Preview

Complex Issues of Cardiovascular Diseases

Advanced search

INTERACTOME CHARACTERISTICS OF MORPHOFUNCTIONAL SYSTEM CONDUIT-ATERY ARTERIO-ARTERIAL CONTINUUM DURING IN MODELING IN SILICO

https://doi.org/10.17802/2306-1278-2024-13-4S-73-87

Abstract

Highlights

  • The morphofunctional conduit-artery system as a surgical connection between the bypass graft and the coronary artery exists in two forms – arterio-arterial and venous-arterial continuum.
  • Coronary artery bypass grafting with autogenous arterial grafts shows the most effective results, this technique relies on the use of patient`s arteries as bypass grafts.
  • The studied interactome of the endothelium of two connected vessels in the arterio-arterial continuum provides a fundamental justification of the high efficiency of this type of bypass.

 

Abstract

Background. Alterations in conduits and coronary arteries, which lead to the unacceptable frequency of major adverse cardiovascular events after coronary artery bypass graft surgery, are often determined by endothelial dysfunction. This pathological process may be less pronounced when using autogenous arterial grafts, since the connection of one artery to another is associated with a large number of similar categories of proteome and transcriptome of endothelial cells (EC) of these vessels. At the same time, it remains unclear what constitutes the interactome of this compound, which is based on the interaction of differentially expressed genes and proteins that reflect the structural and functional heterogeneity of various ECs and can influence the biological congruence of the arterio-arterial continuum.

Aim. To characterize an interactome of human coronary artery ECs (HCAEC) and human internal thoracic artery ECs (HITAEC) for biological congruence of arterio-arterial continuum assessment.

Methods. The study involved commercial culture of human primary HCAEC and HITAEC. Physiological expression was evaluated by transcriptomic and proteomic profiling using RNA sequencing and ultra-high performance liquid chromatography-mass spectrometry, respectively. Bioinformatics analysis of transcriptomic and proteomic data was conducted using the Gene Ontology, Reactome, UniProtKB, and KEGG databases. Interactome was analyzed and characterized during modeling in silico.

Results. Most of the protein-protein and gene-gene interaction categories in HCAEC and HITAEC were responsible for the structural and functional maintenance of the endothelial monolayer and basement membrane. This was expressed in such categories as intercellular junctions (tight, anchor, focal, gap junctions, cell junction assembly, cell-substrate junction), cell adhesion (cell and intercellular adhesion and its regulation) and matrix (cell-matrix junction, cell-matrix contact). Moreover, such interactions have been associated with vascular formation (vascular morphogenesis and development, angiogenesis, regulation of angiogenesis, sprouting angiogenesis, VEGF signaling pathway, regulation of VEGF production, transcription and translation of pre-NOTCH, NOTCH signaling), EC proliferation (development, differentiation and migration of EC), formation of elastic fibers (molecules associated with elastic fibers, formation of elastic fibers, assembly of elastic fibers), NO biosynthesis and its regulation (stimulation of NO guanylate cyclase, NO-mediated signal transduction, regulation of the NOS biosynthesis process, regulation of NOS activity).

Conclusions. Datasets associated with interactions between differentially expressed proteins and genes of HCAEC and HITAEC are characterized by significant enrichment of arterial homeostasis pathways due to heterogenic cells` coherent structural and functional effects upon contact and synergetic impact on endothelial phenotype, which could possibly be keeping the biological congruence of arterio-arterial continuum in the morphofunctional conduit-artery system for a long time period and thus determine high effectiveness of coronary artery bypass grafting with autogenous arterial grafts.  

About the Author

Alexey V. Frolov
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Cardiovascular Surgeon, Senior Researcher at the Laboratory of Endovascular and Reconstructive Surgery of the Heart and Blood Vessels, Department of Heart and Vascular Surgery, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



References

1. dela Paz N.G., D'Amore P.A. Arterial versus venous endothelial cells. Cell Tissue Res. 2009;335(1):5-16. doi: 10.1007/s00441-008-0706-5.

2. Rafii S., Butler J.M., Ding B.S. Angiocrine functions of organ-specific endothelial cells. Nature. 2016;529(7586):316-25. doi: 10.1038/nature17040.

3. haribeh L., Ferrari G., Ouimet M., Grau J.B. Conduits' Biology Regulates the Outcomes of Coronary Artery Bypass Grafting. JACC Basic Transl Sci. 2021 Apr 27;6(4):388-396. doi: 10.1016/j.jacbts.2020.11.015.

4. Gaudino M., Di Franco A., Bhatt D.L., Alexander J.H., Abbate A., Azzalini L., Sandner S., Sharma G., Rao S.V., Crea F., Fremes S.E., Bangalore S. The association between coronary graft patency and clinical status in patients with coronary artery disease. Eur Heart J. 2021;42(14):1433-1441. doi: 10.1093/eurheartj/ehab096.

5. Frolov A.V. Morphological and functional system of graft-artery junctions. Complex Issues of Cardiovascular Disease. 2019;8:112-122. doi: 10.17802/2306-1278-2019-8-1-112-122. (In Russian)

6. Borović M.M., Lalić I.M., Borović S.D., Zaletel I.V., Mutavdzin S.S., Bajčetić M.I., Kostić J.V., Trifunović Z.Z. Structural features of arterial grafts important for surgical myocardial revascularization: Part I--Histology of the internal thoracic artery. Vojnosanit Pregl. 2015;72(10):914-21. doi: 10.2298/VSP140515079L.

7. Kraler S., Libby P., Evans P.C., Akhmedov A., Schmiady M.O., Reinehr M., Camici G.G., Lüscher T.F. Resilience of the Internal Mammary Artery to Atherogenesis: Shifting From Risk to Resistance to Address Unmet Needs. Arterioscler Thromb Vasc Biol. 2021;41(8):2237-2251. doi: 10.1161/ATVBAHA.121.316256.

8. Borović M.L., Borović S., Perić M., Vuković P., Marinković J., Todorović V., Radak D., Lacković V. The internal thoracic artery as a transitional type of artery: a morphological and morphometric study. Histol Histopathol. 2010;25(5):561-76. doi: 10.14670/HH-25.561.

9. Barry M., Touati G., Chardon K., Laude M., Libert J.P., Sevestre H. Histologic study of coronary, radial, ulnar, epigastric and internal thoracic arteries: application to coronary artery bypass grafts. Surg Radiol Anat. 2007;29(4):297-302. doi: 10.1007/s00276-007-0214-4.

10. Frolov A., Lobov A., Kabilov M., Zainullina B., Tupikin A., Shishkova D., Markova V., Sinitskaya A., Grigoriev E., Markova Y., Kutikhin A. Multi-Omics Profiling of Human Endothelial Cells from the Coronary Artery and Internal Thoracic Artery Reveals Molecular but Not Functional Heterogeneity. Int J Mol Sci. 2023;24(19):15032. doi: 10.3390/ijms241915032.

11. Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504. doi: 10.1101/gr.1239303.

12. Frolov A.V. Morfofunkcional'naja sistema konduit-arterija: kliniko-patofiziologicheskaja koncepcija kak osnova jeffektivnosti autoarterial'nogo koronarnogo shuntirovanija. [dissertation] Kemerovo, 2023. (In Russian)

13. Anders S., Pyl P.T., Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166-9. doi: 10.1093/bioinformatics/btu638.

14. Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., Harris M.A., Hill D.P., Issel-Tarver L., Kasarskis A., Lewis S., Matese J.C., Richardson J.E., Ringwald M., Rubin G.M., Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25-9. doi: 10.1038/75556.

15. Gene Ontology Consortium. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 2021;49(D1):D325-D334. doi: 10.1093/nar/gkaa1113.

16. Gillespie M., Jassal B., Stephan R., Milacic M., Rothfels K., Senff-Ribeiro A., Griss J., Sevilla C., Matthews L., Gong C. et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022;50(D1):D687-D692. doi: 10.1093/nar/gkab1028.

17. Griss J., Viteri G., Sidiropoulos K., Nguyen V., Fabregat A., Hermjakob H. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis. Mol Cell Proteomics. 2020;19(12):2115-2125. doi: 10.1074/mcp.TIR120.002155.

18. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480-D489. doi: 10.1093/nar/gkaa1100..

19. Kanehisa M., Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30. doi: 10.1093/nar/28.1.27.

20. Kanehisa M., Furumichi M., Sato Y., Ishiguro-Watanabe M., Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545-D551. doi: 10.1093/nar/gkaa970.

21. Glukhov A.I., Khuchua Z.A., Grizunova G.K., Astakhov D.V., Danilevskiy M.I. Interactomics in translational medicine. Sechenov Medical Journal. 2018; 31(1): 4-15. 9In Russian)

22. Becker L.M., Chen S.H., Rodor J., de Rooij L.P.M.H., Baker A.H., Carmeliet P. Deciphering endothelial heterogeneity in health and disease at single-cell resolution: progress and perspectives. Cardiovasc Res. 2023;119(1):6-27. doi: 10.1093/cvr/cvac018.

23. Shishkova D., Markova V., Sinitsky M., Tsepokina A., Frolov A., Zagorodnikov N., Bogdanov L., Kutikhin A. Co-Culture of Primary Human Coronary Artery and Internal Thoracic Artery Endothelial Cells Results in Mutually Beneficial Paracrine Interactions. Int J Mol Sci. 2020;21(21):8032. doi: 10.3390/ijms21218032.

24. Lee M.D., Buckley C., Zhang X., Louhivuori L., Uhlén P., Wilson C., McCarron J.G. Small-world connectivity dictates collective endothelial cell signaling. Proc Natl Acad Sci U S A. 2022;119(18):e2118927119. doi: 10.1073/pnas.2118927119.

25. Richards A.L, Eckhardt M., Krogan N.J. Mass spectrometry-based protein-protein interaction networks for the study of human diseases. Mol Syst Biol. 2021;17(1):e8792. doi: 10.15252/msb.20188792 792.

26. Claesson-Welsh L., Dejana E., McDonald D.M. Permeability of the Endothelial Barrier: Identifying and Reconciling Controversies. Trends Mol Med. 2021;27(4):314-331. doi: 10.1016/j.molmed.2020.11.006.

27. Mussbacher M., Schossleitner K., Kral-Pointner J.B., Salzmann M., Schrammel A., Schmid J.A. More than Just a Monolayer: the Multifaceted Role of Endothelial Cells in the Pathophysiology of Atherosclerosis. Curr Atheroscler Rep. 2022;24(6):483-492. doi: 10.1007/s11883-022-01023-9.

28. Komarova Y.A., Kruse K., Mehta D., Malik A.B. Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability. Circ Res. 2017;120(1):179-206. doi: 10.1161/CIRCRESAHA.116.306534.

29. Legerstee K., Houtsmuller A.B. A Layered View on Focal Adhesions. Biology (Basel). 2021;10(11):1189. doi: 10.3390/biology10111189 .

30. Kim J., Mooren O.L., Onken M.D., Cooper J.A. Septin and actin contributions to endothelial cell-cell junctions and monolayer integrity. Cytoskeleton (Hoboken). 2023;80(7-8):228-241. doi: 10.1002/cm.21732.

31. Leclech C., Natale C.F., Barakat A.I. The basement membrane as a structured surface - role in vascular health and disease. J Cell Sci. 2020;133(18):jcs239889. doi: 10.1242/jcs.239889.

32. hompson M., Sakabe M., Verba M., Hao J., Meadows S.M., Lu Q.R., Xin M. PRDM16 regulates arterial development and vascular integrity. Front Physiol. 2023;14:1165379. doi: 10.3389/fphys.2023.1165379.

33. Luo Z., Yao J., Wang Z., Xu J. Mitochondria in endothelial cells angiogenesis and function: current understanding and future perspectives. J Transl Med. 2023;21(1):441. doi: 10.1186/s12967-023-04286-1.

34. Hou S., Li Z., Dong J., Gao Y., Chang Z., Ding X., Li S., Li Y., Zeng Y., Xin Q., Wang B., Ni Y., Ning X., Hu Y., Fan X., Hou Y., Li X., Wen L., Zhou B., Liu B., Tang F., Lan Y. Heterogeneity in endothelial cells and widespread venous arterialization during early vascular development in mammals. Cell Res. 2022;32(4):333-348. doi: 10.1038/s41422-022-00615-z.

35. Schmelzer C.E.H., Duca L. Elastic fibers: formation, function, and fate during aging and disease. FEBS J. 2022;289(13):3704-3730. doi: 10.1111/febs.15899.

36. Andraska E., Skirtich N., McCreary D., Kulkarni R., Tzeng E., McEnaney R. Simultaneous Upregulation of Elastolytic and Elastogenic Factors Are Necessary for Regulated Collateral Diameter Expansion. Front Cardiovasc Med. 2022;8:762094. doi: 10.3389/fcvm.2021.762094.

37. Tejero J., Shiva S., Gladwin M.T. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev. 2019;99(1):311-379. doi: 10.1152/physrev.00036.2017.

38. Kawashima S., Yokoyama M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24(6):998-1005. doi: 10.1161/01.ATV.0000125114.88079.96.

39. Ozaki M., Kawashima S., Yamashita T., Hirase T., Namiki M., Inoue N., Hirata K., Yasui H., Sakurai H., Yoshida Y., Masada M., Yokoyama M. Overexpression of endothelial nitric oxide synthase accelerates atherosclerotic lesion formation in apoE-deficient mice. J Clin Invest. 2002;110(3):331-40. doi: 10.1172/JCI15215.


Supplementary files

Review

For citations:


Frolov A.V. INTERACTOME CHARACTERISTICS OF MORPHOFUNCTIONAL SYSTEM CONDUIT-ATERY ARTERIO-ARTERIAL CONTINUUM DURING IN MODELING IN SILICO. Complex Issues of Cardiovascular Diseases. 2024;13(4S):73-87. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-4S-73-87

Views: 77


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)