COMPREHENSIVE ASSESSMENT OF THE ROLE OF NUTRITION AND INTESTINAL MICROFLORA IN THE DEVELOPMENT OF ATHEROSCLEROTIC CARDIOVASCULAR DISEASES (LITERATURE REVIEW)
https://doi.org/10.17802/2306-1278-2025-14-1-232-240
Abstract
Highlights
Consumption of high-calorie Western-type foods in combination with overeating and a sedentary lifestyle causes a violation of the composition of the intestinal microbiota, increased intestinal permeability, increased intake of lipopolysaccharide, trimethylamine-N-oxide and other toxins into the blood, which causes a state of chronic metabolic inflammation followed by accelerated development of ASD. Adherence to the Mediterranean diet normalizes the composition of the intestinal microbiota, promotes the formation of short-chain fatty acids with anti-inflammatory and anti-atherosclerotic effects.
Absract
Despite the introduction of new treatment methods, atherosclerotic cardiovascular diseases (ASCVD) remain the leading cause of morbidity and mortality worldwide. In recent years, it has been established that systemic inflammation plays a crucial role in atherothrombosis, but the factors causing systemic inflammation have not been fully elucidated. The consumption of high-calorie Western-type foods combined with chronic overeating and a sedentary lifestyle in Western societies causes a state of chronic metabolic inflammation, which contributes to the development of ASCVD. A better understanding of how different types of nutrition affect the pathogenesis of atherosclerosis is essential for developing effective strategies for the prevention and treatment of ASCVD. This article reviews the latest data on the pathogenetic mechanisms of the influence of dietary patterns on the development or regression of ASCVD.
About the Authors
Olga N. KurochkinaRussian Federation
PhD, MD, Professor, Department of Therapy, Medical Institute, Federal State Budgetary Institution of Higher Education "Syktyvkar State University named after Pitirim Sorokin", Ministry of Education of the Russian Federation, Syktyvkar, Russian Federation
Dmitry A. Korotkov
Russian Federation
PhD, Chief Physician of the State Institution of the Komi Republic "Clinical Cardiology Dispensary", Syktyvkar, Russian Federation
Andrey N. Bogomolov
Russian Federation
PhD, Leading Researcher at the Laboratory of Age-Related Pathology of the Cardiovascular System of the St. Petersburg State Budgetary Healthcare Institution Alexander City Hospital, St. Petersburg, Russian Federation
References
1. Khan MA, Hashim MJ, Mustafa H, et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus. 2020 Jul 23;12(7):e9349. doi: 10.7759/cureus.9349.
2. WHO. Noncommunicable Diseases: Key Facts. 2023. URL: https://www.who.int/ru/news-room/fact-sheets/detail/noncommunicable-diseases
3. Drapkina О.M., Kotova M.B., Maksimov S.A., et al. Adherence to a healthy lifestyle in Russia according to the ESSE-RF study: is there a COVID-19 trace? Cardiovascular Therapy and Prevention. 2023; 22(8S): 3788. (In Russ.) doi:10.15829/1728-8800-2023-3788. EDN: OEMWFL.
4. Ghosh, S., Whitley, C. S., Haribabu, B. & Jala, V. R. Regulation of intestinal barrier function by microbial metabolites. Cell Mol. Gastroenterol. Hepatol. 2021;11:1463–1482. DOI: 10.1016/j.jcmgh.2021.02.007
5. Vieira E.L., Leonel A.J., Sad A.P., Beltrao N.R., Costa T.F., Ferreira T.M. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J.Nutr.Biochem. 2012. Vol. 23, N 5. P. 430–436. DOI:10.1016/j.jnutbio.2011.01.007
6. Pluznick J. Microbial short-chain fatty acids and blood pressure regulation. Curr. Hypertens. Rep. 2017;19(4):25. DOI:10.1007/s1 1906-017-0722-5
7. Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A 2013; 110(11): 4410-5.
8. Li M, van Esch BCAM, Henricks PAJ, Garssen J, Folkerts G. Time and Concentration Dependent Effects of Short Chain Fatty Acids on Lipopolysaccharide- or Tumor Necrosis Factor α-Induced Endothelial Activation. Front Pharmacol. 2018 Mar 19;9:233. doi: 10.3389/fphar.2018.00233.
9. Li M, van Esch BCAM, Henricks PAJ, Folkerts G, Garssen J. The Anti-inflammatory Effects of Short Chain Fatty Acids on Lipopolysaccharide- or Tumor Necrosis Factor α-Stimulated Endothelial Cells via Activation of GPR41/43 and Inhibition of HDACs. Front Pharmacol. 2018 May 23;9:533. doi: 10.3389/fphar.2018.00533
10. Aguilar, E.C.; Santos, L.C.; Leonel, A.J.; et al. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase down-regulation in endothelial cells. J. Nutr. Biochem. 2016, 34, 99–105 DOI: 10.1016/j.jnutbio.2016.05.002
11. Matey-Hernandez, M.L.; Williams, F.M.K.; Potter, T.; et al. Genetic and microbiome influence on lipid metabolism and dyslipidemia. Physiol. Genom. 2018;50:117–126. DOI: 10.1152/physiolgenomics.00053.2017
12. Cardiovascular prevention 2022. Russian national recommendations. ed. S.A. Boytsova, N.V. Pogosovoy. Moscow, 2022. 357 p. (In Russ.)
13. Tabas, I. 2016 Russell Ross Memorial Lecture in Vascular Biology: Molecular–Cellular Mechanisms in the Progression of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2017; 37: 183–189. doi: 10.1161/ATVBAHA.116.308036.
14. Ridker P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017; 377:1119–1131. doi: 10.1056/NEJMoa1707914.
15. Nidorf S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 2020; 383:1838–1847. DOI: 10.1056/NEJMoa2021372
16. Imamura F. Micha R. Khatibzadeh S. Fahimi S. Shi P. Powles J. Mozaffarian D. Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Dietary quality among men and women in 187 countries in 1990 and 2010: a systematic assessment. Lancet Glob. Health. 2015; 3: e132-e142. DOI: 10.1016/S2214-109X(14)70381-X
17. Bhupathiraju S.N. Tobias D.K. Malik V.S. et al. Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. Am. J. Clin. Nutr. 2014; 100: 218-232 DOI: 10.3945/ajcn.113.079533
18. Emoto T., Yamashita T., Sasaki N. et al. Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease // J. Atheroscler. Thromb. 2016;23(8):908–921. DOI:10.5551/jat.32672
19. Jie Z., Xia H., Zhong S.L. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 2017;8(1): 845. DOI: https:10.1038/s41467-017-00900-1
20. Fomina A.A., Konnova O.N., Tikhomirova E.I., Konnova S.A. The influence of lipopolysaccharide from the bacteria azospirillum irakense KBC1 on the induction of cytokine synthesis in vivo and in vitro by phagocytic macrophages. Fundamental Research. 2006;4: 55–56. (In Russ.)
21. Drapkina O.M., Zhamalov L.M. Gut microbiota - a new risk factor for atherosclerosis? // Preventive medicine. 2022;25(11):92-97. (In Russ.). DOI: 10.17116/profmed20222511192
22. Obrezan A.A., Ponomarenko G.N., Kantemirova R.K., et al. Unhealthy diet and chronic stress - key causes of cardiovascular diseases and premature aging in humans? Cardiology: news, opinions, training. 2023;11(1):8-18 (In Russ.). DOI: 10.33029/2309-1908-2023-11-1-8-18
23. Ivashkin V.T., Kashukh E.A. The effect of consumption of products containing L-carnitine and phosphatidylcholine on the production of the proatherogenic metabolite trimethylamine-N-oxide and the intestinal microbiome in patients with coronary heart disease. Nutrition Issues. 2019; 88(4): 25–33. (In Russ.). DOI: 10.24411/00428833-201910038
24. Gatarek, P.; Kaluzna-Czaplinska, J. Trimethylamine N-oxide (TMAO) in human health. EXCLI J. 2021; 20: 301–319. doi: 10.17179/excli2020-3239
25. Zhu W., Gregory J.C., Org E. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–124. DOI: 10.1016/j.cell.2016.02.011
26. Seldin M.M., Meng Y, Qi H. et al. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-KB. J. Am. Heart Assoc. 2016;5(2). Article ID e002767. DOI:10.1161/JAHA.115.002767
27. Fu, Q.; Zhao, M.; Wang, D.; et al. Coronary Plaque Characterization Assessed by Optical Coherence Tomography and Plasma Trimethylamine-N-oxide Levels in Patients With Coronary Artery Disease. Am. J. Cardiol. 2016;118: 1311–1315. DOI: 10.1016/j.amjcard.2016.07.071
28. Grigorieva I.N. Atherosclerosis and trimethylamine-N-oxide – the potential of intestinal microbiota. Russian Journal of Cardiology. 2022; 27(9): 142–147. (In Russ.). DOI: 10.15829/1560-4071-2022-5038
29. Hiippala, K. et al. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients. 2018;10,988. DOI: 10.3390/nu10080988
30. Paradis, T., Bègue, H., Basmaciyan, L., Dalle, F. & Bon, F. Tight junctions as a key for pathogens invasion in intestinal epithelial cells. Int. J. Mol. Sci. 2021;22: 2506. DOI: 10.3390/ijms22052506
31. Wang, W., Xia, T. & Yu, X. Wogonin suppresses inflammatory response and maintains intestinal barrier function via TLR4-MyD88-TAK1-mediated NF-κB pathway in vitro. Inflamm. Res. 2015; 64: 423–431. DOI: 10.1007/s00011-015-0822-0
32. Han, Y. H. et al. Enterically derived high-density lipoprotein restrains liver injury through the portal vein. Science 2021;373: 6729. DOI: 10.1126/science.abe6729
33. Carpino, G. et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD. Hepatology. 2020; 72: 470–485. DOI: 10.1002/hep.31056
34. Carnevale, R. et al. Low-grade endotoxaemia enhances artery thrombus growth via toll-like receptor 4: implication for myocardial infarction. Eur. Heart J. 2020; 41: 3156–3165. DOI: 10.1093/eurheartj/ehz893
35. Liu, T., Zhang, L., Joo, D. & Sun, S. C. NF-κB signaling in inflammation. Sig. Transduct. Target. Ther. 2017; 2:17023. DOI: 10.1038/sigtrans.2017.23
36. Hersoug, L. G., Møller, P. & Loft, S. Role of microbiota-derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity. Nutr. Res. Rev. 2018; 31: 153–163. doi: 10.1017/S0954422417000269.
37. Rehues, P. et al. Characterization of the LPS and 3OHFA contents in the lipoprotein fractions and lipoprotein particles of healthy men. Biomolecules 2021; 12(1): 47. DOI: 10.3390/biom12010047
38. Carnevale, R. et al. Localization of lipopolysaccharide from Escherichia coli into human atherosclerotic plaque. Sci. Rep. 2018; 8, 3598. DOI:10.1038/s41598-018-22076-4
39. Koupenova, M., Livada, A. C. & Morrell, C. N. Platelet and megakaryocyte roles in innate and adaptive immunity. Circ. Res. 2022; 130: 288–308. DOI: 10.1161/CIRCRESAHA.121.319821
40. Jaw, J. E. et al. Lung exposure to lipopolysaccharide causes atherosclerotic plaque destabilisation. Eur. Respir. J. 2016; 48, 205–215. DOI: 10.1183/13993003.00972-2015
41. Mawhin, M.-A. et al. Neutrophils recruited by leukotriene B4 induce features of plaque destabilization during endotoxaemia. Cardiovasc. Res. 2018; 114, 1656–1666. DOI: 10.1093/cvr/cvy130
42. Schumski, A. et al. Endotoxinemia accelerates atherosclerosis through electrostatic charge-mediated monocyte adhesion. Circulation 2021; 143: 254–266. DOI: 10.1161/CIRCULATIONAHA.120.046677
43. Violi, F., Carnevale, R., Loffredo, L., Pignatelli, P. & Gallin, J. I. NADPH oxidase-2 and atherothrombosis: insight from chronic granulomatous disease. Arterioscler. Thromb. Vasc. Biol. 2017; 37: 218–225. DOI: 10.1161/ATVBAHA.116.308351
44. Nocella, C. et al. Lipopolysaccharide as trigger of platelet aggregation via eicosanoid over-production. Thromb. Haemost. 2017;117: 1558–1570. DOI: 10.1160/TH16-11-0857
45. Koupenova, M., Clancy, L., Corkrey, H. A. & Freedman, J. E. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ. Res. 2018;122: 337–351. DOI: 10.1161/CIRCRESAHA.117.310795
46. Barillà, F. et al. Toll-like receptor 4 activation in platelets from myocardial infarction patients. Thromb. Res. 2022; 209: 33–40. DOI: 10.1016/j.thromres.2021.11.019
47. Asada, M. et al. Serum lipopolysaccharide-binding protein levels and the incidence of cardiovascular disease in a general Japanese population: the Hisayama study. J. Am. Heart Assoc. 2019; 8, e013628 DOI: 10.1161/JAHA.119.013628
48. Leskelä, J. et al. Genetic profile of endotoxemia reveals an association with thromboembolism and stroke. J. Am. Heart Assoc. 2021; 10, e022482. doi:10.1161/JAHA.121.022482
49. Zhou, X. et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome 2018; 6: 66. DOI: 10.1186/s40168-018-0441-4
50. Amar, J. Microbiota-host crosstalk: a bridge between cardiovascular risk factors, diet, and cardiovascular disease. Am. J. Hypertens. 2018;31: 941–944. DOI: 10.1093/ajh/hpy067
51. De Filippis, F. et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016; 65: 1812–1821. DOI: 10.1136/gutjnl-2015-309957
52. Bartimoccia, S. et al. Extra virgin olive oil reduces gut permeability and metabolic endotoxemia in diabetic patients. Nutrients 2022; 14: 2153. DOI: 10.3390/nu14102153
53. Guevara-Cruz, M. et al. Improvement of lipoprotein profile and metabolic endotoxemia by a lifestyle intervention that modifies the gut microbiota in subjects with metabolic syndrome. J. Am. Heart Assoc. 2019; 8, e012401. DOI: 10.1161/JAHA.119.012401
54. Cani, P. D. et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58: 1091–1103. DOI: 10.1136/gut.2008.165886
Supplementary files
Review
For citations:
Kurochkina O.N., Korotkov D.A., Bogomolov A.N. COMPREHENSIVE ASSESSMENT OF THE ROLE OF NUTRITION AND INTESTINAL MICROFLORA IN THE DEVELOPMENT OF ATHEROSCLEROTIC CARDIOVASCULAR DISEASES (LITERATURE REVIEW). Complex Issues of Cardiovascular Diseases. 2025;14(1):232-240. (In Russ.) https://doi.org/10.17802/2306-1278-2025-14-1-232-240