615

23. Goubergrits L., Osman J., Mevert R., Kertzscher U., Pöthkow K., Hege H.C. Turbulence in blood damage modeling. International Journal of Artificial Organs. Wichtig Publishing Srl; 2016; 39(4): 160–165. doi:10.5301/ijao.5000476

24. Geers A.J., Morales H.G., Larrabide I., Butakoff C., Bijlenga P., Frangi A.F. Wall shear stress at the initiation site of cerebral aneurysms. Biomechanics and Modeling in Mechanobiology. 2017; 16(1): 97–115. doi:10.1007/s10237-016-0804-3

25. Casa L.D.C., Deaton D.H., Ku D.N. Role of high shear rate in thrombosis. Journal of Vascular Surgery. 2015; 61(4): 1068–1080. doi:10.1016/j.jvs.2014.12.050


Review

For citations:


Ovcharenko E.A., Onishchenko P.S., Klyshnikov K.Yu., Ganyukov V.I., Shilov A.A., Vereshchagin I.E., Kokov A.N., Tarasov R.S., Barbarash L.S. Evaluation of hemodynamic significance for paraprosthetic fistula after transcatheter aortic valve implantation. Complex Issues of Cardiovascular Diseases. 2022;11(4S):153-162. (In Russ.) https://doi.org/10.17802/2306-1278-2022-11-4S-153-162

Views: 516


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)