Preview

Complex Issues of Cardiovascular Diseases

Advanced search

THE ROLE OF CYTOKINES IN THE PATHOGENESIS OF ORGAN DYSFUNCTION DURING OPEN HEART SURGERY

https://doi.org/10.17802/2306-1278-2024-13-4S-254-266

Abstract

Highlights

The article presents an analysis of works on systemic inflammatory response that occurs during cardiac surgery, as well as research data on promising pharmacological strategies and the results of experimental research aimed at reducing the inflammatory response. Moreover, the authors proposed technological solutions to reduce the release of cytokines during cardiopulmonary bypass.

 

Abstract

The increase in the number of surgical revascularization procedures is one of the many reasons for the study of predictors of poor long-term prognosis after coronary artery bypass grafting (CABG). Recently, the issues associated with systemic inflammatory response have become even more urgent since cytokines play an important role in critical conditions. The aim of this work was to analyze the available data on the role of cytokines in CABG. The article presents research data reflecting the importance of studying the changes in tumor necrosis α (TNFα) and interleukins (IL), and the analysis of data on the impact of the types of circulatory assist devices on changes in cytokine concentration. The authors evaluated the possible pharmacological strategies to reduce the systemic inflammatory response, and obtained data on the possibility of using methylprednisolone, colchicine, and pentoxifylline in cardiac surgery patients to reduce the levels of pro-inflammatory cytokines. Experimental studies on the use of adenosine and monoclonal anti-TNFα antibodies seem promising due to a decrease in myocardial and lung injury. Numerous studies in this area confirm the need to develop methods for effective reduction of the inflammatory response after surgical myocardial revascularization.

About the Authors

Maria A. Kuzmichkina
Cardiology Research Institute, branch of the Federal State Budgetary Scientific Institution “Tomsk National Research Medical Center of the Russian Academy of Sciences”
Russian Federation

MD, PhD, Researcher at the Laboratory of Registries of Cardiovascular Diseases, High-Tech Interventions and Telemedicine, Cardiology Research Institute, branch of the Federal State Budgetary Scientific Institution “Tomsk National Research Medical Center of the Russian Academy of Sciences”, Tomsk, Russian Federation



Vladimir S. Kaveshnikov
Cardiology Research Institute, branch of the Federal State Budgetary Scientific Institution “Tomsk National Research Medical Center of the Russian Academy of Sciences”
Russian Federation

MD, PhD, Head of Laboratory of Registries of Cardiovascular Diseases, High-Tech Interventions and Telemedicine, Cardiology Research Institute, branch of the Federal State Budgetary Scientific Institution “Tomsk National Research Medical Center of the Russian Academy of Sciences”, Tomsk, Russian Federation



References

1. Bockeria L.A., Keren M.A., Enokyan L.G., Sigaev I.Yu., Merzlyakov V.Yu., Kazaryan A.V., Morchadze B.D., Tereshina Yu.S. Long-term results of coronary artery bypass grafting in elderly and geriatric patients with ischemic heart disease. Russian Journal of Surgery. 2012; 2: 15–21. (In Russian)

2. Bockeria L.А., Gudkova R.G. Cardiovascular surgery – 2014. Diseases and congenital malformations of circulatory system. Мoscow: Bakoulev Scientific Center for Cardiovascular Surgery RAMS, 2015 (In Russian)

3. Bockeria L.А., Gudkova R.G., Milievskaya Е.B., Kudzoeva Z.F., Pryanishnikov V.V. Cardiovascular surgery – 2016. Diseases and congenital malformations of circulatory system. Мoscow: Bakoulev Scientific Center for Cardiovascular Surgery RAMS, 2017 (In Russian)

4. Kuzmichkina M.A., Serebryakova V.N. Rehabilitation of patients who underwent coronary bypass surgery from the point of view of restoring labor potential. Clinical Medicine (Russian Journal). 2020; 98(4) : 266-274. doi: 10.30629/0023-2149-2020-98-4-266-274 (In Russian)

5. Kondrikova N.V., Pomeshkina S.A., Barbarash O.L. Patient after coroary artery bypass grafting. Siberian Medical Review. 2017; 5 (107): 109–114. doi: 10.20333/2500136–2017–5–109–114 (In Russian)

6. Kaveshnikov V.S., Kuzmichkina M.A., Serebryakova V.N. Predictors of long-term outcomes after surgical myocardial revascularization. Rational Pharmacotherapy in Cardiology. 2022; 18(6): 710–716. doi: 10.20996/1819–6446–2022–12–09 (In Russian)

7. Krichevsky L.A., Rybakov V.YU., Dvoryadkin A.A., Protsenko D.N. Systemic inflammatory response in cardiac surgery. Anesthesiology And Resuscitation (Mediasphera). 2021; 3: 94–102. doi: 10.17116/anaesthesiology202103194 (In Russian)

8. Laffey J.G., Boylan J.F., Cheng D.C. The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology. 2002; 97(1): 215–52. doi: 10.1097/00000542–200207000–00030.

9. Charnaia M.A., Dement'eva I.I., Morozov Iu.A., Gladysheva V.G. Cardiac biomarkers in cardiology and cardiac surgery. Part 1. General characteristics of biomarkers. Russian Journal of cardiology and cardiovascular surgery. 2010; 3(3): 26–33. (In Russian)

10. Immunological and pathophysiological mechanisms of systemic inflammation. Medical Immunology. 2012; 14(1–2): 9–20. (In Russian)

11. Journois D., Israel-Biet D., Pouard P., Rolland B., Silvester W., Vouhé P., Safran D. High-volume, zero-balanced hemofiltration to reduce delayed inflammatory response to cardiopulmonary bypass in children. Anesthesiology. 1996; 85(5): 965–76. doi: 10.1097/00000542–199611000–00003.

12. Sablotzki A., Mann V., Simm A., Czeslick E. Changes in the cytokine network through ESCalating SIRS after heart surgery. Anasthesiol. Intensivmed. Notfallmed. Schmerzther. 2001; 36(9): 552–9. doi: 10.1055/s-2001–17262.

13. McBride W.T., McBride S.J. The balance of pro- and anti-inflammatory cytokines in cardiac surgery. Curr. Opin. Anaesthesiol. 1998; 11(1): 15–22. doi: 10.1097/00001503–199802000–00004.

14. Hill G.E. Cardiopulmonary bypass-induced inflammation: is it important? J. Cardiothorac. Vasc. Anesth. 1998; 12(2 Suppl 1): 21–5.

15. Ai A.L., Hall D., Bolling S.F. Interleukin-6 and Hospital Length of Stay after Open-heart Surgery. Biol. Psichiatr. Psichofarmakol. 2012; 14(2): 79–82.

16. Plaschke K., Fichtenkamm P., Schramm C., Hauth S., Martin E., Verch M., Karck M., Kopitz J. Early postoperative delirium after open-heart cardiac surgery is associated with decreased bispectral EEG and increased cortisol and interleukin-6. Intensive. Care. Med. 2010; 36(12): 2081–9. doi: 10.1007/s00134–010–2004–4.

17. Ovchinnikov D.A., Amosov D.D., Vorobyov E.A., Garnyuk V.V., Beltiukov P.P., Grebennik V.K., Gordeev M.L., Barantsevich E.R.Cognitive dysfunction and content of inflammatory markers in patients after coronary artery bypass graft. S.S. Korsakov Journal of Neurology and Psychiatry. 2017; 117(4): 5–10. doi: 10.17116/jnevro2017117415–10. (In Russian)

18. Cremer J., Martin M., Redl H., Bahrami S., Abraham C., Graeter T., Haverich A., Schlag G., Borst H.G. Systemic inflammatory response syndrome after cardiac operations. Ann. Thorac. Surg. 1996; 61(6): 1714–20. doi: 10.1016/0003–4975(96)00055–0.

19. Wu Z.K., Laurikka J., Vikman S., Nieminen R., Moilanen E., Tarkka M.R. High postoperative interleukin-8 levels related to atrial fibrillation in patients undergoing coronary artery bypass surgery. World. J. Surg. 2008; 32(12): 2643–9. doi: 10.1007/s00268–008–9758–7.

20. Abacilar F., Dogan O.F., Duman U., Ucar I., Demircin M., Ersoy U., Dogan R., Boke E. The changes and effects of the plasma levels of tumor necrosis factor after coronary artery bypass surgery with cardiopulmonary bypass. Heart. Surg. Forum. 2006; 9(4): E703–9. doi: 10.1532/HSF98.20061012.

21. Oddis C.V., Finkel M.S. Cytokines and nitric oxide synthase inhibitor as mediators of adrenergic refractoriness in cardiac myocytes. Eur. J. Pharmacol. 1997; 320(2–3): 167–74. doi: 10.1016/s0014–2999(96)00912–0.

22. Klava A., Windsor A.C., Farmery S.M., Woodhouse L.F., Reynolds J.V., Ramsden C.W., Boylston A.W., Guillou P.J. Interleukin-10. A role in the development of postoperative immunosuppression. Arch. Surg. 1997; 132(4): 425–9. doi: 10.1001/archsurg.1997.01430280099016.

23. Platis A., Yu Q., Moore D., Khojeini E., Tsau P., Larson D. The effect of daily administration of IL-18 on cardiac structure and function. Perfusion. 2008; 23(4): 237–42. doi: 10.1177/0267659108101511.

24. Ponasenko A.V., Khutornaya M.V., Golovkin A.S., Savostyanova Yu.Yu. Potential role as a proinflammatory cytokines in postoperative severe systemic inflammatory response syndrome undergoing heart valve replacement surgery. Complex Issues of Cardiovascular Diseases. 2013; 4: 71–76. (In Russian)

25. Rubanenko O.A. The influence of coronary artery bypass graft on inflammation and miocardial injury in patients with coronary heart disease. Siberian Medical Journal (Irkutsk). 2016; 140(1): 18–22. (In Russian)

26. Golovkin A.S., Matveeva V.G., Khutornaya M.V., Ponasenko A.V., Shukevich D.L., Grigoriev E.V. The role of serum cytokines in the pathogenesis of systemic inflammatory response syndrome after on-pump coronary artery bypass grafting. Cytokines and inflammation. 2015; 14(2): 48–55. (In Russian)

27. Buziashvili Iu.I., Koksheneva I.V., Samsonova N.N., Abukov S.T., Buziashvili V.Yu., Klimovich L.G. The dynamics of inflammatory factors in the early postoperative period after various techniques of coronary artery bypass grafting. Russian Journal of cardiology and cardiovascular surgery. 2015; 8(1): 4–11. doi: 10.17116/kardio2015814–11 (In Russian)

28. Bockeria L.A., Merzlyakov V.Y., Samuilova D.S., Klyuchnikov I.V., Selimyan L.S., Abadzhyan M.F., Rakhimov A.A., Kazaryan A.V. Systemic inflammatory response and myocardial damage following coronary artery bypass grafting with or without cardiopulmonary bypass in low-risk patients. Clinical Physiology of Circulation. 2014; 1: 52–59. (In Russian)

29. Biglioli P., Cannata A., Alamanni F., Naliato M., Porqueddu M., Zanobini M., Tremoli E., Parolari A. Biological effects of off-pump vs. on-pump coronary artery surgery: focus on inflammation, hemostasis and oxidative stress. Eur. J. Cardiothorac. Surg. 2003; 24(2): 260–9. doi: 10.1016/s1010–7940(03)00295–1.

30. Bockeria L.A., Avaliani V.M., Merzlyakov V.Yu. Coronary artery bypass surgery on the beating heart. Moscow: A.N. Bakoulev Scientific Center for Cardiovascular Surgery RAMS, 2008 (in Russian)

31. Litmathe J., Boeken U., Bohlen G., Gursoy D., Sucker C., Feindt P. Systemic inflammatory response syndrome after extracorporeal circulation: a predictive algorithm for the patient at risk. Hellenic. J. Cardiol. 2011; 52(6): 493–500.

32. Ayikgoz Y., Aydin M., Kankilic N., Temiz E. Nuclear factor erythroid 2-related factor 2 (Nrf2), tumor necrosis factor alpha protein (TNFa), heme oxygenase-1 (HO-1) gene expressions during cardiopulmonary bypass. Gene. 2021; 790: 145690. doi: 10.1016/j.gene.2021.145690.

33. Risnes I., Ueland T., Lundblad R., Mollnes T.E., Baksaas S.T., Aukrust P., Svennevig J.L. Changes in the cytokine network and complement parameters during open heart surgery. Interact. Cardiovasc. Thorac. Surg. 2003; 2(1): 19–24. doi: 10.1016/S1569–9293(02)00088–9.

34. Bhagat K., Hingorani A.D., Palacios M., Charles I.G. Cytokine-induced venodilatation in humans in vivo: eNOS masquerading as iNOS. Cardiovasc. Res. 1999; 41(3): 754–64. doi: 10.1016/s0008–6363(98)00249–1.

35. Feindt P., Litmathe J., Boeken U., Gams E. Anticoagulation during extracorporeal circulation under conditions of an ongoing systemic inflammatory response syndrome: effects of heparin. Perfusion. 2005; 20(1): 11–5. doi: 10.1191/0267659105pf776oa.

36. Cicala C., Cirino G. Linkage between inflammation and coagulation: an update on the molecular basis of the crosstalk. Life. Sci. 1998; 62(20): 1817–24. doi: 10.1016/s0024–3205(97)01167–3.

37. Squiccimarro E., Stasi A., Lorusso R., Paparella D. Narrative review of the systemic inflammatory reaction to cardiac surgery and cardiopulmonary bypass. Artif. Organs. 2022; 46(4): 568–577. doi: 10.1111/aor.14171.

38. Chumakova S.P., Urazova O.I., Shipulin V.M., Novitsky V.V. Cytokines as inducers of postperfusion systemic inflammatory reaction in cardiosurgical patients with different duration of coronary pathology. Bulletin of Siberian Medicine. 2017; 16(4): 260–269. doi: 10.20538/1682–0363–2017–4–260–268 (In Russian)

39. Suleiman M.S., Zacharowski K., Angelini G.D. Inflammatory response and cardioprotection during open-heart surgery: the importance of anaesthetics. Br. J. Pharmacol. 2008; 153(1): 21–33. doi: 10.1038/sj.bjp.0707526.

40. Liebold A., Keyl C., Birnbaum D.E. The heart produces but the lungs consume proinflammatory cytokines following cardiopulmonary bypass. Eur. J. Cardiothorac. Surg. 1999; 15(3): 340–5. doi: 10.1016/s1010–7940(99)00038-x.

41. Filsoufi F., Rahmanian P.B., Castillo J.G., Chikwe J. Predictors and early and late outcomes of respiratory failure in contemporary cardiac surgery. Chest. 2008; 133(3): 713–21. doi: 10.1378/chest.07–1028.

42. Young R.W. Prevention of lung injury in cardiac surgery: a review. J. Extra. Corpor. Technol. 2014; 46(2): 130–41.

43. den Hengst W.A., Gielis J.F., Lin J.Y., Van Schil P.E., De Windt L.J., Moens A.L. Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am. J. Physiol. Heart. Circ. Physiol. 2010; 299(5): H1283–99. doi: 10.1152/ajpheart.00251.2010.

44. De Perrot M., Sekine Y., Fischer S., Waddell T.K., McRae K., Liu M., Wigle D.A., Keshavjee S. Interleukin-8 release during early reperfusion predicts graft function in human lung transplantation. Am. J. Respir. Crit. Care. Med. 2002; 165(2): 211–5. doi: 10.1164/ajrccm.165.2.2011151.

45. Zenina A.A., Levman R.A., Silaev A.A., Shumatov V.B. Role of neuroinflammation in pathogenesis of cognitive disorders after aortocoronary bypass grafting. Russian Immunological Journal. 2020; 23(3): 341–346. doi: 10.46235/1028–7221–313-RON (In Russian)

46. Meldrum D.R., Donnahoo K.K. Role of TNF in mediating renal insufficiency following cardiac surgery: evidence of a postbypass cardiorenal syndrome. J. Surg. Res. 1999; 85(2): 185–99. doi: 10.1006/jsre.1999.5660.

47. Sakai H., Mori K., Suzuki K., Katayama Y. The clinical significance of interleukin-6 as an inflammatory marker (the studies in patients with open heart surgery). Rinsho. Byori. 1994; 42(11): 1151–7.

48. el-Barbary M., Khabar K.S. Soluble tumor necrosis factor receptor p55 predicts cytokinemia and systemic inflammatory response after cardiopulmonary bypass. Crit. Care. Med. 2002; 30(8): 1712–6. doi: 10.1097/00003246–200208000–00006.

49. Bouter H., Schippers E.F., Luelmo S.A., Versteegh M.I., Ros P., Guiot H.F., Frölich M., van Dissel J.T. No effect of preoperative selective gut decontamination on endotoxemia and cytokine activation during cardiopulmonary bypass: a randomized, placebo-controlled study. Crit. Care. Med. 2002; 30(1): 38–43. doi: 10.1097/00003246–200201000–00006.

50. Tadic S., Ristic M., Balint B., Milic N. Interleukin-8 serum levels in patients with various types of open heart surgical procedures performed under extracorporeal circulation. Acta. Chir. Iugosl. 2003; 50(2): 31–5.

51. Bical O.M., Fromes Y., Gaillard D., Fischer M., Ponzio O., Deleuze P., Gerhardt M.F., Trivin F. Comparison of the inflammatory response between miniaturized and standard CPB circuits in aortic valve surgery. Eur. J. Cardiothorac. Surg. 2006; 29(5): 699–702. doi: 10.1016/j.ejcts.2006.01.053.

52. Tan A., Newey C., Falter F. Pulsatile Perfusion during Cardiopulmonary Bypass: A Literature Review. J. Extra. Corpor. Technol. 2022; 54(1): 50–60. doi: 10.1182/ject-50–60.

53. Quaniers J.M., Leruth J., Albert A., Limet R.R. Comparison of inflammatory responses after off-pump and on-pump coronary surgery using surface modifying additives circuit. Ann. Thorac. Surg. 2006; 81(5): 1683–90. doi: 10.1016/j.athoracsur.2005.11.059. 54. Simsek E., Karapinar K., Bugra O., Tulga Ulus A. Effects of albumin and synthetic polypeptide-coated oxygenators on IL-1, IL-2, IL-6, and IL-10 in open heart surgery. Asian. J. Surg. 2014; 37(2): 93–9. doi: 10.1016/j.asjsur.2013.09.004.

54. Taleska Stupica G., Sostaric M., Bozhinovska M., Rupert L., Bosnic Z., Jerin A., Ihan A., Klokocovnik T., Podbregar M. Extracorporeal Hemadsorption versus Glucocorticoids during Cardiopulmonary Bypass: A Prospective, Randomized, Controlled Trial. Cardiovasc Ther. 2020;2020:7834173. doi: 10.1155/2020/7834173.

55. Zhang G.H., Hou F.F., Wang W.J., Zhang X., Wu H., Liu Z.Q., Tao H.Q. [The protective effects to the function of kidney and long by clearing of cytokines in patients with open-heart surgery]. Zhonghua. Yi. Xue. Za. Zhi. 2005; 85(45): 3194–8.

56. Borisenko D.V., Ivkin A.A., Shukevich D.L. Treatment of systemic inflammatory response syndrome following on-pump pediatric congenital heart surgery. Complex Issues of Cardiovascular Diseases. 2021; 10(2): 113-124. doi: 10.17802/2306-1278-2021-10-2-113-124 (In Russian)

57. Ivkin A.A., Grigoriev E.V., Shukevich D.L. Influence of cardiopulmonary bypass on postoperative cognitive dysfunction. Russ. Jour. of Card. and Cardiovasc. Surg. = Kard. i serd.-sosud. khir. 2021;14(2):168–174. (In Russ.). doi: 10.17116/kardio202114021168. (In Russian)

58. Gholampour Dehaki M., Niknam S., Azarfarin R., Bakhshandeh H., Mahdavi M. Zero-Balance Ultrafiltration of Priming Blood Attenuates Procalcitonin and Improves the Respiratory Function in Infants After Cardiopulmonary Bypass: A Randomized Controlled Trial. Journal of Artificial Organs. 2019; 43(2): 167-172. doi: 10.1111/aor.13325.

59. Reis Miranda D., Gommers D., Struijs A., Dekker R., Mekel J., Feelders R., Lachmann B., Bogers A.J. Ventilation according to the open lung concept attenuates pulmonary inflammatory response in cardiac surgery. Eur. J. Cardiothorac. Surg. 2005; 28(6): 889–95. doi: 10.1016/j.ejcts.2005.10.007.

60. Koner O., Celebi S., Balci H., Cetin G., Karaoglu K., Cakar N. Effects of protective and conventional mechanical ventilation on pulmonary function and systemic cytokine release after cardiopulmonary bypass. Intensive. Care. Med. 2004; 30(4): 620–6. doi: 10.1007/s00134–003–2104–5.

61. Danielson M., Reinsfelt B., Westerlind A., Zetterberg H., Blennow K. , Ricksten S.-E. Effects of methylprednisolone on blood-brain barrier and cerebral inflammation in cardiac surgery-a randomized trial. J. Neuroinflammation. 2018; 15(1): 283. doi: 10.1186/s12974–018–1318-y.

62. Varan B., Tokel K., Mercan S., Dönmez A. Systemic inflammatory response related to cardiopulmonary bypass and its modification by methyl prednisolone: high dose versus low dose. Pediatr. Cardiol. 2002; 23(4): 437–41. doi: 10.1007/s00246–002–0118–3.

63. Gusakova A.M., Suslova T.E., Diakova M.L., Kozlov B.N. Circulating biomarkers of systemic inflammatory response in the assessment of postpericardiotomy syndrome in patients after cardiac surgery. Medical Immunology (Russia). 2021; 23(4): 933–940. doi: 10.15789/1563–0625-CBO-2281 (In Russian)

64. Baki E.D., Aldemir M., Kokulu S., Koca H.B., Ela Y., Sıvacı R.G., Öztürk N.K., Emmiler M., Adalı F., Uzel H. Comparison of the effects of desflurane and propofol anesthesia on the inflammatory response and s100b protein during coronary artery bypass grafting. Inflammation. 2013; 36(6): 1327–33. doi: 10.1007/s10753–013–9671–6.

65. Adzhigaliev U.R., Bautin A.E., Pasyuga V.V. The influence of anesthesia components on systemic inflammatory response during cardiac surgery with cardiopulmonary bypass. Annals of Critical Care. 2019; 4: 73–80. doi: 10.21320/1818–474X-2019–4–73–80. (In Russian)

66. Adzhigaliev R.R., Bautin A.E., Ilov N.N., Pasyuga V.V., Tarasov D.G. Various effects of narcotic analgesics on the changes in cytokine activities during cardiac surgery with cardiopulmonary bypass. Messenger of Anesthesiology and Resuscitation. 2017; 14(5): 34–41. doi: 10.21292/2078–5658–2017–14–5–34–40 (In Russian)

67. Iskesen I., Kurdal A.T., Kahraman N., Cerrahoglu M. Preoperative oral pentoxifylline for management of cytokine reactions in cardiac surgery. Heart. Surg. Forum. 2009; 12(2): E100–4. doi: 10.1532/HSF98.20081153.

68. Cain B.S., Meldrum D.R., Dinarello C.A., Meng X., Banerjee A., Harken A.H. Adenosine reduced cardiac TNF-α production and human myocardial injury following ischemia-reperfusion. J Surg Res 1998; 76: 117—123.

69. Gurevitch J., Frolkis I., Yuhas Y., Lifschitz-Mercer B., Berger E., Paz Y., Matsa M., Kramer A., Mohr R. Anti-tumor necrosis factoralpha improves myocardial recovery after ischemia and reperfusion. J AmCollCardiol 1997: 30: 1554—1561.

70. Krishnadasan B., Naidu B.V., Byrne K., Fraga C., Verrier E.D., Mulligan M.S. The role of proinflammatory cytokines in lung ischemia-reperfusion injury. J. Thorac. Cardiovasc. Surg. 2003; 125(2): 261–72. doi: 10.1067/mtc.2003.16.

71. Gol M.K., Nisanoglu V., Iscan Z., Balci M., Kandemir O., Taşdemir O. Inhibition of systemic inflammatory response with sodium nitroprusside in open heart surgery. J. Cardiovasc. Surg. (Torino). 2002; 43(6): 803–9.

72. Sato Y., Ishikawa S., Otaki A., Takahashi T., Hasegawa Y., Suzuki M., Yamagishi T., Morishita Y. Induction of acute-phase reactive substances during open-heart surgery and efficacy of ulinastatin. Inhibiting cytokines and postoperative organ injury. Jpn. J. Thorac. Cardiovasc. Surg. 2000; 48(7): 428–34. doi: 10.1007/BF03218170.


Supplementary files

Review

For citations:


Kuzmichkina M.A., Kaveshnikov V.S. THE ROLE OF CYTOKINES IN THE PATHOGENESIS OF ORGAN DYSFUNCTION DURING OPEN HEART SURGERY. Complex Issues of Cardiovascular Diseases. 2024;13(4S):254-266. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-4S-254-266

Views: 95


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)