ANTI-ADHESIVE MEMBRANES FOR CARDIOVASCULAR SURGERY - EFFICACY EVALUATION IN A LARGE ANIMALS STUDY
https://doi.org/10.17802/2306-1278-2024-13-4S-107-115
Abstract
Highlights
Formation of adhesions after chest surgery remains an unresolved issue. The use of biodegradable anti-adhesion membranes with anti-inflammatory activity can reduce the risk of adhesion. Preclinical assessment of the developed membranes in a large laboratory animal model is a mandatory step in the development of a medical device.
Aim. To conduct a preclinical evaluation of the effectiveness of an anti-adhesive biodegradable membrane with anti-inflammatory activity in a large laboratory animal model (sheep).
Methods. A composition of biodegradable polymers was used to manufacture the membranes: polylactide-co-glycolide copolymer (50:50) Mm 20–30 kDa and polylactide-co-glycolide (85:15). The polymers were dissolved in 1,1,1,3,3,3-hexafluoroisopropanol. To impart anti-inflammatory properties to the membrane, dexamethasone (DM) was added to the membrane composition at a final concentration of 1 mg DM/1 ml of polymer solution. The membranes were manufactured by electrospinning. The anti-adhesion efficiency of the membranes was assessed on an animal model (sheep) during implantation into the chest cavity.
Results. In the control group of animals, a massive adhesive process was noted. In the experimental group, six animals (66.6%) had no adhesions at all, two animals (22.2%) had weak adhesion of the lung and pericardium in the area of membrane fixation with suture material, and one animal (11.1%) had moderate adhesion of the pericardium to the surface of the chest cavity.
Conclusion. The developed biodegradable membranes have demonstrated satisfactory anti-adhesive activity (88.8%). The implantation experience showed that it is better to use a membrane 30% larger in size than necessary to properly close the wound.
About the Authors
Yulia A. KudryavtsevaRussian Federation
PhD, Chief Researcher at the Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Anastasia Yu. Kanonykina
Russian Federation
Junior Researcher, Laboratory of Molecular, Translational and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Egor S. Sardin
Russian Federation
Junior Researcher at Laboratory of Anaesthesia and Intensive Care and Pathophysiology of Critical Illness, Department of Heart and Vascular Surgery, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Competing Interests:
,
Alexander N. Stasev
Russian Federation
PhD, Senior Researcher at the Laboratory of Heart Defects, Department of Heart and Vascular Surgery, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
References
1. Bokeriya L.A., Milievskaya E.B., Pryanishnikov V.V., Orlov I.A. Serdechno-sosudistaya khirurgiya – 2022. Bolezni i vrozhdenny`e anomalii sistemy` krovoobrashheniya. Moscow:NMICz SSKh im. A.N. Bakuleva Minzdrava Rossii;2023. (In Russian)
2. Abdominal adhesions: preventive and curative measures. Filenko B.P., Zemlyanoy V.P., Borsak I.I., Ivanov A.S. Saint-Petersburg. 2013. (In Russian)
3. Cannata A., Petrella D., Russo C. F., Bruschi G., Fratto P., Gambacorta M., L. Martinelli. Postsurgical Intrapericardial Adhesions: Mechanisms of Formation and Prevention. Ann Thorac Surg. 2013;95(5):1818-26. doi: 10.1016/j.athoracsur.2012.11.020.
4. Kudryavtseva Ju.A., Nasonova M.V., Zhuravleva I. Ju. Postsurgical adhesion formation in cardiac surgery: problems and perspectives. Patologiya krovoobrashcheniya i kardiokhirurgiya. 2011; 1:100-104 (In Russian)
5. Bokeriya L.A., Sivtsev V.S. Factors, pathogenesis and preventive methods. Annaly Khirurgii (Russian Journal of Surgery). 2014; 19 (6): 7–15 (In Russian)
6. Shurygin M.G., Shurygina I.A. / Prospects for prevention of adhesion process during cardiac surgical interventions. Acta Biomedica Scientifica. 2021;6(6-2):125-132. doi: 10.29413/ABS.2021-6.6-2.13 (In Russian.)
7. Head W.T., Paladugu N., Kwon J.H., Gerry B., Hill M.A., Brennan E.A., Kavarana M.N., Rajab T.K. Adhesion barriers in cardiac surgery: A systematic review of efficacy. J Card Surg. 2022;37(1):176-185. doi: 10.1111/jocs.16062
8. Klicova M, Rosendorf J., Erben J., Horakova J. Antiadhesive Nanofibrous Materials for Medicine: Preventing Undesirable Tissue Adhesions ACS Omega.2023:8(23): 20152-20162. doi: 10.1021/acsomega.3c00341
9. Fujita M., Policastro G.M., Burdick A., Lam H.T., Ungerleider J.L., Braden R.L., Huang D., Osborn K.G., Omens J.H., Madani M.M., Christman K.L. Preventing postsurgical cardiac adhesions with a catechol-functionalized oxime hydrogel. Nat Commun. 2021;12(1):3764. doi: 10.1038/ s41467-021-24104-w.
10. Wang X., Xiang L., Peng Y., Dai Z., Hu Y., Pan X., Zhou X., Zhang H., Feng B. Gelatin/Polycaprolactone Electrospun Nanofibrous Membranes: The Effect of Composition and Physicochemical Properties on Postoperative Cardiac Adhesion. Front Bioeng Biotechnol. 2021;9:792893. doi: 10.3389/fbioe.2021.792893..
11. Chung, K.J.; Kim, Y.J.; Kim, T.G.; Lee, J.H.; Kim, Y.-H. Anti-Adhesive Effect of Porous Polylactide Film in Rats. Polymers (Basel). 2021;13(6):849. doi: 10.3390/polym13060849.
12. Biocompatibility testing of natural and synthetic pericardial adhesion barriers. Shishkova D.K., Kudryavtseva Yu.A., Nasonova M. V., Khodyrevskaya Yu.I., Burkov N.N.. Siberian Medical Journal (Tomsk). 2017. 32(1):111-115. (In Russian)
13. Kudryavczeva Yu.A., Kanony`kina A.Yu., Barbarash L.S. Sposob izgotovleniya protivospaechny`kh polimerny`kh membran s protivovospalitel`ny`mi i antibakterial`ny`mi svojstvami dlya serdechno-sosudistoj i abdominal`noj khirurgii. Patent RU 2823644 C1, 26.07.2024. (In Russian)
14. Chen Z., Zheng J., Zhang J., Li S. A novel bioabsorbable pericardial membrane substitute to reduce postoperative pericardial adhesions in a rabbit model. Interact Cardiovasc Thorac Surg. 2015;21(5):565-72. doi: 10.1093/icvts/ivv213.
15. Hashimoto Y., Yamashita A., Tabuchi M., Zhang Y., Funamoto S., Kishida A. Fibrin Hydrogel Layer-Anchored Pericardial Matrix Prevents Epicardial Adhesion in the Severe Heart Adhesion-Induced Miniature Pig Model. Ann Biomed Eng. 2024;52(2):282-291. doi: 10.1007/s10439-023-03373-0.
16. Stapleton L., Steele A.N., Wang H., Hernandez H.L. Use of a supramolecular polymeric hydrogel as an effective post-operative pericardial adhesion barrier. Nature Biomedical Engineering. 2019; 3(8):611-620. doi:10.1038/s41551-019-0442-z
17. Heydorn W.H., Daniel J.S., Wade C.E. A new look at pericardial substitutes. J. Thorac. Cardiovasc. Surg. 1987; 94 (2): 291–6.
18. Rajivт S., Drilling A., Bassiouni A., Harding M, James C., Robinson S., Moratti S., Wormald P.-J. Chitosan Dextran gel as an anti adhesion agent in a postlaminectomy spinal sheep model J Clin Neurosci. 2017.40:153-156. doi: 10.1016/j.jocn.2017.02.010.
19. Maiborodin I.V., Kuznetsova I.V., Beregovoy E.A., Shevela A.I., Barannik M.I., Manaev A.A., Maiborodina V.I. Tissue reactions during the degradation of polylactide implants in the body. Morphology. 2013; 143(3):59-65. (In Russian)
20. Blasi P., D'Souza S.S., Selmin F., DeLuca P.P. Plasticizing effect of water on poly(lactide-co-glycolide). J Control Release. 2005;108(1):1-9. doi: 10.1016/j.jconrel.2005.07.009.
Supplementary files
Review
For citations:
Kudryavtseva Yu.A., Kanonykina A.Yu., Sardin E.S., Stasev A.N. ANTI-ADHESIVE MEMBRANES FOR CARDIOVASCULAR SURGERY - EFFICACY EVALUATION IN A LARGE ANIMALS STUDY. Complex Issues of Cardiovascular Diseases. 2024;13(4S):107-115. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-4S-107-115