OFF-PUMP CORONARY ARTERY BYPASS GRAFTING IN PATIENTS WITH CORONARY HEART DISEASE AND CONCOMITANT VALVULAR HEART DISEASE
https://doi.org/10.17802/2306-1278-2025-14-6-182-193
Abstract
Highlights
The relevance of the study is determined by the high importance of optimizing surgical approaches to treating patients with coronary artery disease and concomitant valve lesions: comparing myocardial revascularization techniques on a beating heart (OPCABG) and under conditions of extracorporeal circulation (ONCABG) allows identifying a strategy that ensures a reduction in intraoperative risks (shortening the time of aortic clamping and extracorporeal circulation), decreasing the need for blood transfusion, and reducing the duration of surgery and hospital stay. This collectively enhances the safety of the intervention and improves treatment outcomes for this complex category of patients.
Aim. To compare the results of myocardial revascularisation (MR) in the working heart (OPCABG) with MR on cardiopulmonary bypass (ONCABG) in patients with coronary heart disease (CHD) and combined mitral and aortic valve damage.
Methods. The study included 132 patients with CAD and concomitant valvular heart disease who underwent one-stage revascularization and valve surgery. Patients were divided into 4 groups: ONCABG + AV (n = 36); OPCABG + AV (n = 36); ONCABG + MV (n = 31); OPCABG + MV (n = 29).
Results. The OPCABG technique demonstrated several advantages over the ONCABG technique: shorter aortic cross-clamp time (AV: 106,4 ± 25,1 min vs 83,3 ± 24,7 min / MV: 115,6 ± 21,9 min vs 84,07 ± 21,3 min, p < 0.05), reduced CPB time (AV: 139,4 ± 26,8 min vs 123,5 ± 25 min / MV: 166,2 ± 32,7 min vs 133,2 ± 34,9 min, p < 0.05), and shorter total operation time (AV: 336,1 ± 66,4 min vs 306,4 ± 71 min / MV: 352,5 ± 100,7 min vs 298,1 ± 84 min, p = 0.07). There was also a lower need for blood and blood product transfusions: packed red blood cells (AV: 2,56 ± 0,84 vs 2,2 ± 0,47 / MV: 2,81 ± 0,47 vs 2,38 ± 0,56); erythrocyte concentrate (AV: 2,36 ± 0,48 vs 1,94 ± 0,53 / MV: 2,23 ± 0,49 vs 1,83 ± 0,35), respectively p < 0.05, and a trend towards a shorter length of hospital stay (AV: 16,6 ± 6,68 vs 13,7 ± 4,3 / MV: 17,5 ± 6,4 vs 13,5 ± 4,8).
Conclusions. Coronary artery bypass grafting on the beating heart in patients with concomitant valvular heart disease demonstrated several important advantages: it is a safe and effective technique that can be successfully applied in clinical practice, which in turn reduces aortic cross-clamp time, cardiopulmonary bypass time, operation time, transfusion requirements, and length of hospital stay.
About the Authors
Kazbulat R. ZarakushevRussian Federation
Postgraduate Student of the Department of Cardiovascular Surgery at the Institute of Professional Education of the Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
Roman N. Komarov
Russian Federation
PhD, MD, Professor, Head of the Department of Cardiovascular Surgery at the Institute of Professional Education of the Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
Boris M. Tlisov
Russian Federation
PhD, Doctor of Cardiovascular Surgery, Department of Cardiac Surgery at the Educational Clinical Hospital № 1 of the Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
Nasiba B. Seifatova
Russian Federation
1st year resident in Cardiology, A.N. Bakulev National Medical Research Center for Cardiovascular Surgery of the Russian Ministry of Health, Moscow, Russian Federation
References
1. Chen, Q. F., Shi, S., Wang, Y. F., Shi, J., Liu, C., Xu, T., Ni, C., Zhou, X., Lin, W., Peng, Y., & Zhou, X. D. (2024). Global, Regional, and National Burden of Valvular Heart Disease, 1990 to 2021. Journal of the American Heart Association, 13(24), e037991. https://doi.org/10.1161/JAHA.124.037991
2. Myasoedova, V. A., Franchi, M., De Giorgi, D., Bonomi, A., Valerio, V., Pirola, S., Andreani, N., Rusconi, V., Bertolini, F., Massaiu, I., Pontone, G., & Poggio, P. (2025). High-Intensity Statins Promote PCSK9 Secretion and aortic valve calcification in patients with severe aortic stenosis: In vitro and clinical evidence. Pharmacological research, 215, 107737. https://doi.org/10.1016/j.phrs.2025.107737
3. Santangelo, G., Antonini-Canterin, F., & Faggiano, P. (2025). Could the Hemodynamic Progression of Aortic Valve Stenosis be Slowed Pharmacologically? The Unsolved Dilemma. Reviews in cardiovascular medicine, 26(2), 26537. https://doi.org/10.31083/RCM26537
4. Neema, P. K., & Panidapu, N. (2025). The Mechanisms and Pathophysiology of Mitral Regurgitation: A Narrative Review. Annals of cardiac anaesthesia, 28(2), 109–118. https://doi.org/10.4103/aca.aca_221_24
5. Ronco, D., Buttiglione, G., Garatti, A., & Parolari, A. (2023). Biology of mitral valve prolapse: from general mechanisms to advanced molecular patterns-a narrative review. Frontiers in cardiovascular medicine, 10, 1128195. https://doi.org/10.3389/fcvm.2023.1128195
6. Guicciardi, N. A., De Bonis, M., Di Resta, C., Ascione, G., Alfieri, O., Maisano, F., & Vergara, P. (2022). Genetic background of mitral valve prolapse. Reviews in cardiovascular medicine, 23(3), 96. https://doi.org/10.31083/j.rcm2303096
7. Neto, F. L., Marques, L. C., & Aiello, V. D. (2018). Myxomatous degeneration of the mitral valve. Autopsy & case reports, 8(4), e2018058. https://doi.org/10.4322/acr.2018.058
8. Olofsson, B. O., Bjerle, P., Aberg, T., Osterman, G., & Jacobsson, K. A. (1985). Prevalence of coronary artery disease in patients with valvular heart disease. Acta medica Scandinavica, 218(4), 365–371. https://doi.org/10.1111/j.0954-6820.1985.tb08860.x
9. Cabell, C. H., Abrutyn, E., & Karchmer, A. W. (2003). Cardiology patient page. Bacterial endocarditis: the disease, treatment, and prevention. Circulation, 107(20), e185–e187. https://doi.org/10.1161/01.CIR.0000071082.36561.F1
10. Mazzotta, R., Orlandi, M., Scheggi, V., Marchionni, N., & Stefàno, P. (2024). Coronary embolism in left-sided infective endocarditis. A retrospective analysis from a high-volume surgical centre and review of the literature. PloS one, 19(12), e0314718. https://doi.org/10.1371/journal.pone.0314718
11. Li, S., Wang, Z., Fu, W., Li, F., Gu, H., Cui, N., Lin, Y., Xie, M., & Yang, Y. (2024). Left Ventricular Papillary Muscle: Anatomy, Pathophysiology, and Multimodal Evaluation. Diagnostics (Basel, Switzerland), 14(12), 1270. https://doi.org/10.3390/diagnostics14121270
12. Gambardella, I., Spadaccio, C., Singh, S. S. A., Shingu, Y., Kunihara, T., Wakasa, S., & Nappi, F. (2024). Interpapillary muscle distance independently predicts recurrent mitral regurgitation. Journal of cardiothoracic surgery, 19(1), 147. https://doi.org/10.1186/s13019-024-02631-z
13. Li, R., Hu, M., Fang, J., Wei, X., & Wan, S. (2025). Improving Repair Durability in Severe Ischemic Mitral Regurgitation: Revisiting Patient Selection and Adjunctive Repair Techniques. Seminars in thoracic and cardiovascular surgery, 37(3), 257–262. https://doi.org/10.1053/j.semtcvs.2025.04.009
14. Wierup, P., Nielsen, S. L., Egeblad, H., Scherstén, H., Kimblad, P. O., Bech-Hansen, O., Roijer, A., Nilsson, F., Nielsen, P. H., Poulsen, S. H., & Mølgaard, H. (2009). The prevalence of moderate mitral regurgitation in patients undergoing CABG. Scandinavian cardiovascular journal : SCJ, 43(1), 46–49. https://doi.org/10.1080/14017430802430943
15. Lamas, G. A., Mitchell, G. F., Flaker, G. C., Smith, S. C., Jr, Gersh, B. J., Basta, L., Moyé, L., Braunwald, E., & Pfeffer, M. A. (1997). Clinical significance of mitral regurgitation after acute myocardial infarction. Survival and Ventricular Enlargement Investigators. Circulation, 96(3), 827–833. https://doi.org/10.1161/01.cir.96.3.827
16. Varma, P. K., Krishna, N., Jose, R. L., & Madkaiker, A. N. (2017). Ischemic mitral regurgitation. Annals of cardiac anaesthesia, 20(4), 432–439. https://doi.org/10.4103/aca.ACA_58_17
17. Sugiura, A., Yamamoto, M., Saji, M., Asami, M., Enta, Y., Nakashima, M., Shirai, S., Izumo, M., Mizuno, S., Watanabe, Y., Amaki, M., Kodama, K., Yamaguchi, J., Nakajima, Y., Naganuma, T., Bota, H., Ohno, Y., Yamawaki, M., Ueno, H., Mizutani, K., … OCEAN-Mitral Investigators (2024). Cardiac Damage in Degenerative Mitral Regurgitation Treated With Transcatheter Mitral Edge-to-Edge Repair. Circulation. Cardiovascular interventions, 17(6), e013794. https://doi.org/10.1161/CIRCINTERVENTIONS.123.013794
18. Durmaz, D., Gündöner, S., & Tekümit, H. (2025). Association of Aortic Cross-Clamping Time with Systemic Immune Inflammation and Systemic Inflammatory Response Indexes in Isolated Coronary Bypass Surgery. Brazilian journal of cardiovascular surgery, 40(5), e20240266. https://doi.org/10.21470/1678-9741-2024-0266
19. Hu, J., Liu, Y., Huang, L., Song, M., & Zhu, G. (2023). Association between cardiopulmonary bypass time and mortality among patients with acute respiratory distress syndrome after cardiac surgery. BMC cardiovascular disorders, 23(1), 622. https://doi.org/10.1186/s12872-023-03664-3
20. Kant, S., Banerjee, D., Sabe, S. A., Sellke, F., & Feng, J. (2023). Microvascular dysfunction following cardiopulmonary bypass plays a central role in postoperative organ dysfunction. Frontiers in medicine, 10, 1110532. https://doi.org/10.3389/fmed.2023.1110532
21. He, J., Liu, D., Zhao, L., Zhou, D., Rong, J., Zhang, L., & Xia, Z. (2022). Myocardial ischemia/reperfusion injury: Mechanisms of injury and implications for management (Review). Experimental and therapeutic medicine, 23(6), 430. https://doi.org/10.3892/etm.2022.11357
22. Axtell, A. L., Fiedler, A. G., Melnitchouk, S., D'Alessandro, D. A., Villavicencio, M. A., Jassar, A. S., & Sundt, T. M., 3rd (2020). Correlation of cardiopulmonary bypass duration with acute renal failure after cardiac surgery. The Journal of thoracic and cardiovascular surgery, 159(1), 170–178.e2. https://doi.org/10.1016/j.jtcvs.2019.01.072
23. Yang, X., Zhu, L., Pan, H., & Yang, Y. (2024). Cardiopulmonary bypass associated acute kidney injury: better understanding and better prevention. Renal failure, 46(1), 2331062. https://doi.org/10.1080/0886022X.2024.2331062
24. Al-Sarraf, N., Thalib, L., Hughes, A., Houlihan, M., Tolan, M., Young, V., & McGovern, E. (2011). Cross-clamp time is an independent predictor of mortality and morbidity in low- and high-risk cardiac patients. International journal of surgery (London, England), 9(1), 104–109. https://doi.org/10.1016/j.ijsu.2010.10.007
25. Polomsky, M., He, X., O'Brien, S. M., & Puskas, J. D. (2013). Outcomes of off-pump versus on-pump coronary artery bypass grafting: Impact of preoperative risk. The Journal of thoracic and cardiovascular surgery, 145(5), 1193–1198. https://doi.org/10.1016/j.jtcvs.2013.02.002
26. Chalmers, J., Pullan, M., Mediratta, N., & Poullis, M. (2014). A need for speed? Bypass time and outcomes after isolated aortic valve replacement surgery. Interactive cardiovascular and thoracic surgery, 19(1), 21–26. https://doi.org/10.1093/icvts/ivu102
27. Perazzo, Á., Mariani, S., Montenegro, G. L., Conci, L., Sepúlveda, D. P. L., Steffen, S. P., Gaiotto, F. A., Lorusso, R., Caldas, S., Neto, Lins, E. M., Leal, J. C. F., & Moraes, F. R., Neto (2025). Cardiopulmonary Bypass and Cross-Clamping Times in Aortic Valve Replacement Surgery by Ministernotomy with Sutureless Prosthesis Implantation Compared to Conventional Prosthesis: A Cross-Sectional Study. Brazilian journal of cardiovascular surgery, 40(2), e20240290. https://doi.org/10.21470/1678-9741-2024-0290
28. Li, X., Wang, R., Sun, D., Yao, Y., Wang, T., Luo, G., Liu, M., Xu, J., Cheng, Z., Gao, Q., Wang, Y., Wu, C., Xu, G., Lv, T., Zou, J., & Yan, M. (2023). Risk Factors for Hypocoagulability After Cardiac Surgery: A Retrospective Study. Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis, 29, 10760296231209927. https://doi.org/10.1177/10760296231209927
29. Fudulu, D., Benedetto, U., Pecchinenda, G. G., Chivasso, P., Bruno, V. D., Rapetto, F., Bryan, A., & Angelini, G. D. (2016). Current outcomes of off-pump versus on-pump coronary artery bypass grafting: evidence from randomized controlled trials. Journal of thoracic disease, 8(Suppl 10), S758–S771. https://doi.org/10.21037/jtd.2016.10.80
30. Toz, H., Kuserli, Y., Türkyılmaz, G., Kavala, A. A., & Türkyılmaz, S. (2025). Comparison of Long-term Outcomes of On-pump and Off-pump Techniques in Isolated Coronary Artery Bypass Surgery: A Cohort Study. Med J Bakirkoy, 21(3), 296–304. https://doi.org/10.4274/BMJ.galenos.2025.2025.4-15
31. Qin, H., Si, P., Hua, K., & Yang, X. (2024). The value of off-pump coronary artery bypass grafting in the surgery for combined valvular and coronary heart disease. Frontiers in medicine, 11, 1451778. https://doi.org/10.3389/fmed.2024.1451778
Supplementary files
Review
For citations:
Zarakushev K.R., Komarov R.N., Tlisov B.M., Seifatova N.B. OFF-PUMP CORONARY ARTERY BYPASS GRAFTING IN PATIENTS WITH CORONARY HEART DISEASE AND CONCOMITANT VALVULAR HEART DISEASE. Complex Issues of Cardiovascular Diseases. 2025;14(6):182-193. (In Russ.) https://doi.org/10.17802/2306-1278-2025-14-6-182-193

































