Preview

Complex Issues of Cardiovascular Diseases

Advanced search

DIAGNOSTIC SIGNIFICANCE OF THE NEAR-INFRARED SPECTROSCOPY IN THE PREVENTION OF CEREBRAL INJURY DURING SURGICAL CORRECTION OF CONGENITAL HEART DEFECTS IN CHILDREN

https://doi.org/10.17802/2306-1278-2024-13-4S-241-253

Abstract

Highlights

With the recent advancement in cardiopulmonary bypass techniques in pediatric cardiac surgery, the issue of organ protection during surgery is becoming more urgent, in particular cerebral protection is turning into one of the most important parts of patient management. The aim of this literature review is to determine the role of near-infrared spectroscopy among a variety of techniques for monitoring cerebral function.

 

Abstract

Near-infrared spectroscopy evaluates regional tissue perfusion and oxygenation of brain tissues during cardiac surgery with cardiopulmonary bypass (CPB). Data on the correlation of laboratory markers of cerebral injury and indicators of cerebral oximetry in children make it possible to create effective strategies of cerebral protection and prevention of postoperative cognitive dysfunction as part of a comprehensive intraoperative assessment of the patient's condition. The aim of the article was to analyze the effectiveness of the near-infrared spectroscopy in cerebral protection during surgical correction of congenital heart defects with CPB in children. The search for Russian and English publications (up to 10 years old) was performed using the following databases: Web of Science, PubMed, E-library. The keywords for the search were: “organ protection”, “congenital heart defects”, “children”, “cardiopulmonary bypass”, “near-infrared spectroscopy”. Publications that did not meet the specified criteria were excluded from the analysis. The findings substantiate the use of near-infrared spectroscopy to assess cerebral perfusion for the purpose of cerebral protection in children with congenital heart defects. The effectiveness of cerebral oximetry in various types of cardiac surgery with CPB in children has been shown. Near-infrared spectroscopy is a routine technique for assessing cerebral perfusion for the prevention of cerebral injury during cardiac surgery with CPB. The data presented in the review demonstrate the relationship between laboratory markers of cerebral injury and indicators of intraoperative cerebral oximetry using near-infrared spectroscopy in children during cardiac surgery with CPB. Further research is needed to explore the prospects of the described method of cerebral protection.

About the Authors

Alyona A. Mikhailova
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Junior Researcher at the Laboratory of Organoprotection in Children with Congenital Heart Defects, Department of Heart and Vascular Surgery, Federal State Budgetary Institution “Research Institute for Complex Issue of Cardiovascular Diseases”, Kemerovo, Russian Federation



Artem A. Ivkin
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Head of the Laboratory of Organoprotection in Children with Congenital Heart Defects, Department of Heart and Vascular Surgery, Researcher at the Laboratory of Anesthesiology, Intensive Care and Pathophysiology of Critical Conditions, Senior Lecturer at the Department of Science and Education, Anesthesiologist, Intensive Care Physician at the Federal State Budgetary Institution “Research Institute for Complex Issue of Cardiovascular Diseases”, Kemerovo, Russian Federation



Evgeny V. Grigoriev
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

MD, PhD, Member of the Russian Academy of Sciences, Deputy Director for Research and Clinical Affairs, Leading Researcher at the Laboratory of Anesthesiology, Intensive Care and Pathophysiology of Critical Conditions, Federal State Budgetary Institution “Research Institute for Complex Issue of Cardiovascular Diseases”, Kemerovo, Russian Federation



References

1. Iliopoulos I., Cooper D.S., Reagor J.A., Koh W., Goldstein B.H., Khoury P.R., Morales D.L.S., Batlivala S. Absolute Versus Relative Near-Infrared Spectroscopy in Pediatric Cardiac Patients. Pediatr Crit Care Med. 2023;24(3):204-212. doi: 10.1097/PCC.0000000000003118.

2. Menke J., Möller G. Cerebral near-infrared spectroscopy correlates to vital parameters during cardiopulmonary bypass surgery in children. Pediatr Cardiol. 2014;35(1):155-63. doi: 10.1007/s00246-013-0754-9.

3. Brandoni D.A., Martínez Da Bove M.P., Moreno G.E. Use of near infrared spectroscopy for hemodynamic monitoring in pediatrics. Arch Argent Pediatr. 2022;120(2):129-135. English, Spanish. doi: 10.5546/aap.2022.eng.129.

4. Yamamoto M., Toki T., Kubo Y., Hoshino K., Morimoto Y. Age Difference of the Relationship Between Cerebral Oxygen Saturation and Physiological Parameters in Pediatric Cardiac Surgery with Cardiopulmonary Bypass: Analysis Using the Random-Effects Model. Pediatr Cardiol. 2022;43(7):1606-1614. doi: 10.1007/s00246-022-02889-x.

5. Holmgaard F., Vistisen S.T., Ravn H.B., Scheeren T.W.L. The response of a standardized fluid challenge during cardiac surgery on cerebral oxygen saturation measured with near-infrared spectroscopy. J Clin Monit Comput. 2020;34(2):245-251. doi: 10.1007/s10877-019-00324-w.

6. Levy P.T., Pellicer A., Schwarz C.E., Neunhoeffer F., Schuhmann M.U., Breindahl M., Fumagelli M., Mintzer J., de Boode W.; ESPR Special Interest Group “Near InfraRed Spectroscopy” (NIRS). Near-infrared spectroscopy for perioperative assessment and neonatal interventions. Pediatr Res. 2024;96(4):922-932. doi: 10.1038/s41390-021-01791-1.

7. Yoshitani K., Kawaguchi M., Ishida K., Maekawa K., Miyawaki H., Tanaka S., Uchino H., Kakinohana M., Koide Y., Yokota M., Okamoto H., Nomura M. Guidelines for the use of cerebral oximetry by near-infrared spectroscopy in cardiovascular anesthesia: a report by the cerebrospinal Division of the Academic Committee of the Japanese Society of Cardiovascular Anesthesiologists (JSCVA). J Anesth. 2019;33(2):167-196. doi: 10.1007/s00540-019-02610-y.

8. Qu J.Z., Kao L.W., Smith J.E., Kuo A., Xue A., Iyer M.H., Essandoh M.K., Dalia A.A. Brain Protection in Aortic Arch Surgery: An Evolving Field. J Cardiothorac Vasc Anesth. 2021;35(4):1176-1188. doi: 10.1053/j.jvca.2020.11.035.

9. Erdoes G., Rummel C., Basciani R.M., Verma R., Carrel T., Banz Y., Eberle B., Schroth G. Limitations of Current Near-Infrared Spectroscopy Configuration in Detecting Focal Cerebral Ischemia During Cardiac Surgery: An Observational Case-Series Study. Artif Organs. 2018;42(10):1001-1009. doi: 10.1111/aor.13150.

10. Savluk O.F., Yilmaz A.A., Yavuz Y., Arisut S., Ukil Isildak F., Turkmen Karaagac A., Ozbek B., Cine N., Tuncer E., Ceyran H. Assessment of microcirculatory alteration by a vascular occlusion test using near-infrared spectroscopy in pediatric cardiac surgery: effect of cardiopulmonary bypass. Expert Rev Med Devices. 2024;21(3):249-255. doi: 10.1080/17434440.2024.2306155

11. Hu Z., Xu L., Zhu Z., Seal R., McQuillan P.M. Effects of Hypothermic Cardiopulmonary Bypass on Internal Jugular Bulb Venous Oxygen Saturation, Cerebral Oxygen Saturation, and Bispectral Index in Pediatric Patients Undergoing Cardiac Surgery: A Prospective Study. Medicine (Baltimore). 2016;95(2):e2483. doi: 10.1097/MD.0000000000002483.

12. Zaleski K.L., Kussman B.D. Near-Infrared Spectroscopy in Pediatric Congenital Heart Disease. J Cardiothorac Vasc Anesth. 2020;34(2):489-500. doi: 10.1053/j.jvca.2019.08.048.

13. Naguib A.N., Winch P.D., Sebastian R., Gomez D., Guzman L., Rice J., Tumin D., Galantowicz M., Tobias J.D. The Correlation of Two Cerebral Saturation Monitors With Jugular Bulb Oxygen Saturation in Children Undergoing Cardiopulmonary Bypass for Congenital Heart Surgery. J Intensive Care Med. 2017;32(10):603-608. doi: 10.1177/0885066616663649.

14. Massey S.L., Weinerman B., Naim M.Y. Perioperative Neuromonitoring in Children with Congenital Heart Disease. Neurocrit Care. 2024;40(1):116-129. doi: 10.1007/s12028-023-01737-x.

15. Ma Y., Zhao L., Wei J., Wang Z., Lui S., Song B., Gong Q., Wang P., Wu M. Comparing near-infrared spectroscopy-measured cerebral oxygen saturation and corresponding venous oxygen saturations in children with congenital heart disease: a systematic review and meta-analysis. Transl Pediatr. 2022;11(8):1374-1388. doi: 10.21037/tp-22-345.

16. Klamt J.G., Vicente W.V.A., Garcia L.V., Carmona F., Abrão J., Menardi A.C., Manso P.H. Neuroprotective Anesthesia Regimen and Intensive Management for Pediatric Cardiac Surgery with Cardiopulmonary Bypass: a Review and Initial Experience. Braz J Cardiovasc Surg. 2017;32(6):523-529. doi: 10.21470/1678-9741-2016-0064.

17. Feldmann M., Hagmann C., de Vries L., Disselhoff V., Pushparajah K., Logeswaran T., Jansen N.J.G., Breur J.M.P.J., Knirsch W., Benders M., Counsell S., Reich B., Latal B. Neuromonitoring, neuroimaging, and neurodevelopmental follow-up practices in neonatal congenital heart disease: a European survey. Pediatr Res. 2023;93(1):168-175. doi: 10.1038/s41390-022-02063-2.

18. Ивкин А.А., Григорьев Е.В., Моргун А.В. Обоснование защиты нейроваскулярной единицы на клинической модели искусственного кровообращения. Комплексные проблемы сердечно-сосудистых заболеваний. 2022;11(4):177-183. doi:10.17802/2306-1278-2022-11-4-177-183 (In Russian)

19. Khan I., Rehan M., Parikh G., Zammit C., Badjatia N., Herr D., Kon Z., Hogue C., Mazzeffi M. Regional Cerebral Oximetry as an Indicator of Acute Brain Injury in Adults Undergoing Veno-Arterial Extracorporeal Membrane Oxygenation-A Prospective Pilot Study. Front Neurol. 2018;9:993. doi: 10.3389/fneur.2018.00993.

20. Vedrenne-Cloquet M., Lévy R., Chareyre J., Kossorotoff M., Oualha M., Renolleau S., Grimaud M. Association of Cerebral Oxymetry with Short-Term Outcome in Critically ill Children Undergoing Extracorporeal Membrane Oxygenation. Neurocrit Care. 2021;35(2):409-417. doi: 10.1007/s12028-020-01179-9

21. Takegawa R., Hayashida K., Yin T., Choudhary R.C., Miyara S.J., Khalili H., Shoaib M., Endo Y., Molmenti E.P., Becker L.B. Real-Time Brain Monitoring by Near-Infrared Spectroscopy Predicts Neurological Outcome after Cardiac Arrest and Resuscitation in Rats: A Proof of Concept Study of a Novel Prognostic Measure after Cardiac Arrest. J Clin Med. 2021;11(1):131. doi: 10.3390/jcm11010131.

22. Thomas R., Shin S.S., Balu R. Applications of near-infrared spectroscopy in neurocritical care. Neurophotonics. 2023;10(2):023522. doi: 10.1117/1.NPh.10.2.023522.

23. Wong J.J., Chen C.K., Moorakonda R.B., Wijeweera O., Tan T.Y.S., Nakao M., Allen J.C.Jr., Loh T.F., Lee J.H. Changes in Near-Infrared Spectroscopy After Congenital Cyanotic Heart Surgery. Front Pediatr. 2018;6:97. doi: 10.3389/fped.2018.00097.

24. Takeda Y., Yamamoto M., Hoshino K., Ito Y.M., Kato N., Wakasa S., Morimoto Y. Changes in Cerebral Hemodynamics During Systemic Pulmonary Shunt and Pulmonary Artery Banding in Infants with Congenital Heart Disease. Pediatr Cardiol. 2023;44(3):695-701. doi: 10.1007/s00246-022-02999-6.

25. Ricci Z., Haiberger R., Tofani L., Romagnoli S., Favia I., Cogo P. Multisite Near Infrared Spectroscopy During Cardiopulmonary Bypass in Pediatric Patients. Artif Organs. 2015;39(7):584-90. doi: 10.1111/aor.12424.

26. Scott J.P., Hoffman G.M. Near-infrared spectroscopy: exposing the dark (venous) side of the circulation. Paediatr Anaesth. 2014;24(1):74-88. doi: 10.1111/pan.12301.

27. Yagi Y., Yamamoto M., Saito H., Mori T., Morimoto Y., Oyasu T., Tachibana T., Ito Y.M. Changes of Cerebral Oxygenation in Sequential Glenn and Fontan Procedures in the Same Children. Pediatr Cardiol. 2017;38(6):1215-1219. doi: 10.1007/s00246-017-1647-0.

28. Bruckner M., Pichler G., Urlesberger B. NIRS in the fetal to neonatal transition and immediate postnatal period. Semin Fetal Neonatal Med. 2020;25(2):101079. doi: 10.1016/j.siny.2020.101079.

29. Bertolizio G., DiNardo J.A., Laussen P.C., Polito A., Pigula F.A., Zurakowski D., Kussman BD. Evaluation of cerebral oxygenation and perfusion with conversion from an arterial-to-systemic shunt circulation to the bidirectional Glenn circulation in patients with univentricular cardiac abnormalities. J Cardiothorac Vasc Anesth. 2015;29(1):95-100. doi: 10.1053/j.jvca.2014.06.001.

30. Altun D., Doğan A., Arnaz A., Yüksek A., Yalçinbaş Y.K., Türköz R., Sarioğlu T. Noninvasive monitoring of central venous oxygen saturation by jugular transcutaneous near-infrared spectroscopy in pediatric patients undergoing congenital cardiac surgery. Turk J Med Sci. 2020;50(5):1280-1287. doi: 10.3906/sag-1911-135.

31. Loomba R.S., Rausa J., Sheikholeslami D., Dyson A.E., Farias J.S., Villarreal E.G., Flores S., Bronicki R.A. Correlation of Near-Infrared Spectroscopy Oximetry and Corresponding Venous Oxygen Saturations in Children with Congenital Heart Disease. Pediatr Cardiol. 2022;43(1):197-206. doi: 10.1007/s00246-021-02718-7.

32. Abubakar M.O., Zanelli S.A., Spaeder M.C. Changes in Cerebral Regional Oxygen Saturation Variability in Neonates Undergoing Cardiac Surgery: A Prospective Cohort Study. Pediatr Cardiol. 202t;44(7):1560-1565. doi: 10.1007/s00246-023-03239-1.

33. Spaeder M.C., Surma V.J. Cerebral regional oxygen saturation variability in neonates following cardiac surgery. Pediatr Res. 2021;90(4):815-818. doi: 10.1038/s41390-020-01171-1.

34. Spaeder M.C., Klugman D., Skurow-Todd K., Glass P., Jonas R.A., Donofrio M.T. Perioperative Near-Infrared Spectroscopy Monitoring in Neonates With Congenital Heart Disease: Relationship of Cerebral Tissue Oxygenation Index Variability With Neurodevelopmental Outcome. Pediatr Crit Care Med. 2017;18(3):213-218. doi: 10.1097/PCC.0000000000001056.

35. Yamamoto M., Mori T., Toki T., Itosu Y., Kubo Y., Yokota I., Morimoto Y. The Relationships of Cerebral and Somatic Oxygen Saturation with Physiological Parameters in Pediatric Cardiac Surgery with Cardiopulmonary Bypass: Analysis Using the Random-Effects Model. Pediatr Cardiol. 2021;42(2):370-378. doi: 10.1007/s00246-020-02492-y.

36. Ivkin A. A., Grigoriev E. V., Tsepokina A. V., Shukevich D. L. Postoperative delirium in children undergoing treatment of congenital septal heart defects. Messenger of Anesthesiology and Resuscitation. 2021;18(2): 62–68. doi: 10.21292/2078-5658-2021-18-2-62-68 (In Russian)

37. Li Y., Yin S., Fang J., Hua Y., Wang C., Mu D., Zhou K. Neurodevelopmental delay with critical congenital heart disease is mainly from prenatal injury not infant cardiac surgery: current evidence based on a meta-analysis of functional magnetic resonance imaging. Ultrasound Obstet Gynecol. 2015;45(6):639-48. doi: 10.1002/uog.13436.

38. Candan T., Candan M., Yildiz C.E., Gumustas M., Erenturk S., Yalcinbas Y.K. Comparison of bilateral cerebral and somatic tissue oxygenation with near-infrared spectroscopy in cyanotic and acyanotic pediatric patients receiving cardiac surgery. Arch Med Sci Atheroscler Dis. 2020; 29;5:e320-e331. doi: 10.5114/amsad.2020.103377.

39. Lovett M.E., MacDonald J.M., Mir M., Ghosh S., O'Brien N.F., LaRovere K.L. Noninvasive Neuromonitoring Modalities in Children Part I: Pupillometry, Near-Infrared Spectroscopy, and Transcranial Doppler Ultrasonography. Neurocrit Care. 2024;40(1):130-146. doi: 10.1007/s12028-023-01730-4.

40. Korček P., Straňák Z., Širc J., Naulaers G. The role of near-infrared spectroscopy monitoring in preterm infants. J Perinatol. 2017;37(10):1070-1077. doi: 10.1038/jp.2017.60.

41. Moses A.A., Zhigin V., Desir L., Sy H., Ellis J.A. Near-infrared spectroscopy in the diagnosis and management of acute internal carotid artery occlusion. BMJ Case Rep. 2024;17(9):e261413. doi: 10.1136/bcr-2024-261413.

42. Ivkin A. A., Grigoriev E. V., Khilazheva E. D., Morgun A. V. The effect of transfusion and hypoxia on cells in an in vitro model of the neurovascular unit. General Reanimatology. 2024;20(1):37-42. doi:10.15360/1813-9779-2024-1-2350 (In Russian)

43. Joffe R., Al Aklabi M., Bhattacharya S., Cave D., Calleja T., Garros D., Majesic N., Ryerson L., Morgan C. Cardiac Surgery-Associated Kidney Injury in Children and Renal Oximetry. Pediatr Crit Care Med. 2018;19(9):839-845. doi: 10.1097/PCC.0000000000001656.

44. Ruf B., Bonelli V., Balling G., Hörer J., Nagdyman N., Braun S.L., Ewert P., Reiter K. Intraoperative renal near-infrared spectroscopy indicates developing acute kidney injury in infants undergoing cardiac surgery with cardiopulmonary bypass: a case-control study. Crit Care. 2015;19(1):27. doi: 10.1186/s13054-015-0760-9.

45. Modestini M., Hoffmann L., Niezen C., Armocida B., Vos J.J., Scheeren T.W.L. Cerebral oxygenation during pediatric congenital cardiac surgery and its association with outcome: a retrospective observational study. Can J Anaesth. 2020;67(9):1170-1181. doi: 10.1007/s12630-020-01733-1.

46. Abu-Sultaneh S., Hehir D.A., Murkowski K., Ghanayem N.S., Liedel J., Hoffmann R.G., Cao Y., Mitchell M.E., Jeromin A., Tweddell J.S., Hoffman G.M. Changes in cerebral oxygen saturation correlate with S100B in infants undergoing cardiac surgery with cardiopulmonary bypass. Pediatr Crit Care Med. 2014;15(3):219-28. doi: 10.1097/PCC.0000000000000055

47. Redlin M., Koster A., Huebler M., Boettcher W., Nagdyman N., Hetzer R., Kuppe H., Kuebler W.M. Regional differences in tissue oxygenation during cardiopulmonary bypass for correction of congenital heart disease in neonates and small infants: relevance of near-infrared spectroscopy. J Thorac Cardiovasc Surg. 2008;136(4):962-7. doi: 10.1016/j.jtcvs.2007.12.058.

48. Zhang L., Liu L., Zhong Z., Jin H., Jia J., Meng L., Mo X., Shi X. The effect of selective cerebral perfusion on cerebral versus somatic tissue oxygenation during aortic coarctation repair in neonates and infants. BMC Anesthesiol. 2021;21(1):284. doi: 10.1186/s12871-021-01498-0..

49. Ivkin A. A., Grigoriev E. V., Shukevich D. L. Diagnostics of cognitive dysfunction in patients in the intensive care wards. Messenger of Anesthesiology and Resuscitation. 2018;15(3):47-55. doi:10.21292/2078-5658-2018-15-3-47-55. (In Russian)

50. Ivkin, A. A., Grigoryev, E. V., Balakhnin, D. G., Chermnykh, I. I. Intraoperative transfusion is a risk factor for cerebral injury after cardiac surgery in children: a prospective observational study // Annals of Critical Care. 2023;1:101–114. doi: 10.21320/1818-474X-2023-1-101-114. (In Russian)


Review

For citations:


Mikhailova A.A., Ivkin A.A., Grigoriev E.V. DIAGNOSTIC SIGNIFICANCE OF THE NEAR-INFRARED SPECTROSCOPY IN THE PREVENTION OF CEREBRAL INJURY DURING SURGICAL CORRECTION OF CONGENITAL HEART DEFECTS IN CHILDREN. Complex Issues of Cardiovascular Diseases. 2024;13(4S):241-253. (In Russ.) https://doi.org/10.17802/2306-1278-2024-13-4S-241-253

Views: 122


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)