Preview

Complex Issues of Cardiovascular Diseases

Advanced search

Therapeutic angiogenesis as an advanced direction for potentiating the angiogenic effect of coronary artery bypass grafting

https://doi.org/10.17802/2306-1278-2023-12-1-118-128

Abstract

Highlights. This review systematizes the results of experimental and clinical studies on the impact of coronary artery bypass grafting on angiogenesis and potential use of pyrimidine derivatives for therapeutic angiogenesis.

Abstract. Coronary artery bypass grafting is the preferred treatment modality for multivessel coronary artery disease. However, the clinical efficacy of the procedure decreases over time due to the progression of atherosclerosis in the bypass grafts and native coronary arteries. In this regard, it is of great scientific and practical interest to disclose the mechanisms affecting the development of the microvasculature during myocardial surgical revascularization, as well as the search for pharmacological substances capable of stimulating the process of angiogenesis during these surgeries to improve short and long-term outcomes. The article presents a review of experimental and clinical studies on the effect of coronary artery bypass surgery on angiogenesis and highlights the place of pyrimidine derivatives in therapeutic angiogenesis in coronary artery disease.

About the Authors

B. A. Oleynik
Federal State Budgetary Educational Institution of Higher Educational “Bashkir State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Oleynik Bogdan A., PhD, Associate Professor of the Department of Advanced Surgery, 

3, Lenina St., Ufa, 450008



V. V. Plechev
Federal State Budgetary Educational Institution of Higher Educational “Bashkir State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Plechev Vladimir V., PhD, Professor, Head of the Department of Advanced Surgery,

3, Lenina St., Ufa, 450008



V. I. Starodobov
Federal Research Institute for Health Organization and Informatics of the Ministry of Health of the Russian Federation
Russian Federation

Starodobov Vladimir I., Academician of the Russian Academy of Sciences, PhD, Professor, Director,

11, Dobrolyubova St., Moscow, 127254



V. A. Evdakov
Federal Research Institute for Health Organization and Informatics of the Ministry of Health of the Russian Federation
Russian Federation

Evdakov Valerian A., PhD, Professor Chief Researcher at the Department of Scientific Foundations of Healthcare Organization, 

11, Dobrolyubova St., Moscow, 127254



R. I. Izhbuldin
Federal State Budgetary Educational Institution of Higher Educational “Bashkir State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Izhbuldin Ramil I., PhD, Professor of the Department of Advanced Surgery,

3, Lenina St., Ufa, 450008



References

1. Gaudino M., Hameed I., Farkouh M. E., Rahouma M., Naik A., Robinson N.B., Ruan Y., Demetres M., Biondi-Zoccai G., Angiolillo D.J., Bagiella E., Charlson M.E., Benedetto U., Ruel M., Taggart D.P., Girardi L.N., Bhatt D.L., Fremes S.E. Overall and Cause-Specific Mortality in Randomized Clinical Trials Comparing Percutaneous Interventions With Coronary Bypass Surgery: A Meta-analysis. JAMA Internal Medicine. 2020;180:1638–1646. doi: 10.1001/jamainternmed.2020.4748.

2. Doenst T., Haverich A., Serruys P., Bonow R.O., Kappetein P., Falk V., Velazquez E., Diegeler A., Sigusch H. PCI and CABG for Treating Stable Coronary Artery Disease: JACC Review Topic of the Week. Journal of the American College of Cardiology. 2019;73:964–9. doi: 10.1016/j.jacc.2018.11.053

3. Glineur D., Rahouma M., Grau J.B., Etienne P.Y., Fortier J.H., Papadatos S., Laruelle C., Pieters D., El Khoury E., Gaudino M. FFR Cutoff by Arterial Graft Configuration and Location. JACC: Cardiovascular Interventions. 2020;13(1):143–4. doi: 10.1016/j.jcin.2019.08.013

4. Spadaccio C., Antoniades C., Nenna A., Chung C., Will R., Chello M., Gaudino M.F.L. Preventing treatment failures in coronary artery disease: What can we learn from the biology of in-stent restenosis, vein graft failure, and internal thoracic arteries? Cardiovascular Research. 2020; 116(3): 505–519. doi: 10.1093/cvr/cvz214

5. Allahwala U.K., Khachigian L.M., Nour D., Ridiandres A, Billah M., Ward M., Weaver J., Bhindi R. Recruitment and maturation of the coronary collateral circulation: Current understanding and perspectives in arteriogenesis. Microvascular Research. 2020;132:104058. doi: 10.1016/j.mvr.2020.104058

6. Schaper W., Scholz D. Factors Regulating Arteriogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2003;23(7):1143–51. doi: 10.1161/01.atv.0000069625.11230.96

7. Potz B. A., Parulkar A. B., Abid R. M., Sodha N.R., Sellke F.W. Novel molecular targets for coronary angiogenesis and ischemic heart disease. Coronary Artery Disease. 2017;28:605– 613. doi: 10.1097/MCA.0000000000000516.

8. Silvestre J-S., Smadja D.M., Lévy B.I. Postischemic Revascularization: From Cellular and Molecular Mechanisms to Clinical Applications. Physiological Reviews. 2013;93(4):1743– 802. doi: 10.1152/physrev.00006.2013

9. Aikawa T., Naya M., Koyanagawa K., Manabe O., Obara M., Magota K., Oyama-Manabe N., Tamaki N., Anzai T. Improved regional myocardial blood fow and fow reserve after coronary revascularization as assessed by serial 15O-water positron emission tomography/computed tomography. European Heart Journal Cardiovascular Imaging. 2020;21:36–46. doi: 10.1093/ehjci/jez220.

10. Balogh V., MacAskill M.G., Hadoke P.W.F., Gray G.A., Tavares A.A.S. Positron Emission Tomography Techniques to Measure Active Inflammation, Fibrosis and Angiogenesis: Potential for Non-invasive Imaging of Hypertensive Heart Failure. Frontiers in Cardiovascular Medicine. 2021;8:719031. doi: 10.3389/fcvm.2021.719031

11. Jenkins W.S.A., Vesey A.T., Stirrat C., Connell M., Lucatelli C., Neale A., Moles C., Vickers A., Fletcher A., Pawade T., Wilson I., Rudd J.H., van Beek E.J., Mirsadraee S., Dweck M.R., Newby D.E. Cardiac αVβ3integrin expression following acute myocardial infarction in humans. Heart. 2016;103(8):607–15. doi: 10.1136/heartjnl-2016-310115

12. Ferguson, T. B. Physiology of in-situ arterial revascularization in coronary artery bypass grafting: Preoperative, intraoperative and postoperative factors and infuences. World Journal of Cardiology. 2016;8(11):623–637. doi: 10.4330/wjc.v8.i11.623

13. Shimizu T., Ito S., Kikuchi Y., Misaka M., Hirayama T., Ishimaru S., Yamashina A. Arterial conduit shear stress following bypass grafting for intermediate coronary artery stenosis: a comparative study with saphenous vein grafts. European Journal of Cardio-Thoracic Surgery. 2004;25(4):578–84. doi: 10.1016/j.ejcts.2003.12.039

14. Davies P.F. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nature Clinical Practice Cardiovascular Medicine. 2008;6(1):16–26. doi: 10.1038/ncpcardio1397

15. Gutterman D. D., Chabowski D. S., Kadlec A. O., Durand M.J., Freed J.K., Ait-Aissa K., Beyer A.M. The Human Microcirculation: Regulation of Flow and Beyond. Circulation Research. 2016;118:157–172. doi: 10.1161/CIRCRESAHA.115.305364.

16. Spadaccio C., Nappi F., Al-Attar N., Coccia R., Perluigi M., Di Domenico F. CURRENT DEVELOPMENTS IN DRUG ELUTING DEVICES: Introductory Editorial: Drug-Eluting Stents or Drug-Eluting Grafts? Insights from Proteomic Analysis. Drug Target Insights. 2017 Jan 3;10(Suppl 1):15-19. doi: 10.4137/DTI.S41240.

17. Wang Y., Gabrielsen A., Lawler P.R., Paulsson-Berne G., Steinbrüchel D.A., Hansson G.K., Kastrup J. Myocardial Gene Expression of Angiogenic Factors in Human Chronic Ischemic Myocardium: Influence of Acute Ischemia/Cardioplegia and Reperfusion. Microcirculation. 2006;13(3):187–97. doi: 10.1080/10739680600556811

18. Cotton J. Acute rise of circulating vascular endothelial growth factor-A in patients with coronary artery disease following cardiothoracic surgery. European Heart Journal. 2002;23(12):953– 9. doi: 10.1053/euhj.2001.3034

19. Denizot Y., Leguyader A., Cornu E., Laskar M., Orsel I., Vincent C., Nathan N. Alterations in plasma soluble vascular endothelial growth factor receptor-1 (sFlt-1) concentrations during coronary artery bypass graft surgery: relationships with post-operative complications. Journal of Cardiothoracic Surgery. 2008;3:16. doi: 10.1186/1749-8090-3-16

20. Tarr F.I., Sasvári M., Tarr M., Rácz R. Evidence of Nitric Oxide Produced by the Internal Mammary Artery Graft in Venous Drainage of the Recipient Coronary Artery. The Annals of Thoracic Surgery. 2005;80(5):1728–31. doi: 10.1016/j.athoracsur.2005.05.005

21. Tarr F., Dudas G., Tarr M., Rácz R., Sasvári M., Tomcsányi I. Analysis of the stable metabolite of endothelium-derived nitric oxide of internal mammary artery bypass grafts at the venous drainage system of the recipient coronary artery. Morphologic implications and consequences. Orvosi Hetilap. 2002;143(45):2549–2552.

22. Liu Z-G., Ge Z-D., He G-W. Difference in EndotheliumDerived Hyperpolarizing Factor–Mediated Hyperpolarization and Nitric Oxide Release Between Human Internal Mammary Artery and Saphenous Vein. Circulation. 2000;102(3):296-301 doi: 10.1161/circ.102.suppl_3.iii-296

23. Jürgensen J.S., Rosenberger C., Wiesener M.S., Warnecke C., Hörstrup J.H., Gräfe M., Philipp S., Griethe W., Maxwell P.H., Frei U., Bachmann S., Willenbrock R., Eckardt K.U. Persistent induction of HIF‐1α and ‐2α in cardiomyocytes and stromal cells of ischemic myocardium. The FASEB Journal. 2004;18(12):1415–7. doi: 10.1096/fj.04-1605fje

24. Podemska-Jedrzejczak Z., Malinska A., Sujka-Kordowska P., Nowicki M., Puslecki M., Jemielity M., Perek B. Vascular restenosis in coronary artery bypass grafting might be associated with VEGF-C/VEGFR-3 signaling pathway. Heart and Vessels. 2018;33(9):1106–20. doi: 10.1007/s00380-018-1158-9

25. de la Cuesta F., Alvarez-Llamas G., Maroto A.S., Donado A., Zubiri I., Posada M., Padial L.R., Pinto A.G., Barderas M.G., Vivanco F. A proteomic focus on the alterations occurring at the human atherosclerotic coronary intima. Mol Cell Proteomics. 2011;10(4):M110.003517. doi: 10.1074/mcp.M110.003517.

26. Numaguchi R., Furuhashi M., Matsumoto M., Sato H., Yanase Y., Kuroda Y., Harada R., Ito T., Higashiura Y., Koyama M., Tanaka M., Moniwa N., Nakamura M., Doi H., Miura T., Kawaharada N. Differential Phenotypes in Perivascular Adipose Tissue Surrounding the Internal Thoracic Artery and Diseased Coronary Artery. Journal of the American Heart Association. 2019;8(2): e011147. doI: 10.1161/jaha.118.011147

27. Ferguson T.B., Chen C., Babb J.D., Efird J.T., Daggubati R., Cahill J.M. Fractional flow reserve–guided coronary artery bypass grafting: Can intraoperative physiologic imaging guide decision making? The Journal of Thoracic and Cardiovascular Surgery. 2013;146(4):824-835. doi: 10.1016/j.jtcvs.2013.06.026

28. Loukas M., Hanna M., Chen J., Tubbs R.S., Anderson R.H. Extracardiac coronary arterial anastomoses. Clinical Anatomy. 2010;24(2):137–42. doi: 10.1002/ca.21088

29. Picichè M., Versaci F.. Neoangiogenesis connecting a left internal mammary artery proximal stump to an ischemic area of the heart after bypass occlusion. Journal of Cardiac Surgery. 2019;35(2):464–6. doi: 10.1111/jocs.14353

30. Stoller M., de Marchi S.F., Seiler C. Function of Natural Internal Mammary–to–Coronary Artery Bypasses and Its Effect on Myocardial Ischemia. Circulation. 2014;129(25):2645–52. doi: 10.1161/circulationaha.114.008898

31. Cao X., Li B., Han X., Zhang X., Dang M., Wang H., Du F., Zeng X., Guo C. Soluble receptor for advanced glycation endproducts promotes angiogenesis through activation of STAT3 in myocardial ischemia/reperfusion injury. Apoptosis. 2020;25(5– 6):341–53. doi: 10.1007/s10495-020-01602-8

32. Chang H., Li Z.B., Wu J.Y., Zhang L. Circ-100338 induces angiogenesis after myocardial ischemia-reperfusion injury by sponging miR-200a-3p. European Review for Medical and Pharmacological Sciences. 2020;24:6323–6332. doi: 10.26355/eurrev_202006_21530

33. Tatoulis J., Buxton B.F., Fuller J.A. Patencies of 2,127 arterial to coronary conduits over 15 years. The Annals of Thoracic Surgery. 2004;77(1):93–101. doi: 10.1016/s0003-4975(03)01331-6

34. Bi W., Wang J., Jiang Y., Li Q., Wang S., Liu M., Liu Q., Li F., Paul C., Wang Y., Yang H.T. Neurotrophin-3 contributes to benefits of human embryonic stem cell-derived cardiovascular progenitor cells against reperfused myocardial infarction. Stem Cells Translational Medicine. 2021;10(5):756–72. doi: 10.1002/sctm.20-0456

35. Sabra M., Karbasiafshar C., Aboulgheit A., Raj S., Abid M.R., Sellke F.W. Clinical Application of Novel Therapies for Coronary Angiogenesis: Overview, Challenges, and Prospects. International Journal of Molecular Sciences. 2021;22(7):3722. doi: 10.3390/ijms22073722

36. Muona K., Mäkinen K., Hedman M., Manninen H., Ylä-Herttuala S. 10-year safety follow-up in patients with local VEGF gene transfer to ischemic lower limb. Gene Therapy. 2011;19(4):392–5. doi: 10.1038/gt.2011.109

37. Silvestre J-S., Smadja D.M., Lévy B.I. Postischemic Revascularization: From Cellular and Molecular Mechanisms to Clinical Applications. Physiological Reviews. 2013;93(4):1743– 802. doi: 10.1152/physrev.00006.2013

38. Nusca A., Patti G. Platelet Function and Inhibition in Ischemic Heart Disease. Current Cardiology Reports. 2012;14(4):457–67. doi: 10.1007/s11886-012-0280-z

39. Teuscher E., Weidlich V. Adenosine nucleotides, adenosine and adenine as angiogenesis factors. Biomed Biochim Acta. 1985;44(3):493-5.

40. Satterwhite С. M., Angela M. F., Bradley M. E. Chemotactic, mitogenic, and angiogenic actions of UTP on vascular endothelial cells. Am. J. Physiol. 1999;276(3):1091-7. doi: 10.1152/ajpheart.1999.276.3.H1091

41. Amer M.S., McKinney G.R. Cyclic Nucleotides and Drug Discovery. Annual Reports in Medicinal Chemistry Volume. 1974;203–12. doi: 10.1016/s0065-7743(08)61442-6

42. Eckstein R.W. Effect of Exercise and Coronary Artery Narrowing on Coronary Collateral Circulation. Circulation Research. 1957;5(3):230–5. doi: 10.1161/01.res.5.3.230

43. McIntosh V.J., Lasley R.D. Adenosine Receptor-Mediated Cardioprotection. Journal of Cardiovascular Pharmacology and Therapeutics. 2011;17(1):21–33. doi: 10.1177/1074248410396877

44. Auchampach J.A. Adenosine Receptors and Angiogenesis. Circulation Research. 2007;101(11):1075–7. doi: 10.1161/circresaha.107.165761

45. Ernens I., Bousquenaud M., Lenoir B., Devaux Y., Wagner D.R. Adenosine stimulates angiogenesis by up-regulating production of thrombospondin-1 by macrophages. Journal of Leukocyte Biology. 2014;97(1):9–18. doi: 10.1189/jlb.3hi0514-249rr

46. Piccirillo F., Carpenito M., Verolino G., Chello C., Nusca A., Lusini M., Spadaccio C., Nappi F., Di Sciascio G., Nenna A. Changes of the coronary arteries and cardiac microvasculature with aging: Implications for translational research and clinical practice. Mechanisms of Ageing and Development. 2019; 184: 111-161. doi: 10.1016/j.mad.2019.111161.

47. Ebrahimian T.G., Heymes C., You D., Blanc-Brude O., Mees B., Waeckel L., Duriez M., Vilar J., Brandes R.P., Levy B.I., Shah A.M., Silvestre J.S. NADPH Oxidase-Derived Overproduction of Reactive Oxygen Species Impairs Postischemic Neovascularization in Mice with Type 1 Diabetes. The American Journal of Pathology. 2006;169(2):719–28. doI: 10.2353/ajpath.2006.060042

48. Haddad P., Dussault S., Groleau J., Turgeon J., Maingrette F., Rivard A. Nox2-derived reactive oxygen species contribute to hypercholesterolemia-induced inhibition of neovascularization: Effects on endothelial progenitor cells and mature endothelial cells. Atherosclerosis. 2011;217(2):340–9. doi:10.1016/j. atherosclerosis.2011.03.038

49. Kobayashi T., Watanabe Y., Saito Y., Fujioka D., Nakamura T., Obata J.E., Kitta Y., Yano T., Kawabata K., Watanabe K., Mishina H., Ito S., Kugiyama K. Mice lacking the glutamate-cysteine ligase modifier subunit are susceptible to myocardial ischaemia– reperfusion injury. Cardiovascular Research. 2009;85(4):785–95. doi: 10.1093/cvr/cvp342

50. Liu X., Sun X., Liao H., Dong Z., Zhao J., Zhu H., Wang P., Shen L., Xu L., Ma X., Shen C., Fan F., Wang C., Hu K., Zou Y., Ge J., Ren J., Sun A. Mitochondrial Aldehyde Dehydrogenase 2 Regulates Revascularization in Chronic Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology. 2015;35(10):2196–206. doi: 10.1161/atvbaha.115.306012

51. Salem M.S., Farhat M, Errayes A.O., Madkour H.M. Antioxidant Activity of Novel Fused Heterocyclic Compounds Derived from Tetrahydropyrimidine Derivative. Chemical and Pharmaceutical Bulletin. 2015;63(11):866–72. doi: 10.1248/cpb.c15-00452

52. Lazareva D.N., Alekhin E.K., Plechev V.V., Temirbulatov V.M., Plecheva D.V. Immureg. Ufa: Bashkirskij gosudarstvennyj medicinskij universitet; 2004. (In Russian)

53. Myshkin V.A., Bakirov A.B., Repina E.F., Karimov D.O., Timasheva G.V., Khusnutdinova N.Yu., Smolyankin D.A. Oxymethyluracil Antioxidant Activity. Occupational Health and Human Ecology. 2015; 3: 264-273 (In Russian)

54. Bakirova Z.A. To Issue of Mechanism of Action of Pyrimidine Derivatives. In: Fundamental Sciences for Practical Healthcare: abstracts. Ufa; 1990. p. 9 (In Russian)

55. Plechev V.V., Oleynik B.A., Zagidullin Sh.Z., Karamova I.M., Izhbuldin R.I., Akhmadullin R.V. Sovershenstvovanie sistemy reabilitacii bol'nyh ishemicheskoj bolezn'ju serdca posle hirurgicheskoj revaskuljarizacii miokarda. Perm Medical Journal. 2006;23(2):146-151 (In Russian)

56. Plechev V.V., Oleynik B.A., Risberg R.Yu., Plecheva D.V.. Novel Opportunities to Stimulate Neoangiogenesis in Rabbits with Acute Myocardial Infarction. Medical Bulletin of Bashkortostan. 2012; 7(4): 54–57. (In Russian)

57. Oleynik B.A., Plechev V.V., Bayburina G.A., Risberg R., Buzaev I.V. 5-Oxymethyluracil Stimulate Neoangiogenesis in Postinfarction Cardiosclerosis Model in Rabbits. Journal of the American College of Cardiology. 2022; 79: S15. doi: 10.1016/j.jacc.2022.03.034.


Review

For citations:


Oleynik B.A., Plechev V.V., Starodobov V.I., Evdakov V.A., Izhbuldin R.I. Therapeutic angiogenesis as an advanced direction for potentiating the angiogenic effect of coronary artery bypass grafting. Complex Issues of Cardiovascular Diseases. 2023;12(1):118-128. (In Russ.) https://doi.org/10.17802/2306-1278-2023-12-1-118-128

Views: 391


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)