Preview

Complex Issues of Cardiovascular Diseases

Advanced search

CURRENT CAPABILITIES AND PROSPECTS OF USING 3D MODELING TECHNOLOGIES IN CONGENITAL HEART DISEASE SURGERY

https://doi.org/10.17802/2306-1278-2024-13-3S-162-172

Abstract

Highlights

  • 3D modeling is a complex process that requires collaboration of specialists from various fields, such as radiologists, cardiologists, cardiac surgeons and engineers.
  • The use of 3D imaging systems is especially relevant in the field of congenital heart defects due to the diversity of anatomical variations.
  • To date, such systems are being actively introduced into the medical industry, in particular in the surgical treatment of congenital heart defects.

 

Abstract

Alongside traditional visualization methods, 3D modeling of the heart and blood vessels is an attractive tool that complements the assessment of congenital heart defect anatomy. With technological advancements, there is active integration of such systems into the medical industry. The use of 3D visualization systems is especially relevant in the field of congenital heart defects due to the diversity of anatomical variations. With advanced image post-processing technologies, it becomes possible to obtain realistic models and simulations of complex congenital heart defects in patients, which is crucial for both diagnosis and treatment planning. This review summarizes the current capabilities of 3D modeling in the field of congenital heart defect surgery, and describes the prospects of using such technologies in daily clinical practice.

About the Authors

Sergei N. Manukian
Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation
Russian Federation

Junior Researcher, Postgraduate Student at the Center for New Surgical Technologies of the Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, Novosibirsk, Russian Federation



Ilya A. Soynov
Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation
Russian Federation

PhD, Cardiovascular Surgeon at the Department of Congenital Heart Defects Surgery, Senior Researcher at the Center for New Surgical Technologies, Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, Novosibirsk, Russian Federation



Dmitry A. Khelimskii
Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation
Russian Federation

PhD, Endovascular Specialist at the Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, Novosibirsk, Russian Federation



Alexey V. Voitov
Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation
Russian Federation

Cardiovascular Surgeon at the Department of Congenital Heart Defects Surgery, Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, Novosibirsk, Russian Federation



Kseniya A. Rzayeva
Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation
Russian Federation

PhD, Endovascular Specialist at the Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, Novosibirsk, Russian Federation



Irina Y. Zhuravleva
Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation
Russian Federation

PhD, Professor, Director of the Institute of Experimental Biology and Medicine, Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, Novosibirsk, Russian Federation



Alexander V. Bogachev-Prokophiev
Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation
Russian Federation

PhD, Director of the Institute of Circulatory Pathology, Cardiovascular Surgeon at the Federal State Budgetary Institution “National Medical Research Center named after academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, Novosibirsk, Russian Federation



References

1. Kido T., Kurata A., Higashino H., Sugawara Y., Okayama H., Higaki J., Anno H., Katada K., Mori S., Tanada S., Endo M., Mochizuki T. Cardiac imaging using 256-detector row four-dimensional CT: preliminary clinical report. Radiat Med. 2007;25(1):38-44. doi: 10.1007/s11604-006-0097-z.

2. Meaney J.F., Goyen M. Recent advances in contrast-enhanced magnetic resonance angiography. Eur Radiol. 2007;17(Suppl 2):B2–B6.

3. Doi K. Diagnostic imaging over the last 50 years: research and development in medical imaging science and technology. Phys Med Biol. 2006;51(13):R5-27. doi: 10.1088/0031-9155/51/13/R02.

4. Kirchgeorg M.A., Prokop M. Increasing spiral CT benefits with postprocessing applications. Eur J Radiol. 1998;28(1):39-54. doi: 10.1016/s0720-048x(98)00011-4.

5. Michalski M.H., Ross J.S. The shape of things to come: 3D printing in medicine. JAMA. 2014;312(21):2213-4. doi: 10.1001/jama.2014.9542.

6. Ovcharenko E.A., Klyshnikov K.U., Glushkova Т.V., Batranin А.V., Rezvova М.А., Kudryavtseva Y.А., Barbarash L.S. Evaluation of a failed heart valve bioprosthesis using microcomputed tomography. Modern technologies in medicine. 2017; 9(3): 15–22. doi: 10.17691/stm2017.9.3.02

7. Kuchumov A.G., Kamaltdinov M.R., Khairulin A.R., Kochergin M.V., Shmurak M.I. Patient-specific 0D–3D modeling of blood flow in newborns to predict risks of complications after surgery. Health Risk Analysis, 2022, no. 4, pp. 159–167. doi: 10.21668/health.risk/2022.4.15.eng (In Russian)

8. Sun Z., Lee S.Y. A systematic review of 3-D printing in cardiovascular and cerebrovascular diseases. Anatol J Cardiol. 2017;17(6):423-435. doi: 10.14744/AnatolJCardiol.2017.7464.

9. Olivieri L.J., Krieger A., Loke Y.-H., Nath D.S., Kim P.C.W., Sable C.A. Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2015;28(4):392- 397. doi:10.1016/j.echo.2014.12.016.

10. Chaowu Y., Hua L., Xin S. Three-Dimensional Printing as an Aid in Transcatheter Closure of Secundum Atrial Septal Defect With Rim Deficiency: In Vitro Trial Occlusion Based on a Personalized Heart Model. Circulation. 2016;133(17):e608-10. doi: 10.1161/CIRCULATIONAHA.115.020735.

11. Kiraly L., Tofeig M., Jha N.K., Talo H. Three-dimensional printed prototypes refine the anatomy of post-modified Norwood-1 complex aortic arch obstruction and allow presurgical simulation of the repair. Interact Cardiovasc Thorac Surg. 2016;22(2):238-40. doi: 10.1093/icvts/ivv320.

12. Kurenov S.N., Ionita C., Sammons D., Demmy T.L. Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery. J Thorac Cardiovasc Surg. 2015;149(4):973-9.e1. doi: 10.1016/j.jtcvs.2014.12.059.

13. Yang D.H., Kang J.W., Kim N., Song J.K., Lee J.W., Lim T.H. Myocardial 3-Dimensional Printing for Septal Myectomy Guidance in a Patient With Obstructive Hypertrophic Cardiomyopathy. Circulation. 2015;132(4):300-1. doi: 10.1161/CIRCULATIONAHA.115.015842.

14. Schmauss D., Schmitz C., Bigdeli A.K., Weber S., Gerber N., Beiras-Fernandez A., Schwarz F., Becker C., Kupatt C., Sodian R. Three-dimensional printing of models for preoperative planning and simulation of transcatheter valve replacement. Ann Thorac Surg. 2012;93(2):e31-3. doi: 10.1016/j.athoracsur.2011.09.031.

15. Valverde I., Gomez G., Coserria J.F., Suarez-Mejias C., Uribe S., Sotelo J., Velasco M.N., Santos De Soto J., Hosseinpour A.R., Gomez-Cia T. 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia. Catheter Cardiovasc Interv. 2015;85(6):1006-12. doi: 10.1002/ccd.25810.

16. Biglino G., Capelli C., Wray J., Schievano S., Leaver L.K., Khambadkone S., Giardini A., Derrick G., Jones A., Taylor A.M. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open. 2015;5(4):e007165. doi: 10.1136/bmjopen-2014-007165.

17. Acar P., Hadeed K., Dulac Y. Advances in 3D echocardiography: From foetus to printing. Arch Cardiovasc Dis. 2016;109(2):84-6. doi: 10.1016/j.acvd.2015.09.004.

18. Faganello G., Campana C., Belgrano M., Russo G., Pozzi M., Cioffi G., Di Lenarda A. Three dimensional printing of an atrial septal defect: Is it multimodality imaging? Int J Cardiovasc Imaging. 2016;32(3):427-8. doi: 10.1007/s10554-015-0801-0.

19. Farooqi K.M., Sengupta P.P. Echocardiography and three-dimensional printing: sound ideas to touch a heart. J Am Soc Echocardiogr. 2015;28(4):398-403. doi: 10.1016/j.echo.2015.02.005.

20. Farooqi K.M., Lengua C.G., Weinberg A.D., Nielsen J.C., Sanz J. Blood Pool Segmentation Results in Superior Virtual Cardiac Models than Myocardial Segmentation for 3D Printing. Pediatr Cardiol. 2016;37(6):1028-36. doi: 10.1007/s00246-016-1385-8.

21. Mottl-Link S., Hübler M., Kühne T., Rietdorf U., Krueger J.J., Schnackenburg B., De Simone R., Berger F., Juraszek A., Meinzer H.P., Karck M., Hetzer R., Wolf I. Physical models aiding in complex congenital heart surgery. Ann Thorac Surg. 2008 l;86(1):273-7. doi: 10.1016/j.athoracsur.2007.06.001.

22. Byrne N., Velasco Forte M., Tandon A., Valverde I., Hussain T. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system. JRSM Cardiovasc Dis. 2016;5:2048004016645467. doi: 10.1177/2048004016645467.

23. Kim M.S., Hansgen A.R., Wink O., Quaife R.A., Carroll J.D. Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation. 2008;117(18):2388-94. doi: 10.1161/CIRCULATIONAHA.107.740977.

24. Schievano S., Migliavacca F., Coats L., Khambadkone S., Carminati M., Wilson N., Deanfield J.E., Bonhoeffer P., Taylor A.M. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology. 2007;242(2):490-7. doi: 10.1148/radiol.2422051994.

25. Govil S., Crabb B.T., Deng Y., Dal Toso L., Puyol-Antón E., Pushparajah K., Hegde S., Perry J.C., Omens J.H., Hsiao A., Young A.A., McCulloch A.D. A deep learning approach for fully automated cardiac shape modeling in tetralogy of Fallot. J Cardiovasc Magn Reson. 2023;25(1):15. doi: 10.1186/s12968-023-00924-1.

26. Mahmood F., Owais K., Taylor C., Montealegre-Gallegos M., Manning W., Matyal R., Khabbaz K.R. Three-dimensional printing of mitral valve using echocardiographic data. JACC Cardiovasc Imaging. 2015;8(2):227-9. doi: 10.1016/j.jcmg.2014.06.020.

27. Muraru D., Veronesi F., Maddalozzo A,. Dequal D., Frajhof L., Rabischoffsky A., Iliceto S., Badano L.P. 3D printing of normal and pathologic tricuspid valves from transthoracic 3D echocardiography data sets. Eur Heart J Cardiovasc Imaging. 2017;18(7):802-808. doi: 10.1093/ehjci/jew215.

28. Cabasa A.S., Eleid M.F., Rihal C.S., Villarraga H.R., Foley T.A., Suri R.M. Tricuspid Valve Replacement: A Percutaneous Transfemoral Valve-in-Ring Approach. JACC Cardiovasc Interv. 2015;8(8):1126-1128. doi: 10.1016/j.jcin.2015.03.025.

29. Rodríguez Fernández A., Bethencourt González A. Imaging Techniques in Percutaneous Cardiac Structural Interventions: Atrial Septal Defect Closure and Left Atrial Appendage Occlusion. Rev Esp Cardiol (Engl Ed). 2016;69(8):766-77. doi: 10.1016/j.rec.2016.04.024.

30. Bartel T., Rivard A., Jimenez A., Edris A. Three-dimensional printing for quality management in device closure of interatrial communications. Eur Heart J Cardiovasc Imaging. 2016;17(9):1069. doi: 10.1093/ehjci/jew119.

31. Phillips A.B., Nevin P., Shah A., Olshove V., Garg R., Zahn E.M. Development of a novel hybrid strategy for transcatheter pulmonary valve placement in patients following transannular patch repair of tetralogy of fallot. Catheter Cardiovasc Interv. 2016;87(3):403-10. doi: 10.1002/ccd.26315.

32. Zhao L, Zhou S, Fan T, Li B, Liang W, Dong H. Three-dimensional printing enhances preparation for repair of double outlet right ventricular surgery. J Card Surg. 2018;33(1):24–27. doi: 10.1111/jocs.13523

33. Soynov I.A., Manukyan S.N., Rzaeva K.A., Voitov A.V., Timchenko T.P., Kobelev E., Arkhipov A.N., Nichai N.R., Kulyabin Yu.Yu., Zhuravleva I.Yu., Bogachev-Prokofiev A.V. Dysfunctions of right ventricular outflow tract. Kardiologiya i Serdechno-Sosudistaya Khirurgiya. 2023;16(4):351 357. doi:10.17116/kardio202316041351 (In Russian)

34. Soynov I.A., Zhuravleva I.Iu., Kulyabin Yu.Yu., Nichay N.R., Afanas'ev A.V., Aleshkevich N.P., Bogachev-Prokof'ev A.V., Karas'kov A.M. Valved conduits in pediatric cardiac surgery. Pirogov Russian Journal of Surgery. 2018;(1):75 81. doi:10.17116/hirurgia2018175-81 (In Russian)

35. Amerini A., Hatam N., Malasa M., Pott D., Tewarie L., Isfort P., Goetzenich A., Hildinger M., Autschbach R., Spillner J. A personalized approach to interventional treatment of tricuspid regurgitation: experiences from an acute animal study. Interact Cardiovasc Thorac Surg. 2014;19(3):414-8. doi: 10.1093/icvts/ivu143.

36. Vignon-Clementel I.E., Marsden A.L., Feinstein J.A. A primer on computational simulation in congenital heart disease for the clinician. Prog Pediatr Cardiol. 2010; 30:3–13. doi:10.1016/j.ppedcard.2010.09.002

37. Hsia T.Y., Cosentino D., Corsini C., Pennati G., Dubini G., Migliavacca F.; Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Use of mathematical modeling to compare and predict hemodynamic effects between hybrid and surgical Norwood palliations for hypoplastic left heart syndrome. Circulation. 2011;124(11 Suppl):S204-10. doi: 10.1161/CIRCULATIONAHA.110.010769.

38. Esmaily-Moghadam M., Hsia T.Y., Marsden A.L.; Modeling of Congenital Hearts Alliance (MOCHA) Investigators. The assisted bidirectional Glenn: a novel surgical approach for first-stage single-ventricle heart palliation. J Thorac Cardiovasc Surg. 2015;149(3):699-705. doi: 10.1016/j.jtcvs.2014.10.035.

39. Zhou J., Esmaily-Moghadam M., Conover T.A., Hsia T.Y., Marsden A.L., Figliola R.S.; MOCHA Investigators. In Vitro Assessment of the Assisted Bidirectional Glenn Procedure for Stage One Single Ventricle Repair. Cardiovasc Eng Technol. 2015;6(3):256-67. doi: 10.1007/s13239-015-0232-z.

40. Schiavazzi D.E., Kung E.O., Marsden A.L., Baker C., Pennati G., Hsia T.Y., Hlavacek A., Dorfman A.L.; Modeling of Congenital Hearts Alliance (MOCHA) Investigators. Hemodynamic effects of left pulmonary artery stenosis after superior cavopulmonary connection: a patient-specific multiscale modeling study. J Thorac Cardiovasc Surg. 2015;149(3):689-96.e1-3. doi: 10.1016/j.jtcvs.2014.12.040.

41. DeCampli W.M. If only Poiseuille had had a computer. J Thorac Cardiovasc Surg. 2015;149(3):697-8. doi: 10.1016/j.jtcvs.2014.09.024.

42. Martin M.H., Feinstein J.A., Chan F.P., Marsden A.L., Yang W., Reddy V.M. Technical feasibility and intermediate outcomes of using a handcrafted, area-preserving, bifurcated Y-graft modification of the Fontan procedure. J Thorac Cardiovasc Surg. 2015;149(1):239-45.e1. doi: 10.1016/j.jtcvs.2014.08.058.

43. Kanter K.R., Haggerty C.M., Restrepo M., de Zelicourt D.A., Rossignac J., Parks W.J., Yoganathan A.P. Preliminary clinical experience with a bifurcated Y-graft Fontan procedure--a feasibility study. J Thorac Cardiovasc Surg. 2012;144(2):383-9. doi: 10.1016/j.jtcvs.2012.05.015.

44. Yang W., Chan F.P., Reddy V.M., Marsden A.L., Feinstein J.A. Flow simulations and validation for the first cohort of patients undergoing the Y-graft Fontan procedure. J Thorac Cardiovasc Surg. 2015;149(1):247-55. doi: 10.1016/j.jtcvs.2014.08.069.

45. Haggerty C.M., Kanter K.R., Restrepo M., de Zélicourt D.A., Parks W.J., Rossignac J., Fogel M.A., Yoganathan A.P. Simulating hemodynamics of the Fontan Y-graft based on patient-specific in vivo connections. J Thorac Cardiovasc Surg. 2013;145(3):663-70. doi: 10.1016/j.jtcvs.2012.03.076.

46. Haggerty C.M., Whitehead K.K., Bethel J., Fogel M.A., Yoganathan A.P. Relationship of single ventricle filling and preload to total cavopulmonary connection hemodynamics. Ann Thorac Surg. 2015;99(3):911-7. doi: 10.1016/j.athoracsur.2014.10.043.

47. Das A., Banerjee R.K., Gottliebson W.M. Right ventricular inefficiency in repaired tetralogy of Fallot: proof of concept for energy calculations from cardiac MRI data. Ann Biomed Eng. 2010;38(12):3674-87. doi: 10.1007/s10439-010-0107-2.

48. Fogel M.A., Sundareswaran K.S., de Zelicourt D., Dasi L.P., Pawlowski T., Rome J., Yoganathan A.P. Power loss and right ventricular efficiency in patients after tetralogy of Fallot repair with pulmonary insufficiency: clinical implications. J Thorac Cardiovasc Surg. 201;143(6):1279-85. doi: 10.1016/j.jtcvs.2011.10.066.


Supplementary files

Review

For citations:


Manukian S.N., Soynov I.A., Khelimskii D.A., Voitov A.V., Rzayeva K.A., Zhuravleva I.Y., Bogachev-Prokophiev A.V. CURRENT CAPABILITIES AND PROSPECTS OF USING 3D MODELING TECHNOLOGIES IN CONGENITAL HEART DISEASE SURGERY. Complex Issues of Cardiovascular Diseases. 2024;13(3S):162-172. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-3S-162-172

Views: 174


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)