Preview

Complex Issues of Cardiovascular Diseases

Advanced search

PERSPECTIVES ON USING INHALED NITRIC OXIDE AND ITS ORGAN PROTECTION FEATURES IN CARDIOVASCULAR SURGERIES WITH CARDIOPULMONARY BYPASS: A SYSTEMATIC REVIEW

https://doi.org/10.17802/2306-1278-2024-13-4S-217-229

Abstract

Highlights

Cardiovascular surgery with cardiopulmonary bypass for congenital heart defects in children is associated with the issue of organ protection that impacts the outcome and subsequent rehabilitation process. The literature review highlights the need to improve cardiopulmonary bypass-associated adverse effects in cardiovascular interventions in different patient populations.

 

Article 

Pathological effects of cardiopulmonary bypass (CPB), which is necessary for most surgeries in children and adults with congenital heart defects, remains an unresolved issue. The functional immaturity of the circulatory system and endogenous mechanisms of organ protection in children necessitates intraoperative protection of the organs affected by CPB. The severity of the effects of extracorporeal circuits can lead to an increase in comorbidity and mortality in patients who have undergone CPB. The relevance of the study lies in the fact that most organ protection strategies adopted in adults are inapplicable in children. The search for Russian and English publications (up to 7 years old) was performed using the following databases: Web of Science, PubMed, E-library. The keywords for the search were: nitric oxide, cardiopulmonary bypass, congenital heart defects, organ protection. Literature analysis results revealed the potential for further research on the inhaled nitric oxide for organ protection during cardiac surgery, and the feasibility of its perioperative administration. The nitric oxide is a promising method of organ protection in cardiac surgery with CPB. Moreover, scientific data highlight the importance of the organ protection during CPB in order to ensure successful outcome of the intervention. However, further research on inhaled nitric oxide effects is necessary.

About the Authors

Alyona A. Mikhailova
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Junior Researcher at the Laboratory of Organoprotection in Children with Congenital Heart Defects, Department of Heart and Vascular Surgery, Federal State Budgetary Institution “Research Institute for Complex Issue of Cardiovascular Diseases”, Kemerovo, Russian Federation



Artem A. Ivkin
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Head of the Laboratory of Organoprotection in Children with Congenital Heart Defects, Department of Heart and Vascular Surgery, Researcher at the Laboratory of Anesthesiology, Intensive Care and Pathophysiology of Critical Conditions, Senior Lecturer at the Department of Science and Education, Anesthesiologist, Intensive Care Physician at the Federal State Budgetary Institution “Research Institute for Complex Issue of Cardiovascular Diseases”, Kemerovo, Russian Federation



Evgeny V. Grigoriev
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

MD, PhD, Member of the Russian Academy of Sciences, Deputy Director for Research and Clinical Affairs, Leading Researcher at the Laboratory of Anesthesiology, Intensive Care and Pathophysiology of Critical Conditions, Federal State Budgetary Institution “Research Institute for Complex Issue of Cardiovascular Diseases”, Kemerovo, Russian Federation



References

1. Infante T., Costa D., Napoli C. Novel Insights Regarding Nitric Oxide and Cardiovascular Diseases. Angiology. 2021; 72 (5): 411-425. doi: 10.1177/0003319720979243

2. Rebrova T.Yu., Podoksenov Yu.K., Afanasiev S.A., Kamenshchikov N.O., Korepanov V.A., Diakova M.L. Effects of nitric oxide on microviscosity and polarity of erythrocyte membranes in experiment. Siberian Scientific Medical Journal. 2023; 43 (6): 101-107. doi: 10.18699/SSMJ20230612 (In Russian)

3. Koning N.J., Atasever B., Vonk A.B., Boer C. Changes in microcirculatory perfusion and oxygenation during cardiac surgery with or without cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2014; 28 (5): 1331-1340. doi: 10.1053/j.jvca.2013.04.009

4. Mader M.M., Czorlich P. The role of L-arginine metabolism in neurocritical care patients. Neural Regen Res. 2022; 17 (7): 1446-1453. doi: 10.4103/1673-5374.327331

5. Villarreal E.G., Aiello S., Evey L.W., Flores S., Loomba R.S. Effects of inhaled nitric oxide on haemodynamics and gas exchange in children after having undergone cardiac surgery utilising cardiopulmonary bypass. Cardiol Young. 2020; 30 (8): 1151-1156. doi: 10.1017/S1047951120001717

6. Maksimovich E.N., Pronko T.P., Guliay I.E., Snezhitsky V.A. The NO Level after Coronary Artery Bypass Graft under the Conditions of Artificial Circulation. Health and Ecology Issues. 2019; 62 (4): 48-52. doi: 10.51523/2708-6011.2019-16-4-9 (In Russian)

7. Ltaief Z., Ben-Hamouda N., Rancati V., Gunga Z., Marcucci C., Kirsch M., Liaudet L. Vasoplegic Syndrome after Cardiopulmonary Bypass in Cardiovascular Surgery: Pathophysiology and Management in Critical Care. J Clin Med. 2022; 11 (21): 6407. doi: 10.3390/jcm11216407

8. Saha B.K., Burns S.L. The Story of Nitric Oxide, Sepsis and Methylene Blue: A Comprehensive Pathophysiologic Review. Am J Med Sci. 2020; 360 (4): 329-337. doi: 10.1016/j.amjms.2020.06.007

9. Kolcz J., Karnas E., Madeja Z., Zuba-Surma E.K. The cardioprotective and anti-inflammatory effect of inhaled nitric oxide during Fontan surgery in patients with single ventricle congenital heart defects: a prospective randomized study. J Intensive Care. 2022; 10 (1): 48. doi: 1186/s40560-022-00639-y

10. Eriksson K.E., Eidhagen F., Liska J., Franco-Cereceda A., Lundberg J.O., Weitzberg E. Effects of inorganic nitrate on ischaemia-reperfusion injury after coronary artery bypass surgery: a randomised controlled trial. Br J Anaesth. 2021; 127 (4): 547-555. doi: 10.1016/j.bja.2021.06.046

11. Buranov S.N., Karelin V.I., Selemir V.D., SHirshin А.S., Pichugin V.V., Domnin S.E. Аpparat ingalyatsionnoj terapii oksidom azota «Tianoks» i pervyj opyt ego klinicheskogo primeneniya v kardiokhirurgii. In: Materialy nauchno-obrazovatel'noj konferencii «Aktual'nye voprosy i innovacionnye tekhnologii v anesteziologii i reanimatologii», Sankt-Peterburg; 2018. p. 4-9. (In Russian)

12. Pichugin V.V., Vaidkhas К., Domnin S.Е., Gamzaev А.B., Medvedev А.P., Chiginev V.А. The first experience of clinical application of a new device for inhalation NO-therapy in cardiac surgery. Medical almanac. 2018; 55 (4): 169-174. doi: 10.18699/SSMJ20230612 (In Russian)

13. Bautin A.E., Selemir V.D., Shafikova A.I., Afanasyeva K.Yu., Kurskova E.S., Etin V.L., Marichev A.O., Tashkhanov D.M., Rubinchik V.E., Kasherininov I.Yu., Morozov K.A., Nikiforov V.G., Biktasheva L.Z., Akhimov P.S., Buranov S.N., Karelin V.I., Shirshin A.S., Valueva Yu.V., Pichugin V.V. Evaluation of the clinical efficacy and safety of nitric oxide synthesized from room air in the postoperative period of cardiac surgery. Translational Medicine. 2021; 8 (1): 38-50. doi: 10.18705/2311-4495-2021-8-1-38-50 (In Russian)

14. Pichugin V.V., Derugina A.V., Domnin S.E., Shirshin A.S., Fedorov S.A., Buranov S.N., Jourko S.A., Ryazanov M.V., Danilova D.A., Brichkin Yu.D. Combined administration of nitric oxide and hydrogen into extracorporeal circuit of cardiopulmonary bypass as a method of organ protection during cardiac surgery. Sovremennye tehnologii v medicine. 2023; 15 (5): 15-23. doi: 10.17691/stm2023.15.5.02 (In Russian)

15. Serebryansky K., Lee V. Evaluation of the clinical efficacy of inhaled nitric oxide synthesized from natural air in conditions of thoracic surgical intervention on the lung tissue. Medical Alliance. 2022; 10 (4): 27-32. doi: 10.36422/23076348-2022-10-4-27-32 (In Russian)

16. Gibbons K.S., Schlapbach L.J., Horton S.B., Long D.A., Beca J., Erickson S., Festa M., d'Udekem Y., Alphonso N., Winlaw D., Johnson K., Delzoppo C., van Loon K., Gannon B., Fooken J., Blumenthal A., Young P.J., Butt W., Schibler A.; NITRIC Study Group, the Australian and New Zealand Intensive Care Society Clinical Trials Group (ANZICS CTG), and the ANZICS Paediatric Study Group (PSG). Statistical analysis plan for the NITric oxide during cardiopulmonary bypass to improve Recovery in Infants with Congenital heart defects (NITRIC) trial. Crit Care Resusc. 2023; 23 (1): 47-58. doi: 10.51893/2021.1.OA4

17. Xu F., Li W. Delivery exogenous nitric oxide via cardiopulmonary bypass in pediatric cardiac surgery reduces the duration of postoperative mechanical ventilation-A meta-analysis of randomized controlled trials. Heliyon. 2023; 9 (8): e19007. doi: 10.1016/j.heliyon.2023.e19007

18. Pichugin V.V., Seyfetdinov I.R., Ryazanov M.V., Domnin S.E., Gamzaev A.B., Chiginev V.A., Bober V.V., Medvedev A.P. New technology for the use of inhaled nitric oxide to protect the heart and lungs during operations with cardiopulmonary bypass. Sovremennye tehnologii v medicine 2020; 12 (5): 28-36. doi: 10.17691/stm2020.12.5.03 (In Russian)

19. Abouzid M., Roshdy Y., Daniel J.M., Rzk F.M., Ismeal A.A.A., Hendawy M., Tanashat M., Elnagar M., Daoud N., Ramadan A. The beneficial use of nitric oxide during cardiopulmonary bypass on postoperative outcomes in children and adult patients: a systematic review and meta-analysis of 2897 patients. Eur J Clin Pharmacol. 2023; 79 (11): 1425-1442. doi: 10.1007/s00228-023-03554-9

20. Kamenshchikov N.O., Podoksenov Yu.K., Kozlov B.N. Perioperacionnoe kondicionirovanie oksidom azota dlya predotvrashcheniya obshchego pochechnogo povrezhdeniya pri kardiohirurgicheskih vmeshatel'stvah. Tomsk : NII kardiologii, Tomskij NIMC, 2023. 28 p. (In Russian)

21. Nakane T., Esaki J., Ueda R., Honda M., Okabayashi H. Inhaled nitric oxide improves pulmonary hypertension and organ functions after adult heart valve surgeries. Gen Thorac Cardiovasc Surg. 2021; 69 (12): 1519-1526. doi: 10.1007/s11748-021-01651-z

22. Lei C., Berra L., Rezoagli E., Yu B., Dong H., Yu S., Hou L., Chen M., Chen W., Wang H., Zheng Q., Shen J., Jin Z., Chen T., Zhao R., Christie E., Sabbisetti V.S., Nordio F., Bonventre J.V., Xiong L., Zapol W.M. Nitric Oxide Decreases Acute Kidney Injury and Stage 3 Chronic Kidney Disease after Cardiac Surgery. Am J Respir Crit Care Med. 2018; 198 (10): 1279-1287. doi: 10.1164/rccm.201710-2150OC

23. Boyko A.M., Kamenshchikov N.O., Miroshnichenko A.G., Podoksenov Yu.K., Serebryakova O.N., Dzyuman A.N., Svirko Yu.S., Dymbrylova O.N., Lugovskiy V.A., Diakova M.L., Panfilov D.S., Kozlov B.N. Influence of nitric oxide delivery on kidney damage in experimental model of cardiopulmonary bypass with circulatory arrest. Fundamental and Clinical Medicine. 2023; 8 (3): 18-25. doi: 10.23946/2500-0764-2023-8-3-18-25 (In Russian)

24. Tyo M.A., Kamenshchikov N.O., Podoksenov Y.K., Mukhomedzyanov A.V., Maslov L.N., Kozlov B.N. The effect of nitric oxide donation on the severity of mitochondrial disfunction to the renal tissue in cardiopulmonary bypass simulation: an experimental study. Annals of Critical Care. 2023; 4: 176-184. doi: 10.21320/1818-474X-2023-4-176-184 (In Russian)

25. Radovskiy A.M., Bautin A.E., Marichev A.O., Osovskikh V.V., Semenova N.Y., Artyukhina Z.E., Murashova L.A., Zinserling V.A. NO Addition during Gas Oxygenation Reduces Liver and Kidney Injury during Prolonged Cardiopulmonary Bypass. Pathophysiology. 2023; 30 (4): 484-504. doi: 10.3390/pathophysiology30040037

26. Vang S., Cochran P., Sebastian Domingo J., Krick S., Barnes J.W. The Glycobiology of Pulmonary Arterial Hypertension. Metabolites. 2022; 12 (4): 316. doi: 10.3390/metabo12040316

27. Barbarash O.L., Zhidkova I.I., Shibanova I.A., Ivanov S.V., Sumin A.N., Samorodskaya I.V., Barbarash L.S. The impact of comorbidities and age on the nosocomial outcomes of patients undergoing coronary artery bypass grafting. Cardiovascular Therapy and Prevention. 2019; 18 (2): 58-64. doi: 10.15829/1728-8800-2019-2-58-64 (In Russian)

28. Elzein C., Urbas C., Hughes B., Li Y., Lefaiver C., Ilbawi M., Vricella L. Efficacy of Nitric Oxide Administration in Attenuating Ischemia/Reperfusion Injury During Neonatal Cardiopulmonary Bypass. World J Pediatr Congenit Heart Surg. 2020; 11 (4): 417-423. doi: 10.1177/2150135120911034

29. Eljezi V., Rochette L., Dualé C., Pereira B., Boby H., Constantin J.M. Inhaled nitric oxide before induction of anesthesia in patients with pulmonary hypertension. Ann Card Anaesth. 2021; 24 (4): 452-457. doi: 10.4103/aca.ACA_82_20

30. Toomasian J.M., Jeakle M.M.P., Langley M.W., Poling C.J., Lautner G., Lautner-Csorba O., Meyerhoff M.M., Carr B.J.D., Rojas-Pena A., Haft J.W., Bartlett R.H. Nitric Oxide Attenuates the Inflammatory Effects of Air During Extracorporeal Circulation. ASAIO J. 2020; 66 (7): 818-824. doi: 10.1097/MAT.0000000000001057

31. Mullin C.J., Ventetuolo C.E. Critical Care Management of the Patient with Pulmonary Hypertension. Clin Chest Med. 2021; 42 (1): 155-165. doi: 10.1016/j.ccm.2020.11.009

32. Ignarro L.J. Nitric oxide is not just blowing in the wind. Br J Pharmacol. 2019; 176 (2): 131-134. doi: 10.1111/bph.14540

33. Linardi D., Mani R., Murari A., Dolci S., Mannino L., Decimo I., Tessari M., Martinazzi S., Gottin L., Luciani G.B., Faggian G., Rungatscher A. Nitric Oxide in Selective Cerebral Perfusion Could Enhance Neuroprotection During Aortic Arch Surgery. Front Cardiovasc Med. 2022; 8: 772065. doi: 10.3389/fcvm.2021.772065

34. Kajimoto M., Nuri M., Sleasman J.R., Charette K.A., Nelson B.R., Portman M.A. Inhaled nitric oxide reduces injury and microglia activation in porcine hippocampus after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 2021; 161 (6): e485-e498. doi: 10.1016/j.jtcvs.2019.12.075

35. Starchina Y.A., Grishina D.A., Sokolov E.A., Parfenov V.A. The use of inhaled nitric oxide (Tianox device) in patients with moderate cognitive impairment. Neurology, Neuropsychiatry, Psychosomatics. 2023; 15 (6): 64-70. doi: 10.14412/2074-2711-2023-6-64-70 (In Russian)

36. Miyazaki Y., Ichinose F. Nitric Oxide in Post-cardiac Arrest Syndrome. J Cardiovasc Pharmacol. 2020; 75 (6): 508-515. doi: 10.1097/FJC.0000000000000765

37. Hinton M., Thliveris J.A., Hatch G.M., Dakshinamurti S. Nitric oxide augments signaling for contraction in hypoxic pulmonary arterial smooth muscle-Implications for hypoxic pulmonary hypertension. Front Physiol. 2023; 14: 1144574. doi: 10.3389/fphys.2023.1144574


Supplementary files

Review

For citations:


Mikhailova A.A., Ivkin A.A., Grigoriev E.V. PERSPECTIVES ON USING INHALED NITRIC OXIDE AND ITS ORGAN PROTECTION FEATURES IN CARDIOVASCULAR SURGERIES WITH CARDIOPULMONARY BYPASS: A SYSTEMATIC REVIEW. Complex Issues of Cardiovascular Diseases. 2024;13(4S):217-229. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-4S-217-229

Views: 129


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)