CURRENT APPROACHES TO THE IDENTIFICATION OF CELLULAR MARKERS OF ENDOTHELIAL DYSFUNCTION
https://doi.org/10.17802/2306-1278-2024-13-3S-191-207
Abstract
Highlights
- Potential cellular markers of vasospastic endothelial dysfunction include endothelial NO synthase and its phosphorylated forms, mechanosensitive transcription factors, as well as markers of nitrosative and oxidative stress.
- Probable cellular markers of proinflammatory endothelial dysfunction may encompass transcription factors of the endothelial-mesenchymal transition, proinflammatory transcription factors, mechanosensitive transcription factors, inducible cell adhesion molecules, components of the basement membrane, and key endothelial integrins.
- Cellular markers of prothrombotic endothelial dysfunction may include components of the endothelial glycocalyx, as well as membrane and cytoplasmic anti- and prothrombotic molecules responsible for regulating local and systemic hemostasis.
Abstract
This review examines several groups of potential cellular markers for various types of endothelial dysfunction: vasospastic, proinflammatory, and prothrombotic. For this purpose, we screened the PubMed database for the respective publications over the past 45 years. Immunohistochemical analysis of the development of vasospastic endothelial dysfunction involves measuring the expression of endothelial NO synthase and its phosphorylated forms (serine-113/117, threonine-495, serine-632, serine-1176/1177), mechanosensitive transcription factors (KLF2, KLF4, and NRF2), markers of nitrosative stress (3-nitrotyrosine and 6-nitrotryptophan), and oxidative stress markers (proteins associated with malondialdehyde or methylglyoxal, xanthine oxidase, and isoforms of NADPH oxidase NOX1, NOX2, NOX4, and NOX5). Potential immunohistochemical markers of proinflammatory endothelial dysfunction include N-cadherin as a mesenchymal cell marker in combination with the loss of endothelial markers (CD31 and VE-cadherin), transcription factors of endothelial-mesenchymal transition (Snail, Slug, Twist1, and Zeb1), proinflammatory transcription factors (NF-κB, IRF1, IRF3, IRF5, IRF7, AP-1, ATF1, ATF2, ATF3, ATF4, ATF6, EGR-1, EGR-3, STAT1, STAT3, and STAT4), NLRP3 as a marker of inflammasomes, the aforementioned mechanosensitive transcription factors, inducible cell adhesion molecules (VCAM1, ICAM1, E-selectin), as well as components of the basement membrane (laminin, type IV collagen, nidogen-1, nidogen-2, perlecan, fibronectin) and endothelial integrins (α2β1, α3β1, α5β1, α9β1, αvβ3, αvβ5). Immunohistochemical analysis of prothrombotic endothelial dysfunction may rely on assessing the expression of components of the endothelial glycocalyx (via immunofluorescent staining with UEA-1, which binds to fucosylated glycans, or through immunohistochemical staining for syndecan-1, heparan sulfate, chondroitin sulfate, hyaluronic acid, perlecan, and glypican-1), as well as evaluating the expression of its antithrombotic (antithrombin III, tissue factor inhibitor, thrombomodulin, CD39, CD73) or prothrombotic proteins (heparanase, hyaluronidase, angiotensin-converting enzyme 2, von Willebrand factor). Verification of immunohistochemical markers differentially expressed in control and model animals should be conducted using electron microscopy of adjacent vascular segments to establish associative and correlative relationships between molecular and pathomorphological markers.
Keywords
About the Authors
Leo A. BogdanovRussian Federation
PhD, Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Vladislav A. Koshelev
Russian Federation
Junior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Rinat A. Mukhamadiyarov
Russian Federation
PhD, Senior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Anastasia Yu. Kanonykina
Russian Federation
Junior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Anastasia I. Lazebnaya
Russian Federation
Junior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Egor A. Kondratiev
Russian Federation
Junior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Alexander D. Stepanov
Russian Federation
Junior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Anton G. Kutikhin
Russian Federation
PhD, Head of the Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
References
1. Alexander Y., Osto E., Schmidt-Trucksäss A., Shechter M., Trifunovic D., Duncker D.J., Aboyans V., Bäck M., Badimon L., Cosentino F., De Carlo M., Dorobantu M., Harrison D.G., Guzik T.J., Hoefer I., Morris P.D., Norata G.D., Suades R., Taddei S., Vilahur G., Waltenberger J., Weber C., Wilkinson F., Bochaton-Piallat M.L., Evans P.C. Endothelial function in cardiovascular medicine: a consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc Res. 2021;117(1):29-42. doi: 10.1093/cvr/cvaa085.
2. Ricard N., Bailly S., Guignabert C., Simons M. The quiescent endothelium: signalling pathways regulating organ-specific endothelial normalcy. Nat Rev Cardiol. 2021;18(8):565-580. doi: 10.1038/s41569-021-00517-4.
3. Gao Y., Galis Z.S. Exploring the Role of Endothelial Cell Resilience in Cardiovascular Health and Disease. Arterioscler Thromb Vasc Biol. 2021;41(1):179-185. doi: 10.1161/ATVBAHA.120.314346.
4. Tombor L.S., Dimmeler S. Why is endothelial resilience key to maintain cardiac health? Basic Res Cardiol. 2022;117(1):35. doi: 10.1007/s00395-022-00941-8.
5. Bloom S.I., Islam M.T., Lesniewski L.A., Donato A.J. Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol. 2023;20(1):38-51. doi: 10.1038/s41569-022-00739-0.
6. Tamargo I.A., Baek K.I., Kim Y., Park C., Jo H. Flow-induced reprogramming of endothelial cells in atherosclerosis. Nat Rev Cardiol. 2023;20(11):738-753. doi: 10.1038/s41569-023-00883-1.
7. Violi F., Cammisotto V., Bartimoccia S., Pignatelli P., Carnevale R., Nocella C. Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease. Nat Rev Cardiol. 2023;20(1):24-37. doi: 10.1038/s41569-022-00737-2.
8. Gu S.X., Tyagi T., Jain K., Gu V.W., Lee S.H., Hwa J.M., Kwan J.M., Krause D.S., Lee A.I., Halene S., Martin K.A., Chun H.J., Hwa J. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol. 2021;18(3):194-209. doi: 10.1038/s41569-020-00469-1.
9. Evans P.C., Rainger G.E., Mason J.C., Guzik T.J., Osto E., Stamataki Z., Neil D., Hoefer I.E., Fragiadaki M., Waltenberger J., Weber C., Bochaton-Piallat M.L., Bäck M. Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc Res. 2020;116(14):2177-2184. doi: 10.1093/cvr/cvaa230.
10. Souilhol C., Serbanovic-Canic J., Fragiadaki M., Chico T.J., Ridger V., Roddie H., Evans P.C. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol. 2020;17(1):52-63. doi: 10.1038/s41569-019-0239-5.
11. Baaten C.C.F.M.J., Vondenhoff S., Noels H. Endothelial Cell Dysfunction and Increased Cardiovascular Risk in Patients With Chronic Kidney Disease. Circ Res. 2023;132(8):970-992. doi: 10.1161/CIRCRESAHA.123.321752.
12. Segers V.F.M., Bringmans T., De Keulenaer G.W. Endothelial dysfunction at the cellular level in three dimensions: severity, acuteness, and distribution. Am J Physiol Heart Circ Physiol. 2023;325(2):H398-H413. doi: 10.1152/ajpheart.00256.2023.
13. Bonaventura A., Vecchié A., Dagna L., Martinod K., Dixon D.L., Van Tassell B.W., Dentali F., Montecucco F., Massberg S., Levi M., Abbate A. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021;21(5):319-329. doi: 10.1038/s41577-021-00536-9.
14. Trimm E., Red-Horse K. Vascular endothelial cell development and diversity. Nat Rev Cardiol. 2023;20(3):197-210. doi: 10.1038/s41569-022-00770-1.
15. Becker L.M., Chen S.H., Rodor J., de Rooij L.P.M.H., Baker A.H., Carmeliet P. Deciphering endothelial heterogeneity in health and disease at single-cell resolution: progress and perspectives. Cardiovasc Res. 2023;119(1):6-27. doi: 10.1093/cvr/cvac018.
16. Weatherald J., Boucly A., Peters A., Montani D., Prasad K., Psotka M.A., Zannad F., Gomberg-Maitland M., McLaughlin V., Simonneau G., Humbert M.; Evolving Landscape of Pulmonary Arterial Hypertension and Redesigning Pulmonary Arterial Hypertension Clinical Trials Task Force of the 18th Global CardioVascular Clinical Trialists Forum. The evolving landscape of pulmonary arterial hypertension clinical trials. Lancet. 2022;400(10366):1884-1898. doi: 10.1016/S0140-6736(22)01601-4.
17. Ungvari Z., Tarantini S., Kiss T., Wren J.D., Giles C.B., Griffin C.T., Murfee W.L., Pacher P., Csiszar A. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol. 2018;15(9):555-565. doi: 10.1038/s41569-018-0030-z.
18. Donato A.J., Machin D.R., Lesniewski L.A. Mechanisms of Dysfunction in the Aging Vasculature and Role in Age-Related Disease. Circ Res. 2018;123(7):825-848. doi: 10.1161/CIRCRESAHA.118.312563.
19. Cahill P.A., Redmond E.M. Vascular endothelium - Gatekeeper of vessel health. Atherosclerosis. 2016;248:97-109. doi: 10.1016/j.atherosclerosis.2016.03.007.
20. Gimbrone M.A. Jr., García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016;118(4):620-36. doi: 10.1161/CIRCRESAHA.115.306301.
21. Jensen H.A., Mehta J.L. Endothelial cell dysfunction as a novel therapeutic target in atherosclerosis. Expert Rev Cardiovasc Ther. 2016;14(9):1021-33. doi: 10.1080/14779072.2016.1207527.
22. Kozlov S., Okhota S., Avtaeva Y., Melnikov I., Matroze E., Gabbasov Z. Von Willebrand factor in diagnostics and treatment of cardiovascular disease: Recent advances and prospects. Front Cardiovasc Med. 2022;9:1038030. doi: 10.3389/fcvm.2022.1038030.
23. Okhota S. D., Kozlov S. G., Avtaeva Y. N., Melnikov I. S., Gabbasov Z. A.. Von Willebrand Factor and Cardiovascular Pathology. The Journal of Atherosclerosis and Dyslipidemias. 2022; 4 (49):10-24. doi: 10.34687/2219-8202.JAD.2022.04.0002. (In Russian)
24. Avdonin P. P., Tsvetaeva N. V., Goncharov N. V., Rybakova E. Yu.,Trufanov S. K., Tsitrina A. A., Avdonin P. V. Von Willebrand Factor in Health and Disease. Biological membranes. 2021; 38(4): 237-256. doi: 10.31857/S0233475521040034. (In Russian)
25. Avdonin P.P., Trufanov S.K., Rybakova E.Y., Tsitrina A.A., Goncharov N.V., Avdonin P.V. The Use of Fluorescently Labeled ARC1779 Aptamer for Assessing the Effect of H2O2 on von Willebrand Factor Exocytosis. Biochemistry (Mosc). 2021;86(2):123-131. doi: 10.1134/S0006297921020012. (In Russian)
26. Kutikhin A.G., Shishkova D.K., Velikanova E.A., Sinitsky M.Y., Sinitskaya A.V., Markova V.E. Endothelial Dysfunction in the Context of Blood-Brain Barrier Modeling. J Evol Biochem Physiol. 2022;58(3):781-806. doi: 10.1134/S0022093022030139.
27. Feenstra L., Kutikhin A.G., Shishkova D.K., Buikema H., Zeper L.W., Bourgonje A.R., Krenning G., Hillebrands J.L. Calciprotein Particles Induce Endothelial Dysfunction by Impairing Endothelial Nitric Oxide Metabolism. Arterioscler Thromb Vasc Biol. 2023;43(3):443-455. doi: 10.1161/ATVBAHA.122.318420.
28. Fleming I., Fisslthaler B., Dimmeler S., Kemp B.E., Busse R. Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res. 2001;88(11):E68-75. doi: 10.1161/hh1101.092677.
29. Chen C.A., Druhan L.J., Varadharaj S., Chen Y.R., Zweier J.L. Phosphorylation of endothelial nitric-oxide synthase regulates superoxide generation from the enzyme. J Biol Chem. 2008;283(40):27038-47. doi: 10.1074/jbc.M802269200.
30. Watts V.L., Motley E.D. Role of protease-activated receptor-1 in endothelial nitric oxide synthase-Thr495 phosphorylation. Exp Biol Med (Maywood). 2009;234(2):132-9. doi: 10.3181/0807-RM-233.
31. Lee C.H., Wei Y.W., Huang Y.T., Lin Y.T., Lee Y.C., Lee K.H., Lu P.J. CDK5 phosphorylates eNOS at Ser-113 and regulates NO production. J Cell Biochem. 2010;110(1):112-7. doi: 10.1002/jcb.22515.
32. Michell B.J., Chen Z.P., Tiganis T., Stapleton D., Katsis F., Power D.A., Sim A.T., Kemp B.E. Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem. 2001;276(21):17625-8. doi: 10.1074/jbc.C100122200.
33. Fleming I., Fisslthaler B., Dimmeler S., Kemp B.E., Busse R. Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res. 2001;88(11):E68-75. doi: 10.1161/hh1101.092677.
34. Iring A., Jin Y.J., Albarrán-Juárez J., Siragusa M., Wang S., Dancs P.T., Nakayama A., Tonack S., Chen M., Künne C., Sokol A.M., Günther S., Martínez A., Fleming I., Wettschureck N., Graumann J., Weinstein L.S., Offermanns S. Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. J Clin Invest. 2019;129(7):2775-2791. doi: 10.1172/JCI123825.
35. Kennard S., Ruan L., Buffett R.J., Fulton D., Venema R.C. TNFα reduces eNOS activity in endothelial cells through serine 116 phosphorylation and Pin1 binding: Confirmation of a direct, inhibitory interaction of Pin1 with eNOS. Vascul Pharmacol. 2016;81:61-8. doi: 10.1016/j.vph.2016.04.003.
36. Li C., Ruan L., Sood S.G., Papapetropoulos A., Fulton D., Venema R.C. Role of eNOS phosphorylation at Ser-116 in regulation of eNOS activity in endothelial cells. Vascul Pharmacol. 2007;47(5-6):257-64. doi: 10.1016/j.vph.2007.07.001.
37. Coon B.G., Timalsina S., Astone M., Zhuang Z.W., Fang J., Han J., Themen J., Chung M., Yang-Klingler Y.J., Jain M., Hirschi K.K., Yamamato A., Trudeau L.E., Santoro M., Schwartz M.A. A mitochondrial contribution to anti-inflammatory shear stress signaling in vascular endothelial cells. J Cell Biol. 2022;221(7):e202109144. doi: 10.1083/jcb.202109144.
38. Wu W., Geng P., Zhu J., Li J., Zhang L., Chen W., Zhang D., Lu Y., Xu X. KLF2 regulates eNOS uncoupling via Nrf2/HO-1 in endothelial cells under hypoxia and reoxygenation. Chem Biol Interact. 2019;305:105-111. doi: 10.1016/j.cbi.2019.03.010.
39. Lin Z., Kumar A., SenBanerjee S., Staniszewski K., Parmar K., Vaughan D.E., Gimbrone M.A. Jr., Balasubramanian V., García-Cardeña G., Jain M.K. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res. 2005;96(5):e48-57. doi: 10.1161/01.RES.0000159707.05637.a1.
40. Chiplunkar A.R., Curtis B.C., Eades G.L., Kane M.S., Fox S.J., Haar J.L., Lloyd J.A. The Krüppel-like factor 2 and Krüppel-like factor 4 genes interact to maintain endothelial integrity in mouse embryonic vasculogenesis. BMC Dev Biol. 2013;13:40. doi: 10.1186/1471-213X-13-40.
41. Shen B., Smith R.S. Jr., Hsu YT., Chao L., Chao J. Kruppel-like factor 4 is a novel mediator of Kallistatin in inhibiting endothelial inflammation via increased endothelial nitric-oxide synthase expression. J Biol Chem. 2009;284(51):35471-8. doi: 10.1074/jbc.M109.046813.
42. Ramprasath T., Vasudevan V., Sasikumar S., Puhari S.S., Saso L., Selvam G.S. Regression of oxidative stress by targeting eNOS and Nrf2/ARE signaling: a guided drug target for cardiovascular diseases. Curr Top Med Chem. 2015;15(9):857-71. doi: 10.2174/1568026615666150220114417.
43. Förstermann U., Xia N., Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ Res. 2017;120(4):713-735. doi: 10.1161/CIRCRESAHA.116.309326.
44. Drummond G.R., Sobey C.G. Endothelial NADPH oxidases: which NOX to target in vascular disease? Trends Endocrinol Metab. 2014;25(9):452-63. doi: 10.1016/j.tem.2014.06.012.
45. Zhang Y., Murugesan P., Huang K., Cai H. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol. 2020;17(3):170-194. doi: 10.1038/s41569-019-0260-8.
46. Lassègue B., San Martín A., Griendling K.K. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012;110(10):1364-90. doi: 10.1161/CIRCRESAHA.111.243972.
47. Drummond G.R., Selemidis S., Griendling K.K., Sobey C.G. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov. 2011;10(6):453-71. doi: 10.1038/nrd3403.
48. Shishkova D.K., Sinitskaya A.V., Sinitsky M.Yu., Matveeva V.G., Velikanova E.A., Markova V.E., Kutikhin A.G. Spontaneous endothelial-to-mesenchymal transition in human primary umbilical vein endothelial cells. Complex Issues of Cardiovascular Diseases. 2022;11(3): 97-114. doi: 10.17802/2306-1278-2022-11-3-97-114. (In Russian)
49. Li Y., Lui K.O., Zhou B. Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases. Nat Rev Cardiol. 2018;15(8):445-456. doi: 10.1038/s41569-018-0023-y.
50. Alvandi Z., Bischoff J. Endothelial-Mesenchymal Transition in Cardiovascular Disease. Arterioscler Thromb Vasc Biol. 2021;41(9):2357-2369. doi: 10.1161/ATVBAHA.121.313788.
51. Shishkova D., Markova V., Sinitsky M., Tsepokina A., Velikanova E., Bogdanov L., Glushkova T., Kutikhin A. Calciprotein Particles Cause Endothelial Dysfunction under Flow. Int J Mol Sci. 2020;21(22):8802. doi: 10.3390/ijms21228802.
52. Shishkova D.K., Velikanova E.A., Bogdanov L.A., Sinitsky M.Y., Kostyunin A.E., Tsepokina A.V., Gruzdeva O.V., Mironov A.V., Mukhamadiyarov R.A., Glushkova T.V., Krivkina E.O., Matveeva V.G., Hryachkova O.N., Markova V.E., Dyleva Y.A., Belik E.V., Frolov A.V., Shabaev A.R., Efimova O.S., Popova A.N., Malysheva V.Y., Kolmykov R.P., Sevostyanov O.G., Russakov D.M., Dolganyuk V.F., Gutakovsky A.K., Zhivodkov Y.A., Kozhukhov A.S., Brusina E.B., Ismagilov Z.R., Barbarash O.L., Yuzhalin A.E., Kutikhin A.G. Calciprotein Particles Link Disturbed Mineral Homeostasis with Cardiovascular Disease by Causing Endothelial Dysfunction and Vascular Inflammation. Int J Mol Sci. 2021;22(22):12458. doi: 10.3390/ijms222212458.
53. Shishkova D., Lobov A., Zainullina B., Matveeva V., Markova V., Sinitskaya A., Velikanova E., Sinitsky M., Kanonykina A., Dyleva Y., Kutikhin A. Calciprotein Particles Cause Physiologically Significant Pro-Inflammatory Response in Endothelial Cells and Systemic Circulation. Int J Mol Sci. 2022;23(23):14941. doi: 10.3390/ijms232314941.
54. Frolov A., Lobov A., Kabilov M., Zainullina B., Tupikin A., Shishkova D., Markova V., Sinitskaya A., Grigoriev E., Markova Y., Kutikhin A. Multi-Omics Profiling of Human Endothelial Cells from the Coronary Artery and Internal Thoracic Artery Reveals Molecular but Not Functional Heterogeneity. Int J Mol Sci. 2023;24(19):15032. doi: 10.3390/ijms241915032.
55. Shishkova D., Lobov A., Repkin E., Markova V., Markova Y., Sinitskaya A., Sinitsky M., Kondratiev E., Torgunakova E., Kutikhin A. Calciprotein Particles Induce Cellular Compartment-Specific Proteome Alterations in Human Arterial Endothelial Cells. J Cardiovasc Dev Dis. 2023;11(1):5. doi: 10.3390/jcdd11010005.
56. Smale S.T., Natoli G. Transcriptional control of inflammatory responses. Cold Spring Harb Perspect Biol. 2014;6(11):a016261. doi: 10.1101/cshperspect.a016261.
57. Peng K., Fan X, Li Q., Wang Y., Chen X., Xiao P., Passerini A.G., Simon S.I., Sun C. IRF-1 mediates the suppressive effects of mTOR inhibition on arterial endothelium. J Mol Cell Cardiol. 2020;140:30-41. doi: 10.1016/j.yjmcc.2020.02.006.
58. Simons K.H., de Vries M.R., de Jong R.C.M., Peters H.A.B., Jukema J.W., Quax P.H.A. IRF3 and IRF7 mediate neovascularization via inflammatory cytokines. J Cell Mol Med. 2019;23(6):3888-3896. doi: 10.1111/jcmm.14247.
59. Cai H., Yao Z., Li W. IRF-5 accelerates leukocyte adhesion to endothelial cells in ischemia-reperfusion injury through regulating the transcription of VCAM-1. Biochem Biophys Res Commun. 2017;492(2):192-198. doi: 10.1016/j.bbrc.2017.08.044.
60. Stafim da Cunha R., Gregório P.C., Maciel R.A.P., Favretto G., Franco C.R.C., Gonçalves J.P., de Azevedo M.L.V., Pecoits-Filho R., Stinghen A.E.M. Uremic toxins activate CREB/ATF1 in endothelial cells related to chronic kidney disease. Biochem Pharmacol. 2022;198:114984. doi: 10.1016/j.bcp.2022.114984.
61. Niwano K., Arai M., Koitabashi N., Hara S., Watanabe A., Sekiguchi K., Tanaka T., Iso T., Kurabayashi M. Competitive binding of CREB and ATF2 to cAMP/ATF responsive element regulates eNOS gene expression in endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26(5):1036-42. doi: 10.1161/01.ATV.0000215179.76144.39.
62. Aung H.H., Lame M.W., Gohil K., An C.I., Wilson D.W., Rutledge J.C. Induction of ATF3 gene network by triglyceride-rich lipoprotein lipolysis products increases vascular apoptosis and inflammation. Arterioscler Thromb Vasc Biol. 2013;33(9):2088-96. doi: 10.1161/ATVBAHA.113.301375.
63. Gargalovic P.S., Gharavi N.M., Clark M.J., Pagnon J., Yang W.P., He A., Truong A., Baruch-Oren T., Berliner J.A., Kirchgessner T.G., Lusis A.J. The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26(11):2490-6. doi: 10.1161/01.ATV.0000242903.41158.a1.
64. Zhou AX, Tabas I. The UPR in atherosclerosis. Semin Immunopathol. 2013;35(3):321-32. doi: 10.1007/s00281-013-0372-x.
65. Onat D., Jelic S., Schmidt A.M., Pile-Spellman J., Homma S., Padeletti M., Jin Z., Le Jemtel T.H., Colombo P.C., Feng L. Vascular endothelial sampling and analysis of gene transcripts: a new quantitative approach to monitor vascular inflammation. J Appl Physiol (1985). 2007;103(5):1873-8. doi: 10.1152/japplphysiol.00367.2007.
66. Yan S.F., Fujita T., Lu J., Okada K., Shan Zou Y., Mackman N., Pinsky D.J., Stern D.M. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med. 2000;6(12):1355-61. doi: 10.1038/82168.
67. Suehiro J., Hamakubo T., Kodama T., Aird W.C., Minami T. Vascular endothelial growth factor activation of endothelial cells is mediated by early growth response-3. Blood. 2010;115(12):2520-32. doi: 10.1182/blood-2009-07-233478.
68. Wincewicz A., Sulkowska M., Rutkowski R., Sulkowski S., Musiatowicz B., Hirnle T., Famulski W., Koda M., Sokol G., Szarejko P. STAT1 and STAT3 as intracellular regulators of vascular remodeling. Eur J Intern Med. 2007;18(4):267-71. doi: 10.1016/j.ejim.2006.12.007.
69. Yang X.P., Irani K., Mattagajasingh S., Dipaula A., Khanday F., Ozaki M., Fox-Talbot K., Baldwin W.M. 3rd, Becker L.C. Signal transducer and activator of transcription 3alpha and specificity protein 1 interact to upregulate intercellular adhesion molecule-1 in ischemic-reperfused myocardium and vascular endothelium. Arterioscler Thromb Vasc Biol. 2005;25(7):1395-400. doi: 10.1161/01.ATV.0000168428.96177.24.
70. Meng Z.Z., Liu W., Xia Y., Yin H.M., Zhang C.Y., Su D., Yan L.F., Gu A.H., Zhou Y. The pro-inflammatory signalling regulator Stat4 promotes vasculogenesis of great vessels derived from endothelial precursors. Nat Commun. 2017;8:14640. doi: 10.1038/ncomms14640.
71. Guzik T.J., Nosalski R., Maffia P., Drummond G.R. Immune and inflammatory mechanisms in hypertension. Nat Rev Cardiol. 2024 Jan 3. doi: 10.1038/s41569-023-00964-1. Online ahead of print.
72. Vande Walle L., Lamkanfi M. Drugging the NLRP3 inflammasome: from signalling mechanisms to therapeutic targets. Nat Rev Drug Discov. 2024;23(1):43-66. doi: 10.1038/s41573-023-00822-2.
73. Toldo S., Abbate A. The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases. Nat Rev Cardiol. 2023 Nov 3. doi: 10.1038/s41569-023-00946-3.
74. Potere N., Garrad E., Kanthi Y., Di Nisio M., Kaplanski G., Bonaventura A., Connors J.M., De Caterina R., Abbate A. NLRP3 inflammasome and interleukin-1 contributions to COVID-19-associated coagulopathy and immunothrombosis. Cardiovasc Res. 2023;119(11):2046-2060. doi: 10.1093/cvr/cvad084.
75. SenBanerjee S., Lin Z., Atkins G.B., Greif D.M., Rao R.M., Kumar A., Feinberg M.W., Chen Z., Simon D.I., Luscinskas F.W., Michel T.M., Gimbrone M.A. Jr., García-Cardeña G., Jain M.K. KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med. 2004;199(10):1305-15. doi: 10.1084/jem.20031132.
76. Bhattacharya R., Senbanerjee S., Lin Z., Mir S., Hamik A., Wang P., Mukherjee P., Mukhopadhyay D., Jain M.K. Inhibition of vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis by the Kruppel-like factor KLF2. J Biol Chem. 2005;280(32):28848-51. doi: 10.1074/jbc.C500200200.
77. Parmar K.M., Larman H.B., Dai G., Zhang Y., Wang E.T., Moorthy S.N., Kratz J.R., Lin Z., Jain M.K., Gimbrone M.A. Jr., García-Cardeña G. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest. 2006;116(1):49-58. doi: 10.1172/JCI24787.
78. Dekker R.J., Boon R.A., Rondaij M.G., Kragt A., Volger O.L., Elderkamp Y.W., Meijers J.C., Voorberg J., Pannekoek H., Horrevoets A.J. KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood. 2006;107(11):4354-63. doi: 10.1182/blood-2005-08-3465.
79. Hartmann P., Zhou Z., Natarelli L., Wei Y., Nazari-Jahantigh M., Zhu M., Grommes J., Steffens S., Weber C., Schober A. Endothelial Dicer promotes atherosclerosis and vascular inflammation by miRNA-103-mediated suppression of KLF4. Nat Commun. 2016;7:10521. doi: 10.1038/ncomms10521.
80. Yoshida T., Yamashita M., Horimai C., Hayashi M. Deletion of Krüppel-like factor 4 in endothelial and hematopoietic cells enhances neointimal formation following vascular injury. J Am Heart Assoc. 2014;3(1):e000622. doi: 10.1161/JAHA.113.000622.
81. Hamik A., Lin Z., Kumar A., Balcells M., Sinha S., Katz J., Feinberg M.W., Gerzsten R.E., Edelman E.R., Jain M.K. Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem. 2007;282(18):13769-79. doi: 10.1074/jbc.M700078200.
82. Zakkar M., Van der Heiden K., Luong le A., Chaudhury H., Cuhlmann S., Hamdulay S.S., Krams R., Edirisinghe I., Rahman I., Carlsen H., Haskard D.O., Mason J.C., Evans P.C. Activation of Nrf2 in endothelial cells protects arteries from exhibiting a proinflammatory state. Arterioscler Thromb Vasc Biol. 2009;29(11):1851-7. doi: 10.1161/ATVBAHA.109.193375.
83. Chen X.L., Dodd G., Thomas S., Zhang X., Wasserman M.A., Rovin B.H., Kunsch C. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am J Physiol Heart Circ Physiol. 2006;290(5):H1862-70. doi: 10.1152/ajpheart.00651.2005.
84. Chen X.L., Varner S.E., Rao A.S., Grey J.Y., Thomas S., Cook C.K., Wasserman M.A., Medford R.M., Jaiswal A.K., Kunsch C. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J Biol Chem. 2003;278(2):703-11. doi: 10.1074/jbc.M203161200.
85. Vestweber D. How leukocytes cross the vascular endothelium. Nat Rev Immunol. 2015;15(11):692-704. doi: 10.1038/nri3908.
86. Nourshargh S., Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014;41(5):694-707. doi: 10.1016/j.immuni.2014.10.008.
87. Pickett J.R., Wu Y., Zacchi L.F., Ta H.T. Targeting endothelial vascular cell adhesion molecule-1 in atherosclerosis: drug discovery and development of vascular cell adhesion molecule-1-directed novel therapeutics. Cardiovasc Res. 2023;119(13):2278-2293. doi: 10.1093/cvr/cvad130.
88. Singh V., Kaur R., Kumari P., Pasricha C., Singh R. ICAM-1 and VCAM-1: Gatekeepers in various inflammatory and cardiovascular disorders. Clin Chim Acta. 2023;548:117487. doi: 10.1016/j.cca.2023.117487.
89. Lin P.K., Davis G.E. Extracellular Matrix Remodeling in Vascular Disease: Defining Its Regulators and Pathological Influence. Arterioscler Thromb Vasc Biol. 2023;43(9):1599-1616. doi: 10.1161/ATVBAHA.123.318237.
90. Aman J., Margadant C. Integrin-Dependent Cell-Matrix Adhesion in Endothelial Health and Disease. Circ Res. 2023;132(3):355-378. doi: 10.1161/CIRCRESAHA.122.322332.
91. Perico L., Benigni A., Remuzzi G. SARS-CoV-2 and the spike protein in endotheliopathy. Trends Microbiol. 2024;32(1):53-67. doi: 10.1016/j.tim.2023.06.004.
92. Colunga Biancatelli R.M.L., Solopov P.A., Sharlow E.R., Lazo J.S., Marik P.E., Catravas J.D. The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury in Κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2021;321(2):L477-L484. doi: 10.1152/ajplung.00223.2021.
93. Biering S.B., Gomes de Sousa F.T., Tjang L.V., Pahmeier F., Zhu C., Ruan R., Blanc S.F., Patel T.S., Worthington C.M., Glasner D.R., Castillo-Rojas B., Servellita V., Lo N.T.N., Wong M.P., Warnes C.M., Sandoval D.R., Clausen T.M., Santos Y.A., Fox D.M., Ortega V., Näär A.M., Baric R.S., Stanley S.A., Aguilar H.C., Esko J.D., Chiu C.Y., Pak J.E., Beatty P.R., Harris E. SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF-β signaling. Nat Commun. 2022;13(1):7630. doi: 10.1038/s41467-022-34910-5.
94. Nuovo G.J., Magro C., Shaffer T., Awad H., Suster D., Mikhail S., He B., Michaille J.J., Liechty B., Tili E. Endothelial cell damage is the central part of COVID-19 and a mouse model induced by injection of the S1 subunit of the spike protein. Ann Diagn Pathol. 2021;51:151682. doi: 10.1016/j.anndiagpath.2020.151682.
95. Perico L., Morigi M., Pezzotta A., Locatelli M., Imberti B., Corna D., Cerullo D., Benigni A., Remuzzi G. SARS-CoV-2 spike protein induces lung endothelial cell dysfunction and thrombo-inflammation depending on the C3a/C3a receptor signalling. Sci Rep. 2023;13(1):11392. doi: 10.1038/s41598-023-38382-5.
96. Robles J.P., Zamora M., Adan-Castro E., Siqueiros-Marquez L., Martinez de la Escalera G., Clapp C. The spike protein of SARS-CoV-2 induces endothelial inflammation through integrin α5β1 and NF-κB signaling. J Biol Chem. 2022;298(3):101695. doi: 10.1016/j.jbc.2022.101695.
97. Jourde-Chiche N., Fakhouri F., Dou L., Bellien J., Burtey S., Frimat M., Jarrot P.A., Kaplanski G., Le Quintrec M., Pernin V., Rigothier C., Sallée M., Fremeaux-Bacchi V., Guerrot D., Roumenina L.T. Endothelium structure and function in kidney health and disease. Nat Rev Nephrol. 2019;15(2):87-108. doi: 10.1038/s41581-018-0098-z.
98. Dogné S., Flamion B., Caron N. Endothelial Glycocalyx as a Shield Against Diabetic Vascular Complications: Involvement of Hyaluronan and Hyaluronidases. Arterioscler Thromb Vasc Biol. 2018;38(7):1427-1439. doi: 10.1161/ATVBAHA.118.310839.
99. Drost C.C., Unger A., Linke W.A., Vink H., Kümpers P. The dynamics of the endothelial glycocalyx: a rare snapshot by electron microscopy. Angiogenesis. 2023;26(4):487-491. doi: 10.1007/s10456-023-09880-x.
100. Otsuka F., Finn A.V., Yazdani S.K., Nakano M., Kolodgie F.D., Virmani R. The importance of the endothelium in atherothrombosis and coronary stenting. Nat Rev Cardiol. 2012;9(8):439-53. doi: 10.1038/nrcardio.2012.64.
101. Hong J.K, Waterhouse A. Bioinspired Approaches to Engineer Antithrombogenic Medical Devices for Vascular Intervention. Arterioscler Thromb Vasc Biol. 2023;43(6):797-812. doi: 10.1161/ATVBAHA.122.318238.
102. Yau J.W., Teoh H., Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord. 2015;15:130. doi: 10.1186/s12872-015-0124-z.
103. Johnston-Cox H.A., Ravid K. Adenosine and blood platelets. Purinergic Signal. 2011;7(3):357-65. doi: 10.1007/s11302-011-9220-4.
104. Bhargavan B., Kanmogne G.D. SARS-CoV-2 Spike Proteins and Cell-Cell Communication Inhibits TFPI and Induces Thrombogenic Factors in Human Lung Microvascular Endothelial Cells and Neutrophils: Implications for COVID-19 Coagulopathy Pathogenesis. Int J Mol Sci. 2022;23(18):10436. doi: 10.3390/ijms231810436.
105. Zhou G., Hamik A., Nayak L., Tian H., Shi H., Lu Y., Sharma N., Liao X., Hale A., Boerboom L., Feaver R.E., Gao H., Desai A., Schmaier A., Gerson S.L., Wang Y., Atkins G.B., Blackman B.R., Simon D.I., Jain M.K. Endothelial Kruppel-like factor 4 protects against atherothrombosis in mice. J Clin Invest. 2012;122(12):4727-31. doi: 10.1172/JCI66056.
106. Boon R.A., Horrevoets A.J. Key transcriptional regulators of the vasoprotective effects of shear stress. Hamostaseologie. 2009;29(1):39-40, 41-3.
107. Mukhamadiyarov R.A., Bogdanov L.A., Glushkova T.V., Shishkova D.K., Kostyunin A.E., Koshelev V.A., Shabaev A.R., Frolov A.V., Stasev A.N., Lyapin A.A., Kutikhin A..G. EMbedding and Backscattered Scanning Electron Microscopy: A Detailed Protocol for the Whole-Specimen, High-Resolution Analysis of Cardiovascular Tissues. Front Cardiovasc Med. 2021;8:739549. doi: 10.3389/fcvm.2021.739549.
108. Mukhamadiyarov R.A., Kutikhin A.G. Histology and histopathology of blood vessels: backscattered scanning electron microscopy approach. Fundamental and Clinical Medicine. 2019; 4 (1): 6-14. doi:10.23946/2500-0764-2019-4-1-6-14. (In Russian)
109. Mukhamadiyarov R. A., Kutikhin A. G. Backscattered scanning electron microscopy approach to assess microvessels in health and disease. Bulletin of Experimental Biology and Medicine. 2020;169(4): 514-520. (In Russian)
110. Mukhamadiyarov R.A., Klyshnikov K.Yu., Koshelev V.A., Kutikhin A.G. Potential of diagnostic electron microscopy of calcification, pathological neovascularization and elastolysis in combination with phenotyping of cell populations in large arteries. Russian Journal of Cardiology. 2024;29(8):5909. doi: 10.15829/1560-4071-2024-5909 (In Russian)
111.
Supplementary files
Review
For citations:
Bogdanov L.A., Koshelev V.A., Mukhamadiyarov R.A., Kanonykina A.Yu., Lazebnaya A.I., Kondratiev E.A., Stepanov A.D., Kutikhin A.G. CURRENT APPROACHES TO THE IDENTIFICATION OF CELLULAR MARKERS OF ENDOTHELIAL DYSFUNCTION. Complex Issues of Cardiovascular Diseases. 2024;13(3S):191-207. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-3S-191-207