PATTERN OF CIRCULATING MICRORNAS IN VASCULAR COGNITIVE DISORDERS
https://doi.org/10.17802/2306-1278-2024-13-4S-183-196
Abstract
Highlights
- Studying circulating microRNAs in vascular cognitive disorders significantly contributes towards understanding the molecular mechanisms of development and progression of these disorders.
- Studying microRNAs allows us to identify new biomarkers that can be used to diagnose, predict the course of the disease and determine the effectiveness of treatment.
Abstract
Vascular cognitive disorders (VCD) are one of the most common forms of non-psychotic mental disorders with a variable phenotype and rate of progression, transformation into vascular dementia. VCD develops due to existing cardiovascular diseases (CVD), which highlights the importance of an interdisciplinary approach to diagnosis and treatment of these diseases. The study of new mechanisms of the development of VCD can help in finding the key to the development of innovative diagnostic methods and personalized treatment approaches. In recent years, the role of non-coding ribonucleic acids (RNA) has been actively studied, while the greatest interest of researchers and clinicians is focused on studying the role of microRNAs (miR). The aim of this review was to search, generalize and systematize preclinical and clinical studies on the role of circulating miR as molecular biomarkers of the development and progression of VCD. The authors searched for publications in the following databases PubMed, Springer, Web of Science, ClinicalKey, Scopus, Oxford Press, Cochrane, e-Library using keywords and their combinations. The publications published in 2013–2023 were analyzed, including original clinical studies of VCD and vascular dementia. The findings of this review show that miR-409-3p, miR-502-3p, miR-486-5p and miR-451a can be considered as promising molecular biomarkers of VCD. However, the role of other microRNAs is debatable and needs further study. In the future, it will be possible to consider previously studied circulating microRNAs with high specificity and sensitivity to VCD and vascular dementia as prognostic molecular biomarkers (predictors) of the risk of their development and severity in patients with CVD.
Based on the analysis of the results of preclinical and clinical studies, the authors present the most sensitive and specific microRNAs associated with the development and rapid progression of VCD in people with cerebrovascular and cardiovascular diseases. Moreover, microRNAs have been demonstrated to facilitate the differential diagnosis of VCD and cognitive disorders in Alzheimer's disease and Parkinson's disease.
About the Authors
Marina M. PetrovaRussian Federation
PhD, Professor, Head of the Department of Outpatient Treatment and Family Medicine, Federal State Budgetary Educational Institution of Higher Education “Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University” of the Ministry of Healthcare of the Russian Federation, Krasnoyarsk, Russian Federation
Natalia A. Shnayder
Russian Federation
PhD, Professor, Leading Researcher at the Center of Collective Usage “Molecular and Cell Technologies”, Federal State Budgetary Educational Institution of Higher Education “Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University” of the Ministry of Healthcare of the Russian Federation, Krasnoyarsk, Russian Federation; Chief Researcher at the Institute of Personalized Psychiatry and Neurology, Federal State Budgetary Institution “V. M. Bekhterev National Research Medical Center for Psychiatry and Neurology” of the Russian Federation Ministry of Health, St. Petersburg, Russian Federation
Artem V. Petrov
Russian Federation
Student of the program “General Medicine”, Federal State Budgetary Educational Institution of Higher Education “Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University” of the Ministry of Healthcare of the Russian Federation, Krasnoyarsk, Russian Federation
Darya S. Kaskaeva
Russian Federation
PhD, Associate Professor at the Department of Outpatient Treatment and Family Medicine, Head of the Department of General Medical Practice, Federal State Budgetary Educational Institution of Higher Education “Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University” of the Ministry of Healthcare of the Russian Federation, Krasnoyarsk, Russian Federation
Vera V. Trefilova
Russian Federation
Postgraduate Student at the Institute of Personalized Psychiatry and Neurology, Federal State Budgetary Institution “V. M. Bekhterev National Research Medical Center for Psychiatry and Neurology” of the Russian Federation Ministry of Health, St. Petersburg, Russian Federation
Regina F. Nasyrova
Russian Federation
PhD, Leading Researcher, Head of the Institute of Personalized Psychiatry and Neurology, Federal State Budgetary Institution “V. M. Bekhterev National Research Medical Center for Psychiatry and Neurology” of the Russian Federation Ministry of Health, St. Petersburg, Russian Federation
References
1. Minzdrav RF. Klinicheskie rekomendatsii. Kognitivnye rasstroistva u lits pozhilogo i starcheskogo vozrasta [Clinical recommendations. Cognitive disorders in elderly and senile people]. Available at: https://cr.minzdrav.gov.ru/schema/617_1 (accessed 10.01.2024 (In Russian)
2. Kalaria R.N. Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for alzheimer's disease. Acta Neuropathol. 2016; 131: 659–685. doi: 10.1007/s00401-016-1571-z
3. Gavrilova E.S., Yashina L.M. Evaluation of cardiovascular risk factors and educational technologies of the correction in youth population. Siberian Medical Review. 2017; (2): 48-55. doi: 10.20333/2500136-2017-2-48-55 (In Russian)
4. Balasubramanian P., DelFavero J., Ungvari A., Papp M., Tarantini A., Price N., de Cabo R., Tarantini S. Time-restricted feeding (TRF) for prevention of age-related vascular cognitive impairment and dementia. Ageing Res Rev. 2020; 64: 101189. doi: 10.1016/j.arr.2020.101189
5. Wolters F.J., Ikram M.A. Epidemiology of vascular dementia. Arterioscler Thromb Vasc Biol. 2019; 39: 1542–1549. doi: 10.1161/ATVBAHA.119.311908
6. Iadecola C., Duering M., Hachinski V., Joutel A., Pendlebury S.T., Schneider J.A., Dichgans M. Vascular Cognitive Impairment and Dementia: JACC Scientific Expert Panel. J Am Coll Cardiol. 2019; 73(25): 3326-3344. doi: 10.1016/j.jacc.2019.04.034
7. Ignatyeva VI, Voznyuk IA, Shamalov NA, Reznik AV, Vinitskiy AA, Derkach EV. Social and economic burden of stroke in Russian Federation. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2023; 123(8‑2): 5‑15. doi: 10.17116/jnevro20231230825 (In Russian)
8. Zhai W., Zhao M., Zhang G., Wang Z., Wei C., Sun L. MicroRNA-Based Diagnosis and Therapeutics for Vascular Cognitive Impairment and Dementia. Front Neurol. 2022; 13: 895316. doi: 10.3389/fneur.2022.895316
9. Rizvanov A.A. New Hope: Using Gene Therapy to Treat Rare Neurological Diseases. Personalized Psychiatry and Neurology. 2023; 3(1): 3-6. doi: 10.52667/2712-9179-2023-3-1-3-6
10. Kotsiubinskaya J.V., Mikhailov V.A., Kazakov A.V. Clinical Features of Subjective Cognitive Decline in The Early Stages of Alzheimer’s Disease. Personalized Psychiatry and Neurology. 2023; 3(2): 3-14. doi: 10.52667/2712-9179-2023-3-2-3-14.
11. Gomazkov O.A. Neuroproteomics or How Dozens of Proteins Reflect Brain Functions. ADVANCES OF MODERN BIOLOGY. 2020; 140 (4): 347–358. doi: 10.31857/S0042132420040079 (In Russian)
12. Kozomara A., Birgaoanu M., Griffiths-Jones S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019; 47: 155–162. doi: 10.1093/nar/gky1141
13. Deveson I.W., Hardwick S.A., Mercer T.R., Mattick J.S. The Dimensions, Dynamics, and Relevance of the Mammalian Noncoding Transcriptome. Trends Genet. 2017; 33: 464–478. doi: 10.1016/j.tig.2017.04.004
14. Ratti M., Lampis A., Ghidini M., Salati M., Mirchev M.B., Valeri N., Hahne J.C. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Target Oncol. 2020; 15: 261–278. doi: 10.1007/s11523-020-00717-x
15. Zhou L., Lim M.Y.T., Kaur P., Saj A., Bortolamiol-Becet D., Gopal V., Tolwinski N., Tucker-Kellogg G., Okamura K. Importance of miRNA stability and alternative primary miRNA isoforms in gene regulation during Drosophila development. Elife. 2018; 7: e38389. doi: 10.7554/eLife.38389
16. Blount G.S., Coursey L., Kocerha J. MicroRNA Networks in Cognition and Dementia. Cells. 2022; 11(12): 1882. doi: 10.3390/cells11121882
17. Kocerha J., Dwivedi Y., Brennand K.J. Noncoding RNAs and neurobehavioral mechanisms in psychiatric disease. Mol. Psychiatry. 2015; 20: 677–684. doi: 10.1038/mp.2015.30
18. Islam M.R., Kaurani L., Berulava T., Heilbronner U., Budde M., Centeno T.P., Elerdashvili V., Zafieriou M.P., Benito E., Sertel S.M., Goldberg M., Senner F., Kalman J.L., Burkhardt S., Oepen A.S., Sakib M.S., Kerimoglu C., Wirths O., Bickeböller H., Bartels C., Brosseron F., Buerger K., Cosma N.C., Fliessbach K., Heneka M.T., Janowitz D., Kilimann I., Kleinedam L., Laske C., Metzger C.D., Munk M.H., Perneczky R., Peters O., Priller J., Rauchmann B.S., Roy N., Schneider A., Spottke A., Spruth E.J., Teipel S., Tscheuschler M., Wagner M., Wiltfang J., Düzel E., Jessen F., Delcode Study Group, Rizzoli S.O., Zimmermann W.H., Schulze T.G., Falkai P., Sananbenesi F., Fischer A. A microRNA signature that correlates with cognition and is a target against cognitive decline. EMBO Mol Med. 2021; 13(11): e13659. doi: 10.15252/emmm.202013659
19. Balzano F., Deiana M., Dei Giudici S., Oggiano A., Baralla A., Pasella S., Mannu A., Pescatori M., Porcu B., Fanciulli G., Zinellu A., Carru C., Deiana L. miRNA Stability in Frozen Plasma Samples. Molecules. 2015; 20(10): 19030-19040. doi: 10.3390/molecules201019030
20. Almutairi M.M., Gong C., Xu Y.G., Chang Y., Shi H. Factors controlling permeability of the blood-brain barrier. Cell Mol Life Sci. 2016; 73(1): 57-77. doi: 10.1007/s00018-015-2050-8
21. Ma F., Zhang X., Yin K.J. MicroRNAs in central nervous system diseases: A prospective role in regulating blood-brain barrier integrity. Exp Neurol. 2020; 323: 113094. doi: 10.1016/j.expneurol.2019.113094
22. Van Dyken P., Lacoste B. Impact of Metabolic Syndrome on Neuroinflammation and the Blood-Brain Barrier. Front Neurosci. 2018; 12: 930. doi: 10.3389/fnins.2018.00930
23. Daneman R., Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015; 7(1): a020412. doi: 10.1101/cshperspect.a020412
24. Goodall E.F., Leach V., Wang C., Cooper-Knock J., Heath P.R., Baker D., Drew D.R., Saffrey M.J., Simpson J.E., Romero I.A., Wharton S.B. Age-Associated mRNA and miRNA Expression Changes in the Blood-Brain Barrier. Int J Mol Sci. 2019; 20(12): 3097. doi: 10.3390/ijms20123097
25. Chakraborty C., Sharma A.R., Sharma G., Bhattacharya M., Lee S.S. MicroRNAs: Possible Regulatory Molecular Switch Controlling the BBB Microenvironment. Mol Ther Nucleic Acids. 2020; 19: 933-936. doi: 10.1016/j.omtn.2019.12.024
26. O'Carroll D., Schaefer A. General principals of miRNA biogenesis and regulation in the brain. Neuropsychopharmacology. 2013; 38(1): 39-54. doi: 10.1038/npp.2012.87
27. Wang P., Pan R., Weaver J., Jia M., Yang X., Yang T., Liang J., Liu K.J. MicroRNA-30a regulates acute cerebral ischemia-induced blood-brain barrier damage through ZnT4/zinc pathway. J Cereb Blood Flow Metab. 2021; 41(3): 641-655. doi: 10.1177/0271678X20926787
28. Bernstein D.L., Zuluaga-Ramirez V., Gajghate S., Reichenbach N.L., Polyak B., Persidsky Y., Rom S. miR-98 reduces endothelial dysfunction by protecting blood-brain barrier (BBB) and improves neurological outcomes in mouse ischemia/reperfusion stroke model. J Cereb Blood Flow Metab. 2020; 40(10): 1953-1965. doi: 10.1177/0271678X19882264
29. Pan J., Qu M., Li Y., Wang L., Zhang L., Wang Y., Tang Y., Tian H.L., Zhang Z., Yang G.Y. MicroRNA-126-3p/-5p Overexpression Attenuates Blood-Brain Barrier Disruption in a Mouse Model of Middle Cerebral Artery Occlusion. Stroke. 2020; 51(2): 619-627. doi: 10.1161/STROKEAHA.119.027531
30. Zuo X., Lu J., Manaenko A., Qi X., Tang J., Mei Q., Xia Y., Hu Q. MicroRNA-132 attenuates cerebral injury by protecting blood-brain-barrier in MCAO mice. Exp Neurol. 2019; 316: 12-19. doi: 10.1016/j.expneurol.2019.03.017
31. Bai Y., Zhang Y., Han B., Yang L., Chen X., Huang R., Wu F., Chao J., Liu P., Hu G., Zhang J.H., Yao H. Circular RNA DLGAP4 Ameliorates Ischemic Stroke Outcomes by Targeting miR-143 to Regulate Endothelial-Mesenchymal Transition Associated with Blood-Brain Barrier Integrity. J Neurosci. 2018; 38(1): 32-50. doi: 10.1523/JNEUROSCI.1348-17.2017
32. Zhang T., Tian C., Wu J., Zhang Y., Wang J., Kong Q., Mu L., Sun B., Ai T., Wang Y., Zhao W., Wang D., Li H., Wang G. MicroRNA-182 exacerbates blood-brain barrier (BBB) disruption by downregulating the mTOR/FOXO1 pathway in cerebral ischemia. FASEB J. 2020; 34(10): 13762-13775. doi: 10.1096/fj.201903092R
33. Song J., Yoon S.R., Kim O.Y. miR-Let7A Controls the Cell Death and Tight Junction Density of Brain Endothelial Cells under High Glucose Condition. Oxid Med Cell Longev. 2017; 2017: 6051874. doi: 10.1155/2017/6051874
34. Wang X.X., Zhang B., Xia R., Jia Q.Y. Inflammation, apoptosis and autophagy as critical players in vascular dementia. Eur Rev Med Pharmacol Sci. 2020; 24(18): 9601-9614. doi: 10.26355/eurrev_202009_23048
35. Xu C., Wang C., Meng Q., Gu Y., Wang Q., Xu W., Han Y., Qin Y., Li J., Jia S., Xu J., Zhou Y. miR‑153 promotes neural differentiation in the mouse hippocampal HT‑22 cell line and increases the expression of neuron‑specific enolase. Mol Med Rep. 2019; 20(2): 1725-1735. doi: 10.3892/mmr.2019.10421
36. Morel L., Regan M., Higashimori H., Ng S.K., Esau C., Vidensky S., Rothstein J., Yang Y. Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem. 2013; 288(10): 7105-7116. doi: 10.1074/jbc.M112.410944
37. Liu X., Feng Z., Du L., Huang Y., Ge J., Deng Y., Mei Z. The Potential Role of MicroRNA-124 in Cerebral Ischemia Injury. Int J Mol Sci. 2019; 21(1): 120. doi: 10.3390/ijms21010120
38. Wei C., Xu X., Zhu H., Zhang X., Gao Z. Promotive role of microRNA‑150 in hippocampal neurons apoptosis in vascular dementia model rats. Mol Med Rep. 2021; 23(4): 257. doi: 10.3892/mmr.2021.11896
39. Li G.F., Li Z.B., Zhuang S.J., Li G.C. Inhibition of microRNA-34a protects against propofol anesthesia-induced neurotoxicity and cognitive dysfunction via the MAPK/ERK signaling pathway. Neurosci Lett. 2018; 675: 152-159. doi: 10.1016/j.neulet.2018.03.052
40. Yang F.W., Wang H., Wang C., Chi G.N. Upregulation of acetylcholinesterase caused by downregulation of microRNA-132 is responsible for the development of dementia after ischemic stroke. J Cell Biochem. 2020; 121(1): 135-141. doi: 10.1002/jcb.28985
41. Liu D.Y., Zhang L. MicroRNA-132 promotes neurons cell apoptosis and activates Tau phosphorylation by targeting GTDC-1 in Alzheimer's disease. Eur Rev Med Pharmacol Sci. 2019; 23(19): 8523-8532. doi: 10.26355/eurrev_201910_19166
42. El Fatimy R., Li S., Chen Z., Mushannen T., Gongala S., Wei Z., Balu D.T., Rabinovsky R., Cantlon A., Elkhal A., Selkoe D.J., Sonntag K.C., Walsh D.M., Krichevsky A.M. MicroRNA-132 provides neuroprotection for tauopathies via multiple signaling pathways. Acta Neuropathol. 2018; 136(4): 537-555. doi: 10.1007/s00401-018-1880-5
43. Chen D., Hu S., Wu Z., Liu J., Li S. The Role of MiR-132 in Regulating Neural Stem Cell Proliferation, Differentiation and Neuronal Maturation. Cell Physiol Biochem. 2018; 47(6): 2319-2330. doi: 10.1159/000491543
44. Yue J., Zhang B., Wang H., Hou X., Chen X., Cheng M., Wen S. Dysregulated plasma levels of miRNA-132 and miRNA-134 in patients with obsessive-compulsive disorder. Ann Transl Med. 2020; 8(16): 996. doi: 10.21037/atm-20-5217
45. Burmistrova A.L., Alekseeva A.S., Cazaux M.E., Filippova Y.Y. MicroRNA signature of leukocytes in the context of chronic systemic inflammation in vascular dementia. Russian Journal of Immunology. 2022; 25(4): 399-404. doi: 10.46235/1028-7221-1187-MSO (In Russian)
46. Yakovleva K.D., Dmitrenko D.V., Panina I.S., Usoltseva A.A., Gazenkampf K.A., Konovalenko O.V., Kantimirova E.A., Novitsky M.A., Nasyrova R.F., Shnayder N.A. Expression Profile of miRs in Mesial Temporal Lobe Epilepsy: Systematic Review. Int J Mol Sci. 2022; 23(2): 951. doi: 10.3390/ijms23020951
47. Prabhakar P., Chandra S.R., Christopher R. Circulating microRNAs as potential biomarkers for the identification of vascular dementia due to cerebral small vessel disease. Age Ageing. 2017; 46(5): 861-864. doi: 10.1093/ageing/afx090
48. Sheinerman K.S., Tsivinsky V.G., Abdullah L., Crawford F., Umansky S.R. Plasma microRNA biomarkers for detection of mild cognitive impairment: biomarker validation study. Aging (Albany NY). 2013; 5(12): 925-938. doi: 10.18632/aging.100624
49. Marchegiani F., Matacchione G., Ramini D., Marcheselli F., Recchioni R., Casoli T., Mercuri E., Lazzarini M., Giorgetti B., Cameriere V., Paolini S., Paciaroni L., Rossi T., Galeazzi R., Lisa R., Bonfigli A.R., Procopio A.D., De Luca M., Pelliccioni G., Olivieri F. Diagnostic performance of new and classic CSF biomarkers in age-related dementias. Aging (Albany NY). 2019; 11(8): 2420-2429. doi: 10.18632/aging.101925
50. Yang T.T., Liu C.G., Gao S.C., Zhang Y., Wang P.C. The serum exosome derived microrna-135a,−193b, and−384 were potential alzheimer's disease biomarkers. Biomed Environ Sci. 2018; 31: 87–96. 10.3967/bes2018.011
51. Kumar S., Vijayan M., Reddy P.H. Microrna-455-3p as a potential peripheral biomarker for alzheimer's disease. Hum Mol Genet. 2017; 26: 3808–3822. doi: 10.1093/hmg/ddx267
52. Ai J., Sun L.H., Che H., Zhang R., Zhang T.Z., Wu W.C., Su X.L., Chen X., Yang G., Li K., Wang N., Ban T., Bao Y.N., Guo F., Niu H.F., Zhu Y.L., Zhu X.Y., Zhao S.G., Yang B.F. MicroRNA-195 protects against dementia induced by chronic brain hypoperfusion via its anti-amyloidogenic effect in rats. J Neurosci. 2013; 33(9): 3989-4001. doi: 10.1523/JNEUROSCI.1997-12.2013
53. Tan Z., Chen Y., Xie W., Liu X., Zhu Y., Zhu Y. Nimodipine attenuates tau phosphorylation at Ser396 via miR-132/GSK-3β pathway in chronic cerebral hypoperfusion rats. Eur J Pharmacol. 2018; 819: 1-8. doi: 10.1016/j.ejphar.2017.10.027
54. Hu X.L., Wang X.X., Zhu Y.M., Xuan L.N., Peng L.W., Liu Y.Q., Yang H., Yang C., Jiao L., Hang P.Z., Sun L.H. MicroRNA-132 regulates total protein of Nav1.1 and Nav1.2 in the hippocampus and cortex of rat with chronic cerebral hypoperfusion. Behav Brain Res. 2019; 366: 118-125. doi: 10.1016/j.bbr.2019.03.026
55. Swarup V., Hinz F.I., Rexach J.E., Noguchi K.I., Toyoshiba H., Oda A., Hirai K., Sarkar A., Seyfried N.T., Cheng C., Haggarty S.J., International Frontotemporal Dementia Genomics Consortium, Grossman M., Van Deerlin V.M., Trojanowski J.Q., Lah J.J., Levey A.I., Kondou S., Geschwind D.H. Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia. Nat Med. 2019; 25: 152–164. doi: 10.1038/s41591-018-0223-3
56. Qiao J., Zhao J., Chang S., Sun Q., Liu N., Dong J., Chen Y., Yang D., Ye D., Liu X., Yu Y., Chen W., Zhu S., Wang G., Jia W., Xi J., Kang J. MicroRNA-153 improves the neurogenesis of neural stem cells and enhances the cognitive ability of aged mice through the notch signaling pathway. Cell Death Differ. 2020; 27(2): 808-825. doi: 10.1038/s41418-019-0388-4
57. Sun L.H., Yan M.L., Hu X.L., Peng L.W., Che H., Bao Y.N., Guo F., Liu T., Chen X., Zhang R., Ban T., Wang N., Liu H.L., Hou X., Ai J. MicroRNA-9 induces defective trafficking of Nav1.1 and Nav1.2 by targeting Navβ2 protein coding region in rat with chronic brain hypoperfusion. Mol Neurodegener. 2015; 10: 36. doi: 10.1186/s13024-015-0032-9
58. Xie H., Zhao Y., Zhou Y., Liu L., Liu Y., Wang D., Zhang S., Yang M. MiR-9 Regulates the Expression of BACE1 in Dementia Induced by Chronic Brain Hypoperfusion in Rats. Cell Physiol Biochem. 2017; 42(3): 1213-1226. doi: 10.1159/000478919
59. Che H., Yan Y., Kang X.H., Guo F., Yan M.L., Liu H.L., Hou X., Liu T., Zong D.K., Sun L.L., Bao Y.N., Sun L.H., Yang B.F., Ai J. MicroRNA-27a Promotes Inefficient Lysosomal Clearance in the Hippocampi of Rats Following Chronic Brain Hypoperfusion. Mol Neurobiol. 2017; 54(4): 2595-2610. doi: 10.1007/s12035-016-9856-8
60. Wang P., Liang X., Lu Y., Zhao X., Liang J. MicroRNA-93 Downregulation Ameliorates Cerebral Ischemic Injury Through the Nrf2/HO-1 Defense Pathway. Neurochem Res. 2016; 41(10): 2627-2635. doi: 10.1007/s11064-016-1975-0
61. Liu P., Liu P., Wang Z., Fang S., Liu Y., Wang J., Liu W., Wang N., Chen L., Wang J., Zhang H., Wang L. Inhibition of MicroRNA-96 Ameliorates Cognitive Impairment and Inactivation Autophagy Following Chronic Cerebral Hypoperfusion in the Rat. Cell Physiol Biochem. 2018; 49(1): 78-86. doi: 10.1159/000492844
62. Toyama K., Spin J.M., Deng A.C., Huang T.T., Wei K., Wagenhäuser M.U., Yoshino T., Nguyen H., Mulorz J., Kundu S., Raaz U., Adam M., Schellinger I.N., Jagger A., Tsao P.S. MicroRNA-Mediated Therapy Modulating Blood-Brain Barrier Disruption Improves Vascular Cognitive Impairment. Arterioscler Thromb Vasc Biol. 2018; 38(6): 1392-1406. doi: 10.1161/ATVBAHA.118.310822
63. Ren Z., Yu J., Wu Z., Si W., Li X., Liu Y., Zhou J., Deng R., Chen D. MicroRNA-210-5p Contributes to Cognitive Impairment in Early Vascular Dementia Rat Model Through Targeting Snap25. Front Mol Neurosci. 2018; 11: 388. doi: 10.3389/fnmol.2018.00388
64. Liu X., Zhang R., Wu Z., Si W., Ren Z., Zhang S., Zhou J., Chen D. miR‑134‑5p/Foxp2/Syn1 is involved in cognitive impairment in an early vascular dementia rat model. Int J Mol Med. 2019; 44(5): 1729-1740. doi: 10.3892/ijmm.2019.4331
65. Zhang S., Yan M.L., Yang L., An X.B., Zhao H.M., Xia S.N., Jin Z., Huang S.Y., Qu Y., Ai J. MicroRNA-153 impairs hippocampal synaptic vesicle trafficking via downregulation of synapsin I in rats following chronic cerebral hypoperfusion. Exp Neurol. 2020; 332: 113389. doi: 10.1016/j.expneurol.2020.113389
Supplementary files
Review
For citations:
Petrova M.M., Shnayder N.A., Petrov A.V., Kaskaeva D.S., Trefilova V.V., Nasyrova R.F. PATTERN OF CIRCULATING MICRORNAS IN VASCULAR COGNITIVE DISORDERS. Complex Issues of Cardiovascular Diseases. 2024;13(4S):183-196. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-4S-183-196