MOLECULAR GENETIC RESPONSE OF ENDOTHELIAL CELLS TO DOXORUBICIN EXPOSURE: RESULTS OF IN VITRO AND IN VIVO STUDY
https://doi.org/10.17802/2306-1278-2024-13-4S-97-106
Abstract
Highlights
- Doxorubicin is an anthracycline–type antibiotic used to treat certain forms of cancer, the use of which is associated with the development of a number of complications in the cardiovascular system.
- In vitro and in vivo experiments using primary endothelial cells of the coronary and internal thoracic arteries and normolipidemic Wistar rats have shown that exposure to doxorubicin leads to a change in the gene expression profile of endothelial cells, indicating a minor disruption of key links in the pathogenesis of endothelial dysfunction.
Abstract
Aim. To assess the expression profile of endothelial dysfunction marker genes in endothelial cells exposed to doxorubicin in in vitro and in vivo experiments.
Method. The study included commercial cultures of primary human coronary and internal thoracic artery endothelial cells exposed to 2 μg/mL doxorubicin for 24 hours, and normolipidemic Wistar rats, which were injected with 2 μg/kg of body weight doxorubicin into the tail vein for four weeks. Endothelial dysfunction was assessed by measuring the expression of VCAM1, ICAM1, SELE, SELP, IL6, CXCL8, CCL2, CXCL1, MIF, VWF, SERPINE1, PLAU, PLAT, KLF2, KLF4, NFE2L2, NOS3, SNAI1, SNAI2, TWIST1, ZEB1, CDH5 and CDH2 genes in endothelial cell lysate and in endothelial monolayer washed from rat descending aorta using quantitative polymerase chain reaction.
Results. 2 μg/mL doxorubicin exposure is associated with upregulation of IL6, CXCL8 and CCL2 genes in both HCAEC and HITAEC, and downregulation of PECAM, MIF and NOS3 genes in HCAEC. The mRNA level of transcription factors ZEB1, VE-cadherin (CDH5) and CXCL1 was lower compared to the control in both cell lines. The assessment of gene expression in the endothelial lysate of aorta explanted from Wistar rats showed increased expression of the Ccl2 gene and the decreased expression of the Klf2, Plau, Nos3, Cdh2, Serpine and Vwf genes in the experimental group compared to the control.
Conclusion. In vitro and in vivo experiments using primary coronary and internal mammary artery endothelial cells and normolipidemic Wistar rats showed that doxorubicin exposure leads to some changes in the gene expression profile of endothelial cells, indicating minor disruption of key links in the pathogenesis of endothelial dysfunction.
About the Authors
Anna V. SinitskayaRussian Federation
PhD, Senior Researcher at the Laboratory of Genomic Medicine, Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
Mariya V. Khutornaya
Russian Federation
PhD, Researcher at the Laboratory of Genomic Medicine, Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
Oksana N. Hryachkova
Russian Federation
PhD, Researcher at the Laboratory of Genomic Medicine, Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
Alena O. Poddubnyak
Russian Federation
Laboratory Research Assistant at the Laboratory of Genomic Medicine, Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
Maxim A. Asanov
Russian Federation
Researcher at the Laboratory of Genomic Medicine, Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
Anastasia A. Klueva
Russian Federation
Researcher at the Laboratory of Genomic Medicine, Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
Maxim Yu. Sinitsky
Russian Federation
PhD, Head of the Laboratory of Genomic Medicine, Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation
References
1. Alexander Y., Osto E., Schmidt-Trucksäss A., Shechter M., Trifunovic D., Duncker D.J., Aboyans V., Bäck M., Badimon L., Cosentino F., De Carlo M., Dorobantu M., Harrison D.G., Guzik T.J., Hoefer I., Morris P.D., Norata G.D., Suades R., Taddei S., Vilahur G., Waltenberger J., Weber C., Wilkinson F., Bochaton-Piallat M.L., Evans P.C. Endothelial function in cardiovascular medicine: a consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovasc Res. 2021;117(1):29-42. doi: 10.1093/cvr/cvaa085.
2. Gao Y., Galis Z. S. Exploring the Role of Endothelial Cell Resilience in Cardiovascular Health and Disease. Arteriosclerosis, thrombosis, and vascular biology. 2021;41(1):179–185. doi: 10.1161/ATVBAHA.120.314346
3. Podyacheva E., Danilchuk M., Toropova Y. Molecular mechanisms of endothelial remodeling under doxorubicin treatment. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023; 162: 114576. doi: 10.1016/j.biopha.2023.114576
4. Feng J., Wu Y. Endothelial-to-Mesenchymal Transition: Potential Target of Doxorubicin-Induced Cardiotoxicity. Am J Cardiovasc Drugs. 2023; 23: 231–246. doi: 10.1007/s40256-023-00573-w
5. Clayton Z. S., Brunt V. E., Hutton D. A., VanDongen N. S., D'Alessandro A., Reisz J. A., Ziemba B. P., Seals D. R. Doxorubicin-Induced Oxidative Stress and Endothelial Dysfunction in Conduit Arteries Is Prevented by Mitochondrial-Specific Antioxidant Treatment. JACC. CardioOncology. 2020; 2(3); 475–488. doi: 10.1016/j.jaccao.2020.06.010
6. Bosman M., Favere K., Neutel C. H. G., Jacobs G., De Meyer G. R. Y., Martinet W., Van Craenenbroeck E. M., Guns P. D. F. Doxorubicin induces arterial stiffness: A comprehensive in vivo and ex vivo evaluation of vascular toxicity in mice. Toxicology letters. 2021; 346: 23–33. doi:10.1016/j.toxlet.2021.04.015
7. He H., Wang L., Qiao Y., Zhou Q., Li H., Chen S., Yin D., Huang Q., He M. Doxorubicin Induces Endotheliotoxicity and Mitochondrial Dysfunction via ROS/eNOS/NO Pathway. Front Pharmacol. 2020;10:1531. doi: 10.3389/fphar.2019.01531.
8. Galán-Arriola C., Vílchez-Tschischke J.P., Lobo M., López G.J., de Molina-Iracheta A., Pérez-Martínez C., Villena-Gutiérrez R., Macías Á., Díaz-Rengifo I.A., Oliver E., Fuster V., Sánchez-González J., Ibanez B. Coronary microcirculation damage in anthracycline cardiotoxicity. Cardiovasc Res. 2022; 118(2):531-541. doi: 10.1093/cvr/cvab053.
9. Kutikhin A. G., Shishkova D. K., Velikanova E. A., Sinitsky M. Y., Sinitskaya A. V., Markova V. E. Endothelial dysfunction in the context of blood–brain barrier modeling. Journal of Evolutionary Biochemistry and Physiology. 2022; 58(3): 781-806.
10. Bosman M., Krüger D., Van Assche C., Boen H., Neutel C., Favere K., Franssen C., Martinet W., Roth L., De Meyer G. R. Y., Cillero-Pastor B., Delru, L., Heggermont W., Van Craenenbroeck E. M., Guns P. J. Doxorubicin-induced cardiovascular toxicity: a longitudinal evaluation of functional and molecular markers. Cardiovascular research. 2023; 119(15): 2579–2590. doi: 10.1093/cvr/cvad136
11. Fu H.Y., Sanada S., Matsuzaki T., Liao Y., Okuda K., Yama-to M., Tsuchida S., Araki R., Asano Y., Asanuma H., Asa-kura M., French B.A., Sakata Y., Kitakaze M., Minamino T. Chemical endoplasmic reticulum chaperone alle-viates doxorubicin-induced cardiac dysfunction. CircRes. 2016; 118: 798–809. doi:10.1161/CIRCRESAHA.115.307604?
12. Songbo M., Lang H., Xinyong C., Bin X., Ping Z., Liang S. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicology letters. 2019; 307:41–48. doi:10.1016/j.toxlet.2019.02.013
13. Pan J.A., Tang Y., Yu J.Y., Zhang H., Zhang J.F., Wang C.Q.,Gu J. miR-146a attenuates apoptosis and modu-lates autophagy by targeting TAF9b/P53 pathway indoxorubicin-induced cardiotoxicity. Cell Death Dis . 2019; 10:1–15. doi: 10.1038/s41419-019-19 01-x
14. Barachini S., Ghelardoni S., Varga Z. V., Mehanna R. A., Montt-Guevara M. M., Ferdinandy P., Madonna R. Antineoplastic drugs inducing cardiac and vascular toxicity–An update. Vascular Pharmacology.2023; 153: 107223. doi: 10.1016/j.vph.2023.107223
15. Crocco M., d'Annunzio G., La Valle A., Piccolo G., Chiarenza D. S., Bigatti C., Molteni M., Milanaccio C., Garrè M. L., Di Iorgi N., Maghnie M. (2021). Endothelial Dysfunction in Childhood Cancer Survivors: A Narrative Review. Life (Basel, Switzerland). 2021; 12(1): 45. doi:10.3390/life12010045
16. O'Riordan E., Chen J., Brodsky S.V., Smirnova I., Li H., Goligorsky M.S. Endothelial cell dysfunction: the syndrome in making. Kidney Int. 2005; 67(5): 1654–1658. doi:10.1111/j.1523-1755.2005.00256.x
17. Chen P.Y., Qin L., Baeyens N., Li G., Afolabi T., Budatha M., Tellides G., Schwartz M.A., Simons M. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest. 2015; 125(12): 4514–4528. doi:10.1172/JCI82719
18. Cahill P.A., Redmond E.M. Vascular endothelium – Gatekeeper of vessel health. Atherosclerosis. 2016; 248:97–109. doi:10.1016/j.atherosclerosis.2016.03.007
19. Sinitsky M.Y., Sinitskaya A.V., Khutornaya M.V., Asanov M.A., Shishkova D.K., Poddubnyak A.O., Ponasenko A.V. Genotoxic Stress As a Trigger of Endothelial Dysfunction in Wistar Rats: a Molecular Genetic Study. Journal of Evolutionary Biochemistry and Physiology. 2024; 60 (2): 768-779. doi: 10.1134/S00220930240202
20. Jackson A.O., Zhang J., Jiang Z., Yin K. Endothelial-to-mesenchymal transition: A noveltherapeutic target for cardiovascular diseases. Trends Cardiovasc Med.2017; 27(6): 383–393.doi:10.1016/j.tcm.2017.03.003
21. Davies P.F., Civelek M., Fang Y., Fleming I. The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo. Cardiovasc Res. 2013; 99: 315–327. doi: 10.1093/cvr/cvt101
22.
Supplementary files
Review
For citations:
Sinitskaya A.V., Khutornaya M.V., Hryachkova O.N., Poddubnyak A.O., Asanov M.A., Klueva A.A., Sinitsky M.Yu. MOLECULAR GENETIC RESPONSE OF ENDOTHELIAL CELLS TO DOXORUBICIN EXPOSURE: RESULTS OF IN VITRO AND IN VIVO STUDY. Complex Issues of Cardiovascular Diseases. 2024;13(4S):97-106. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-4S-97-106