Preview

Complex Issues of Cardiovascular Diseases

Advanced search

THE INFLUENCE OF VARIANT ANATOMY OF THE PULMONARY VEINS ON THE SUSCEPTIBILITY TO THE DEVELOPMENT OF ATRIAL FIBRILLATION AND THE OUTCOMES OF INTERVENTIONAL TREATMENT (REVIEW)

https://doi.org/10.17802/2306-1278-2025-14-1-60-73

Abstract

Highlights

The review presents an analysis of the current literature on studies of variant pulmonary vein anatomy as a factor that predicts predisposition to atrial fibrillation, as well as the outcome of interventional treatment.

 

Abstract

This review examines the role of variant pulmonary vein anatomy in predisposition to the development of atrial fibrillation. The use of individual pulmonary vein anatomy in assessing the outcome of interventional treatment is discussed.

About the Authors

Nikolay O. Bartosh
Federal State Autonomous Educational Institution of Higher Education “Russian National Research Medical University named after N.I. Pirogov” of the Ministry of Health of the Russian Federation
Russian Federation

PhD, correspondent member of Russian Academy of Education, professor of the Department of Topographic Anatomy and Operative Surgery named after Academician U.M. Lopukhin, Institute of Anatomy and Morphology, Federal State Autonomous Educational Institution of Higher Education “Russian National Research Medical University named after N.I. Pirogov” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation



Valery A. Bryukhanov
Federal State Autonomous Educational Institution of Higher Education “First Moscow State Medical University named after I.M. Sechenov” of the Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

student of Institute of Clinical Medicine named after N.V. Sklifosovsky, Federal State Autonomous Educational Institution of Higher Education “First Moscow State Medical University named after I.M. Sechenov” of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russian Federation



Vladimir E. Milyukov
Federal State Autonomous Educational Institution of Higher Education “Russian National Research Medical University named after N.I. Pirogov” of the Ministry of Health of the Russian Federation
Russian Federation

PhD, Professor Head of the Department of Topographic Anatomy and Operative Surgery named after Academician U.M. Lopukhin, Institute of Anatomy and Morphology, Federal State Autonomous Educational Institution of Higher Education “Russian National Research Medical University named after N.I. Pirogov” of the Ministry of Health of the Russian Federation, Moscow, Russian Federation



References

1. Joglar JA, Chung MK, Armbruster AL, et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2024;83(1):109-279. https://doi.org/10.1016/j.jacc.2023.08.017

2. Аракелян МГ, Бокерия ЛА, Васильева Е.Ю, и др. Фибрилляция и трепетание предсердий. Клинические рекомендации 2020. Российский кардиологический журнал. 2021;26(7): 4594. [Arakelyan MG, Bockeria LA, Vasilieva EYu, 2020 Clinical guidelines for Atrial fibrillation and atrial flutter. Russian Journal of Cardiology. 2021;26(7): 4594. (In Russ.)]. https://doi.org/10.15829/1560-4071-2021-4594

3. Kornej J, Börschel CS, Benjamin EJ, Schnabel RB. Epidemiology of Atrial Fibrillation in the 21st Century: Novel Methods and New Insights. Circ Res. 2020;127(1):4-20. https://doi.org/10.1161/CIRCRESAHA.120.316340

4. Lippi G, Sanchis-Gomar F, Cervellin G. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. Int J Stroke. 2021;16(2): 217-21. https://doi.org/10.1177/1747493019897870

5. Wu J, Nadarajah R, Nakao YM, et al. Temporal trends and patterns in atrial fibrillation incidence: A population-based study of 3·4 million individuals. Lancet Reg Health Eur. 2022;17: 100386. https://doi.org/10.1016/j.lanepe.2022.100386

6. Krijthe BP, Kunst A, Benjamin EJ, et al. Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur Heart J. 2013;34(35): 2746-51. https://doi.org/10.1093/eurheartj/eht280

7. Schnabel RB, Yin X, Gona P, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet. 2015;386(9989): 154-62. https://doi.org/10.1016/S0140-6736(14)61774-8

8. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke. 1991;22(8): 983-8. https://doi.org/10.1161/01.str.22.8.983

9. Мареев ЮВ, Поляков ДС, Виноградова НГ, и др. ЭПОХА: Эпидемиология фибрилляции предсердий в репрезентативной выборке Европейской части Российской Федерации. Кардиология. 2022;62(4): 12-9. [Mareev YuV, Polyakov DS, Vinogradova NG, et al. Epidemiology of atrial fibrillation in a representative sample of the European part of the Russian Federation. Analysis of EPOCH-CHF study. Kardiologiia. 2022;62(4): 12-9. (In Russ.)]. https://doi.org/10.18087/cardio.2022.4.n1997

10. Monahan KH, Bunch TJ, Mark DB, et al. Influence of atrial fibrillation type on outcomes of ablation vs. drug therapy: results from CABANA. Europace. 2022;24(9): 1430-40. https://doi.org/10.1093/europace/euac055

11. Andrade JG, Deyell MW, Macle L, et al. Progression of Atrial Fibrillation after Cryoablation or Drug Therapy. N Engl J Med. 2023;388(2): 105-116. https://doi.org/10.1056/NEJMoa2212540

12. Kuck KH, Fürnkranz A, Chun KR, et al. Cryoballoon or radiofrequency ablation for symptomatic paroxysmal atrial fibrillation: reintervention, rehospitalization, and quality-of-life outcomes in the FIRE AND ICE trial. Eur Heart J. 2016;37(38): 2858-65. https://doi.org/10.1093/eurheartj/ehw285

13. Marrouche NF, Brachmann J, Andresen D, et al. Catheter Ablation for Atrial Fibrillation with Heart Failure. N Engl J Med. 2018;378(5): 417-27. https://doi.org/10.1056/NEJMoa1707855

14. Wong GR, Nalliah CJ, Lee G, et al. Sex-Related Differences in Atrial Remodeling in Patients With Atrial Fibrillation: Relationship to Ablation Outcomes. Circ Arrhythm Electrophysiol. 2022;15(1): e009925. https://doi.org/10.1161/CIRCEP.121.009925

15. Tsai TY, Lo LW, Cheng WH, et al. 10-Year Outcomes of Patients With Non-Paroxysmal Atrial Fibrillation Undergoing Catheter Ablation. Circ J. 2022;87(1): 84-91. https://doi.org/10.1253/circj.CJ-22-0062

16. Shah AN, Mittal S, Sichrovsky TC, et al. Long-term outcome following successful pulmonary vein isolation: pattern and prediction of very late recurrence. J Cardiovasc Electrophysiol. 2008;19(7): 661-7. https://doi.org/10.1111/j.1540-8167.2008.01101.x

17. Maurer T, Kuck KH. The quest for durable lesions in catheter ablation of atrial fibrillation - technological advances in radiofrequency catheters and balloon devices. Expert Rev Med Devices. 2017;14(8): 621-31. https://doi.org/10.1080/17434440.2017.1358086

18. Корниенко НА, Чаплыгина ЕВ, Каплунова ОА, и др. Развитие и аномалии легочных вен. Современные проблемы науки и образования. 2021;(2): 198. [Kornienko NA, Chaplygina EV, Kaplunova OA, et al. Development and anomalies of the pulmonary veins. Modern problems of science and education. 2021;(2): 198 (In Russ.)]. https://doi.org/10.17513/spno.30731

19. van den Berg G, Moorman AF. Development of the pulmonary vein and the systemic venous sinus: an interactive 3D overview. PLoS One. 2011;6(7): e22055. https://doi.org/10.1371/journal.pone.0022055

20. Douglas YL, Jongbloed MR, Deruiter MC, et al. Normal and abnormal development of pulmonary veins: state of the art and correlation with clinical entities. Int J Cardiol. 2011;147(1): 13-24. https://doi.org/10.1016/j.ijcard.2010.07.004

21. Anderson RH, Brown NA, Moorman AF. Development and structures of the venous pole of the heart. Dev Dyn. 2006;235(1): 2-9. https://doi.org/10.1002/dvdy.20578

22. Moorman AF, Anderson RH. Development of the pulmonary vein. Int J Cardiol. 2011;147(1): 182. https://doi.org/10.1016/j.ijcard.2010.12.034

23. Sun C, Zhang T, Liu C, et al. Generation of Shox2-Cre allele for tissue specific manipulation of genes in the developing heart, palate, and limb. Genesis. 2013;51(7): 515-22. https://doi.org/10.1002/dvg.22397

24. Ye W, Wang J, Song Y, et al. A common Shox2-Nkx2-5 antagonistic mechanism primes the pacemaker cell fate in the pulmonary vein myocardium and sinoatrial node. Development. 2015;142(14): 2521-32. https://doi.org/10.1242/dev.120220

25. Gupta T, Randhawa A, Sahni D. Histological evaluation of atrial muscle sleeve of pulmonary veins as relevant to trigger mapping and ablation. Surg Radiol Anat. 2020;42(11): 1271-77. https://doi.org/10.1007/s00276-020-02473-z

26. Dudkiewicz D, Słodowska K, Jasińska KA, et al. The clinical anatomy of the left atrial structures used as landmarks in ablation of arrhythmogenic substrates and cardiac invasive procedures. Transl Res Anat. 2021;23: 100102. https://doi.org/10.1016/j.tria.2020.100102.

27. Kugler S, Nagy N, Rácz G, et al. Presence of cardiomyocytes exhibiting Purkinje-type morphology and prominent connexin45 immunoreactivity in the myocardial sleeves of cardiac veins. Heart Rhythm. 2018;15(2): 258-64. https://doi.org/10.1016/j.hrthm.2017.09.044

28. Gupta T, Kaur M, Sahni D. Identification of novel pulmonary vein nodes as generators of ectopic arrhythmic foci for atrial fibrillation: an immunohistochemical proof. Surg Radiol Anat. 2022;44(1): 129-36. https://doi.org/10.1007/s00276-021-02864-w

29. Bittner A, Mönnig G, Vagt AJ, et al. Pulmonary vein variants predispose to atrial fibrillation: a case-control study using multislice contrast-enhanced computed tomography. Europace. 2011;13(10): 1394-1400. https://doi.org/10.1093/europace/eur145

30. Skowerski M, Wozniak-Skowerska I, Hoffmann A, et al. Pulmonary vein anatomy variants as a biomarker of atrial fibrillation - CT angiography evaluation. BMC Cardiovasc Disord. 2018;18(1): 146. https://doi.org/10.1186/s12872-018-0884-3

31. Bonczar M, Piątek-Koziej K, Wolska J, et al. Variations in human pulmonary vein ostia morphology: A systematic review with meta-analysis. Clin Anat. 2022;35(7): 906-26. https://doi.org/10.1002/ca.23896

32. Anselmino M, Blandino A, Beninati S, et al. Morphologic analysis of left atrial anatomy by magnetic resonance angiography in patients with atrial fibrillation: a large single center experience. J Cardiovasc Electrophysiol. 2011;22(1): 1-7. https://doi.org/10.1111/j.1540-8167.2010.01853.x

33. Cabrera JA, Ho SY, Climent V, et al. The architecture of the left lateral atrial wall: a particular anatomic region with implications for ablation of atrial fibrillation. Eur Heart J. 2008;29(3): 356-62. https://doi.org/10.1093/eurheartj/ehm606

34. Bonczar M, Piątek-Koziej K, Wolska J, et al. Variations in human pulmonary vein ostia morphology: A systematic review with meta-analysis. Clin Anat. 2022;35(7): 906-26. https://doi.org/10.1002/ca.23896

35. Haïssaguerre M, Jaïs P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339(10): 659-66. https://doi.org/10.1056/NEJM199809033391003

36. Ehrlich JR, Cha TJ, Zhang L, et al. Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. J Physiol. 2003;551(Pt 3): 801-13. https://doi.org/10.1113/jphysiol.2003.046417

37. Roney CH, Bayer JD, Cochet H, et al. Variability in pulmonary vein electrophysiology and fibrosis determines arrhythmia susceptibility and dynamics. PLoS Comput Biol. 2018;14(5): e1006166. Published 2018 May 24. https://doi.org/10.1371/journal.pcbi.1006166

38. Ehrlich JR, Cha TJ, Zhang L, et al. Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties.J Physiol. 2003; 551: 801-13. https://doi.org/10.1113/jphysiol.2003.046417

39. Hocini M, Ho SY, Kawara T, et al. Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation. Circulation. 2002;105(20): 2442-48. https://doi.org/10.1161/01.cir.0000016062.80020.11

40. Saito T, Waki K, Becker AE. Left atrial myocardial extension onto pulmonary veins in humans: anatomic observations relevant for atrial arrhythmias. J Cardiovasc Electrophysiol. 2000;11(8): 888-94. https://doi.org/10.1111/j.1540-8167.2000.tb00068.x

41. Gottlieb LA, Belterman C, van Amersfoorth S, et al. Profibrillatory Structural and Functional Properties of the Atrial-Pulmonary Junction in the Absence of Remodeling. Front Physiol. 2021;12: 748203. Published 2021 Nov 24. https://doi.org/10.3389/fphys.2021.748203

42. Leventopoulos G, Koros R, Travlos C, et al. Mechanisms of Atrial Fibrillation: How Our Knowledge Affects Clinical Practice. Life (Basel). 2023;13(6): 1260. https://doi.org/10.3390/life13061260

43. Pan Y, Xu L, Yang X, et al. The common characteristics and mutual effects of heart failure and atrial fibrillation: initiation, progression, and outcome of the two aging-related heart diseases. Heart Fail Rev. 2022;27(3): 837-47. https://doi.org/10.1007/s10741-021-10095-9

44. Zahid S, Cochet H, Boyle PM, et al. Patient-derived models link re-entrant driver localization in atrial fibrillation to fibrosis spatial pattern. Cardiovasc Res. 2016;110(3): 443-54. https://doi.org/10.1093/cvr/cvw073

45. Hassink RJ, Aretz HT, Ruskin J, et al. Morphology of atrial myocardium in human pulmonary veins: a postmortem analysis in patients with and without atrial fibrillation. J Am Coll Cardiol. 2003;42(6): 1108-14. https://doi.org/10.1016/s0735-1097(03)00918-5

46. Chen JY, Wu HI, Chang KC. Pulmonary vein volume and myocardial sleeve extension estimated by 3D computed tomography and voltage mapping predict arrhythmogenic triggers of paroxysmal atrial fibrillation. J Interv Card Electrophysiol. 2021;62(1): 177-85. https://doi.org/10.1007/s10840-020-00892-x

47. Ellis CR, Saavedra P, Kanagasundram A, et al. Pulmonary Vein Sleeve Length and Association With Body Mass Index and Sex in Atrial Fibrillation. JACC Clin Electrophysiol. 2018;4(3): 412-14. https://doi.org/10.1016/j.jacep.2017.11.011

48. Cheruiyot I, Munguti J, Olabu B, et al. A meta-analysis of the relationship between anatomical variations of pulmonary veins and atrial fibrillation. Acta Cardiol. 2020;75(1): 1-9. https://doi.org/10.1080/00015385.2018.1544204

49. Housari MA, Miraglia V, Terasawa M, et al. Pulmonary Vein Remodeling Between Atrial Fibrillation Subtypes: A Matched Comparison Cardiac Computed Tomography-Based Study Between Patients With Paroxysmal and Persistent Atrial Fibrillation. Am J Cardiol. 2023;207: 100-107. https://doi.org/10.1016/j.amjcard.2023.08.151

50. Cheng WH, Lo LW, Lin YJ, et al. Ten-year ablation outcomes of patients with paroxysmal atrial fibrillation undergoing pulmonary vein isolation. Heart Rhythm. 2019;16(9): 1327-33. https://doi.org/10.1016/j.hrthm.2019.03.028

51. Marrouche NF, Wilber D, Hindricks G, et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA. 2014;311(5): 498-506. https://doi.org/10.1001/jama.2014.3

52. D'Ascenzo F, Corleto A, Biondi-Zoccai G, et al. Which are the most reliable predictors of recurrence of atrial fibrillation after transcatheter ablation?: a meta-analysis. Int J Cardiol. 2013;167(5): 1984-89. https://doi.org/10.1016/j.ijcard.2012.05.008

53. Canpolat U, Aytemir K, Yorgun H, et al. The Impact of Echocardiographic Epicardial Fat Thickness on Outcomes of Cryoballoon-Based Atrial Fibrillation Ablation. Echocardiography. 2016;33(6): 821-29. https://doi.org/10.1111/echo.13193

54. Desai Y, Levy MR, Iravanian S, et al. Clinical and anatomic predictors of need for repeat atrial fibrillation ablation. World J Cardiol. 2017;9(9): 742-48. https://doi.org/10.4330/wjc.v9.i9.742

55. Guo FQ, Zheng TT, Kou CG, et al. Cardiac computed tomography angiography-derived pulmonary vein volumetry as a predictor for atrial fibrillation recurrence after catheter ablation. Quant Imaging Med Surg. 2024;14(3): 2213-24. https://doi.org/10.21037/qims-23-1302

56. Kiuchi K, Yoshida A, Takei A, et al. Topographic variability of the left atrium and pulmonary veins assessed by 3D-CT predicts the recurrence of atrial fibrillation after catheter ablation. J Arrhythm. 2015;31(5): 286-92. https://doi.org/10.1016/j.joa.2015.03.006

57. Huang SW, Jin Q, Zhang N, et al. Impact of Pulmonary Vein Anatomy on Long-term Outcome of Cryoballoon Ablation for Atrial Fibrillation. Curr Med Sci. 2018;38(2): 259-67. https://doi.org/10.1007/s11596-018-1874-5

58. Li B, Ma H, Guo H, et al. Pulmonary vein parameters are similar or better predictors than left atrial diameter for paroxysmal atrial fibrillation after cryoablation. Braz J Med Biol Res. 2019;52(9): e8446. https://doi.org/10.1590/1414-431X20198446

59. FURUYA T, TANNO K, KIKUCHI M, et al. Large Right Pulmonary Vein Is a Predictor of Atrial Fibrillation Recurrence after Pulmonary Vein Isolation in Patients with Persistent Atrial Fibrillation. The Showa University journal of medical sciences. 2020;32(4): 233-45. https://doi.org/10.15369/sujms.32.233

60. Boussoussou M, Szilveszter B, Vattay B, et al. The effect of left atrial wall thickness and pulmonary vein sizes on the acute procedural success of atrial fibrillation ablation. Int J Cardiovasc Imaging. 2022;38(7): 1601-11. https://doi.org/10.1007/s10554-022-02533-y

61. Guckel D, Lucas P, Isgandarova K, et al. Impact of pulmonary vein variant anatomy and cross-sectional orifice area on freedom from atrial fibrillation recurrence after cryothermal single-shot guided pulmonary vein isolation. J Interv Card Electrophysiol. 2022;65(1): 251-60. https://doi.org/10.1007/s10840-022-01279-w

62. Isgandarova K, Bergau L, El Hamriti M, et al. Impact of pulmonary vein anatomy and ostial dimensions on long-term outcome after single-shot device-guided cryoablation for paroxysmal atrial fibrillation. J Interv Card Electrophysiol. 2023;66(9): 2125-33. https://doi.org/10.1007/s10840-023-01554-4

63. Qi D, Zhang J. Relationship between anatomical characteristics of pulmonary veins and atrial fibrillation recurrence after radiofrequency catheter ablation: a systematic review and meta-analysis. Front Cardiovasc Med. 2023;10: 1235433. https://doi.org/10.3389/fcvm.2023.1235433

64. Szegedi N, Vecsey-Nagy M, Simon J, et al. Orientation of the right superior pulmonary vein affects outcome after pulmonary vein isolation. Eur Heart J Cardiovasc Imaging. 2022;23(4): 515-23. https://doi.org/10.1093/ehjci/jeab041

65. Wang Y, Wu X, Liu N, et al. Correlation Analysis of Pulmonary Vein Anatomy and Paroxysmal Atrial Fibrillation Recurrence after Cryoballoon Ablation. The Heart Surgery Forum, 2024;27(3): E211-E221. https://doi.org/10.59958/hsf.7057

66. Schwartzman D, Bazaz R, Nosbisch J. Common left pulmonary vein: a consistent source of arrhythmogenic atrial ectopy. J Cardiovasc Electrophysiol. 2004;15(5): 560-66. https://doi.org/10.1046/j.1540-8167.2004.03351.x

67. Hunter RJ, Ginks M, Ang R, et al. Impact of variant pulmonary vein anatomy and image integration on long-term outcome after catheter ablation for atrial fibrillation. Europace. 2010;12(12):1691-1697. doi:10.1093/europace/euq322

68. Kubala M, Hermida JS, Nadji G, et al. Normal pulmonary veins anatomy is associated with better AF-free survival after cryoablation as compared to atypical anatomy with common left pulmonary vein. Pacing Clin Electrophysiol. 2011;34(7): 837-43. https://doi.org/10.1111/j.1540-8159.2011.03070.x

69. McLellan AJ, Ling LH, Ruggiero D, et al. Pulmonary vein isolation: the impact of pulmonary venous anatomy on long-term outcome of catheter ablation for paroxysmal atrial fibrillation. Heart Rhythm. 2014;11(4): 549-56. https://doi.org/10.1016/j.hrthm.2013.12.025

70. Beiert T, Lodde PC, Linneborn LPT, et al. Outcome in patients with left common pulmonary vein after cryoablation with second-generation cryoballoon. Pacing Clin Electrophysiol. 2018;41(1): 22-27. https://doi.org/10.1111/pace.13247

71. Xu B, Xing Y, Xu C, et al. A left common pulmonary vein: Anatomical variant predicting good outcomes of repeat catheter ablation for atrial fibrillation. J Cardiovasc Electrophysiol. 2019;30(5): 717-26. https://doi.org/10.1111/jce.13876

72. Larsen JM, Deyell MW, Macle L, et al. Impact of Left Common Pulmonary Veins in the Contact-Force vs. Cryoballoon Atrial Fibrillation Ablation (CIRCA-DOSE) Study. J Cardiovasc Electrophysiol. Published online July 6, 2020. https://doi.org/10.1111/jce.14652

73. Ronsoni RM, Silvestrini TL, Essebag V, et al. Association of the left common ostium with clinical outcome after pulmonary vein isolation in atrial fibrillation. Indian Pacing Electrophysiol J. 2021;21(2): 95-100. https://doi.org/10.1016/j.ipej.2020.11.020

74. Ronsoni RM, Silvestrini TL, Saffi MAL, et al. Impact of the left common ostium following pulmonary vein isolation in AF: Systematic review and meta-analysis. J Arrhythm. 2022;38(3): 287-98. https://doi.org/10.1002/joa3.12710

75. Choi S, Yang SY, Oh JK, et al. Left common trunkus pulmonary veins have genetic background and poor rhythm outcome after atrial fibrillation catheter ablation. Europace. 2023;25(Suppl 1): euad122.175. https://doi.org/10.1093/europace/euad122.175

76. Lee JM, Shim J, Park J, et al. The Electrical Isolation of the Left Atrial Posterior Wall in Catheter Ablation of Persistent Atrial Fibrillation. JACC Clin Electrophysiol. 2019;5(11): 1253-61. https://doi.org/10.1016/j.jacep.2019.08.021

77. Istratoaie S, Roșu R, Cismaru G, et al. The Impact of Pulmonary Vein Anatomy on the Outcomes of Catheter Ablation for Atrial Fibrillation. Medicina (Kaunas). 2019;55(11): 727. Published 2019 Nov 4. https://doi.org/10.3390/medicina55110727


Supplementary files

Review

For citations:


Bartosh N.O., Bryukhanov V.A., Milyukov V.E. THE INFLUENCE OF VARIANT ANATOMY OF THE PULMONARY VEINS ON THE SUSCEPTIBILITY TO THE DEVELOPMENT OF ATRIAL FIBRILLATION AND THE OUTCOMES OF INTERVENTIONAL TREATMENT (REVIEW). Complex Issues of Cardiovascular Diseases. 2025;14(1):62-75. (In Russ.) https://doi.org/10.17802/2306-1278-2025-14-1-60-73

Views: 179


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)