Preview

Complex Issues of Cardiovascular Diseases

Advanced search

USE OF POSTOPERATIVE KETAMINE INFUSION FOR CEREBRAL PROTECTION IN CHILDREN IN CARDIAC SURGERY

https://doi.org/10.17802/2306-1278-2024-13-3S-98-109

Abstract

Highlights

The presented study is relevant due to high incidence of cognitive impairment during cardiac surgery in children. The article describes and proves the effectiveness of a cerebral protection strategy using ketamine infusion in subanesthetic doses.

 

Abstract

Aim. To assess the effectiveness of ketamine infusion in the postoperative period for neuroprotection in children during surgical correction of congenital septal heart defects.

Methods. The study included 68 patients aged from 1 to 60 months and weighing from 3.9 to 19.5 kg who underwent correction of atrial or ventricular septal defect with cardiopulmonary bypass. All subjects were randomized into three groups: patients in the study group-1 (SG-1) received ketamine infusion after the completion of surgery and for the next 16 hours at a dose of 0.1 mg/kg/hour; patients in study group-2 (SG-2) received ketamine at a dose of 0.2 mg/kg/hour, and patients in the control group (CG) did not receive ketamine. To analyze the severity of damage to the neurovascular unit, the following specific serum markers were used: S-100-ß, neuron-specific enolase, glial fibrillary acidic protein, occludin and claudin-1. Blood for analysis of marker concentrations was collected at 3 control points: 1 – before the start of the operation, 2 – immediately after completion of cardiopulmonary bypass, 3 – 16 hours after the operation.

Results. The groups were comparable in terms of pre- and intraoperative characteristics. S-100-ß protein in patients who received 0.1 mg/kg/hour ketamine did not differ from controls, but patients who received 0.2 mg/kg/hour ketamine showed statistically significant differences compared to the group with lower concentrations. Neurospecific enolase had lower concentrations in both study groups compared to the controls. Occludin showed a significantly lower concentration only in the group with a ketamine dose of 0.2 mg/kg/hour. Glial fibrillary acidic protein and claudin-1 concentrations did not differ between groups.

Conclusions. The study results showed the effectiveness of using ketamine infusion at a dose of 0.1 and 0.2 mg/kg/hour for cerebral protection in children in the postoperative period of correction of congenital septal heart defects. Moreover, they proved that a ketamine dose of 0.2 mg/kg/hour has a more pronounced neuroprotective effect.

About the Authors

Artyom A. Ivkin
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Head of the Laboratory of Organoprotection in Children with Congenital Heart Defects, Department of Heart and Vascular Surgery, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Evgeny V. Grigoriev
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Professor of the Russian Academy of Sciences, Deputy Director for Science and Clinical Work, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Dmitry G. Balakhnin
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Anesthesiologist–resuscitator at the Department of Anesthesiology and Intensive Care, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Alyona A. Mikhailova
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Junior Researcher at the Laboratory of Organoprotection in Children with Congenital Heart Defects, Department of Heart and Vascular Surgery, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



References

1. Chakraborty A., Ramakrishnan K., Buyukgoz C., Tadphale S., Allen J., Absi M., Briceno-Medina M., Boston U., Knott-Craig C.J. Incidence of Acute Neurological Events in Neonates and Infants Undergoing Cardiac Surgery Using a High-Hematocrit/ High-Flow Bypass Strategy. World J Pediatr Congenit Heart Surg. 2023;14(3):375-379. doi: 10.1177/21501351221143950

2. Kuhn J.E., Pareja Zabala M.C., Chavez M.M., Almodóvar M., Mulinari L.A., Sainathan S., de Rivero Vaccari J.P., Wang K.K., Muñoz Pareja J.C. Utility of Brain Injury Biomarkers in Children With Congenital Heart Disease Undergoing Cardiac Surgery. Pediatr Neurol. 2023;148:44-53. doi: 10.1016/j.pediatrneurol.2023.06.024.

3. Ivkin A.A., Grigoriev E.V., Tsepokina –Р.V., Shukevich D.L. Postoperative delirium in children in undergoing treatment of congenital septal heart defects. Messenger of Anesthesiology and Resuscitation. 2021; 18 (2): 62-68. doi:10.21292/2078-5658-2021-18-2-62-68. (In Russian)

4. Lin N., Lv M., Li S., Xiang Y., Li J., Xu H. A nomogram for predicting postoperative delirium in pediatric patients following cardiopulmonary bypass: A prospective observational study. Intensive Crit Care Nurs. 2024;83:103717. doi: 10.1016/j.iccn.2024.103717.

5. Hogue C.W.Jr., Palin C.A., Arrowsmith J.E. Cardiopulmonary bypass management and neurologic outcomes: an evidencebased appraisal of current practices. Anesthesia and Analgesia. 2006. 103: 21-37. doi: 10.1213/01.ane.0000220035.82989.79

6. Hansen T.G. Anesthesia-related neurotoxicity and the developing animal brain is not a significant problem in children. Paediatric Anaesthesia. 2015; 25 (1): 65-72. doi: 10.1111/pan.12548

7. Borisenko D.V., Ivkin A.A., Shukevich D.L. Treatment of systemic inflammatory response syndrome following on-pump pediatric congenital heart surgery. Complex Issues of Cardiovascular Diseases. 2021;10(2): 113-124. doi: 10.17802/2306-1278-2021-10-2-113-124 (In Russian)

8. Ivkin A. A., Grigoryev E. V., Balakhnin D. G., Chermnykh I. I. Intraoperative transfusion is a risk factor for cerebral injury after cardiac surgery in children: a prospective observational study. Annals of Critical Care. 2023;1:101–114. doi: 10.21320/1818-474X-2023-1-101-114 (In Russian)

9. Saylan S., Akbulut U.E. A comparison of ketamine-midazolam combination and propofol-fentanyl combination on procedure comfort and recovery process in pediatric colonoscopy procedures.Pak J Med Sci. 2021;37(2):483-488. doi: 10.12669/pjms.37.2.2787.

10. Abdelhalim A.A., Alarfaj A.M. The effect of ketamine versus fentanyl on the incidence of emergence agitation after sevoflurane anesthesia in pediatric patients undergoing tonsillectomy with or without adenoidectomy. Saudi J Anaesth. 2013. 7 (4): 392-398. doi: 10.4103/1658-354X.121047.

11. Costi D., Cyna A.M., Ahmed S., Stephens K., Strickland P., Ellwood J., Larsson J.N., Chooi C., Burgoyne L.L., Middleton P. Effects of sevoflurane versus other general anaesthesia on emergence agitation in children. Cochrane Database Syst Rev. 2014;12(9):CD007084. doi: 10.1002/14651858.CD007084.pub2

12. Léveillé F., Gaamouch F.E., Gouix E., Lecocq M., Lobner D., Nicole O., Buisson A. Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB J. 2008; 22(12): 4258-71. doi: 10.1096/fj.08-107268

13. Novytska-Usenko L.V., Muslin V.P., Kryshtafor A.A. Two opposite effects of nmda-receptors in terms of increased range of pharmacological neuroprotection in acute cerebral ischemia. 2016;1(72): 24-29. (In Russian)

14. Wang C.Q., Ye Y., Chen F., Han W.C., Sun J.M., Lu X., Guo R., Cao K., Zheng M.J., Liao L.C. Posttraumatic administration of a sub-anesthetic dose of ketamine exerts neuroprotection via attenuating inflammation and autophagy. Neuroscience. 2017. 20;343:30-38. doi: 10.1016/j.neuroscience.2016.11.029.

15. Xu D., Sun X., Zhang Y., Cao L. Ketamine alleviates HMGB1-induced acute lung injury through TLR4 signaling pathway. Adv Clin Exp Med. 2020;29(7):813-817. doi: 10.17219/acem/121936

16. Bhutta A.T., Schmitz M.L., Swearingen C., James L.P., Wardbegnoche W.L., Lindquist D.M., Glasier C.M., Tuzcu V., Prodhan P., Dyamenahalli U., Imamura M., Jaquiss R.D., Anand K.J. Ketamine as a neuroprotective and anti-inflammatory agent in children undergoing surgery on cardiopulmonary bypass: a pilot randomized, double-blind, placebo-controlled trial. Pediatr Crit Care Med. 2012;13(3):328-37. doi: 10.1097/PCC.0b013e31822f18f9

17. Roytblat L., Talmor D., Rachinsky M., Greemberg L., Pekar A., Appelbaum A., Gurman G..M, Shapira Y., Duvdenani A. Ketamine attenuates the interleukin-6 response after cardiopulmonary bypass. Anesth Analg. 1998;87(2):266-71. doi: 10.1097/00000539-199808000-00006.

18. Hudetz J.A., Patterson K.M., Iqbal Z., Gandhi S.D., Byrne A.J., Hudetz A.G., Warltier D.C., Pagel P.S. Ketamine attenuates delirium after cardiac surgery with cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2009;23(5):651-7. doi: 10.1053/j.jvca.2008.12.021.

19. Guerriero R.M., Giza C.C., Rotenberg A. Glutamate and GABA imbalance following traumatic brain injury. Curr Neurol Neurosci Rep. 2015; 15(5): 27. doi: 10.1007/s11910-015-0545-1.

20. Eghbal M.H., Taregh S., Amin A., Sahmeddini M.A. Ketamine improves postoperative pain and emergence agitation following adenotonsillectomy in children. A randomized clinical trial. Middle East J Anaesthesiol. 2013;22(2):155-60. PMID: 24180163..

21. Boric K., Dosenovic S., Jelicic Kadic A., Batinic M., Cavar M., Urlic M., Markovina N., Puljak L. Interventions for postoperative pain in children: An overview of systematic reviews. Paediatr Anaesth. 2017;27(9):893-904. doi: 10.1111/pan.13203

22. Cohen S.P., Bhatia A., Buvanendran A., Schwenk E.S., Wasan A.D., Hurley R.W., Viscusi E.R., Narouze S., Davis F.N., Ritchie E.C., Lubenow T.R., Hooten W.M. Consensus Guidelines on the Use of Intravenous Ketamine Infusions for Chronic Pain From the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg Anesth Pain Med. 2018;43(5):521-546. doi: 10.1097/AAP.0000000000000808

23. Alanazi E. The effectiveness of ketamine compared to opioid analgesics for management of acute pain in children in the emergency department: sys- tematic review. Am J Emerg Med. 2022; 61:143‒151. doi: 10.1016/j. ajem.2022.08.004

24. Sperotto F., Giaretta I., Mondardini M.C., Pece F., Daverio M., Amigoni A. Ketamine Prolonged Infusions in the Pediatric Intensive Care Unit: a Tertiary-Care Single-Center Analysis. J Pediatr Pharmacol Ther. 2021;26(1):73-80. doi: 10.5863/1551-6776-26.1.73

25. Zanos P., Moaddel R., Morris P.J., Riggs L.M., Highland J.N., Georgiou P., Pereira E.F.R., Albuquerque E.X., Thomas C.J., Zarate C.A.Jr., Gould T.D. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol Rev. 2018;70(3):621-660. doi: 10.1124/pr.117.015198.

26. Autry A.E., Monteggia L.M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev. 2012;64(2):238-58. doi: 10.1124/pr.111.005108

27. Kuhn J.E., Pareja Zabala M.C., Chavez M.M., Almodvar M., Mulinari L.A., Sainathan S., de Rivero Vaccari J.P., Wang K.K., Muoz Pareja J.C. Utility of Brain Injury Biomarkers in Children With Congenital Heart Disease Undergoing Cardiac Surgery. Pediatr Neurol. 2023;148:44-53. doi: 10.1016/j.pediatrneurol.2023.06.024

28. Smok B., Domagalski K., Вowska M. Diagnostic and Prognostic Value of IL-6 and sTREM-1 in SIRS and Sepsis in Children. Mediators Inflamm. 2020;2020:8201585. doi:10.1155/2020/8201585

29. Rothoerl R.D., Brawanski A., Woertgen C. S100B protein serum lev- els after controlled cortical impact injury in the rat. Acta Neurochirurgica. 2001;142(2):199-203. doi:10.1007/s007010050024

30. Beer C., Blacker D., Bynevelt M., Hankey G.J., Puddey I.B. Systemic markers of inflammation are independently associated with S100B concentration: results of an observational study in subjects with acute ischaemic stroke. J Neuroinflammation. 2010; 29;7:71. doi: 10.1186/1742-2094-7-71

31. Lasek-Bal A., Jedrzejowska-Szypulka H., Student S., Warsz-Wianecka A., Zareba K., Puz P., Bal W., Pawletko K., Lewin-Kowalik J. The importance of selected markers of inflammation and blood-brain barrier damage for short-term ischemic stroke prognosis. J Physiol Pharmacol. 2019;70(2). doi: 10.26402/jpp.2019.2.04

32. Trakas E., Domnina Y., Panigrahy A., Baust T., Callahan P.M., Morell V.O., Munoz R., Bell M.J., Sanchez-de-Toledo J. Serum Neuronal Biomarkers in Neonates With Congenital Heart Disease Undergoing Cardiac Surgery. Pediatr Neurol. 2017;72:56-61. doi: 10.1016/j.pediatrneurol.2017.04.011.

33. Barbu M., Jónsson K., Zetterberg H., Blennow K., Kolsrud O., Ricksten S.E., Dellgren G., Björk K., Jeppsson A. Serum biomarkers of brain injury after uncomplicated cardiac surgery: Secondary analysis from a randomized trial. Acta Anaesthesiol Scand. 2022;66(4):447-453. doi: 10.1111/aas.14033

34. DiMeglio M., Furey W., Hajj J., Lindekens J., Patel S., Acker M., Bavaria J., Szeto W.Y., Atluri P., Haber M., Diaz-Arrastia R., Laudanski K. Observational study of long-term persistent elevation of neurodegeneration markers after cardiac surgery. Sci Rep. 2019;9(1):7177. doi: 10.1038/s41598-019-42351-2


Supplementary files

Review

For citations:


Ivkin A.A., Grigoriev E.V., Balakhnin D.G., Mikhailova A.A. USE OF POSTOPERATIVE KETAMINE INFUSION FOR CEREBRAL PROTECTION IN CHILDREN IN CARDIAC SURGERY. Complex Issues of Cardiovascular Diseases. 2024;13(3S):98-109. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-3S-98-109

Views: 157


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)