RESULTS OF FEMOROPOPLITEAL BYPASS GRAFTING WITH EPOXY-TREATED VASCULAR XENOGRAFT AND STENTING IN ATHEROSCLEROSIS OF THE LOWER EXTREMITIES
https://doi.org/10.17802/2306-1278-2025-14-2-63-77
Abstract
Highlights
Autogenous arterial grafts are the most optimal choice of treatment in direct revascularization of the femoropopliteal segment of the lower extremity arteries. However, autogenous grafts can be unavailable due to a number of different clinical, anatomical and technical limitations. Biological prostheses are an alternative choice. They are extremely convenient for the surgeon, show high strength, flexibility, low thrombogenicity, sufficient biocompatibility, reduced susceptibility to infection, sufficient elasticity, and inertness to surrounding tissues. Another method of treating atherosclerosis is stenting. This technique is widespread, but it has its drawbacks. According to literary data, this technique does not always show satisfactory results of primary and secondary patency. The study and comparison of these techniques remains relevant. In this article, we compared the results of femoropopliteal bypass and stenting for occlusive lesion of the femoropopliteal segment of the lower extremity arteries.
Abstract
Aim. To conduct a comparative retrospective analysis of the immediate and mid-term results of femoropopliteal bypass grafting with the “KemAngioprotez” epoxy-treated vascular xenograft and stenting for atherosclerosis of the lower extremity arteries.
Methods. Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases” and the State Autonomous Healthcare Institution “Korolev Clinical Hospital named after S.V. Belyaev” provided the data for the analysis. The study included 115 patients who underwent femoropopliteal bypass with the “KemAngioprotez” epoxy-treated vascular xenograft from 2012 to 2022 and 73 patients who underwent stenting from 2014 to 2023 for chronic occlusive lesion of the lower extremity arteries. Data analysis was performed using the StatTech v. 4.6.3 software (Stattech LLC, Russia).
Results. The analysis of the patients from the subgroup with a 1-6-month follow-up revealed statistically significant differences regarding primary patency - 84.4% in the bypass group, 62.5% in the stenting group (p = 0.002), repeat unplanned intervention on the target limb - 10.1% in the bypass group, 34.7% in the stenting group (p < 0.001), the number of aneurysms - 0.0% in the bypass group, 8.3% in the stenting group (p = 0.008), and the number of amputations - 0.9% in the bypass group, 14.3% in the stenting group (p = 0.001).
During 7-12-month follow-up there were no statistically significant differences between the groups in terms of end points. When analyzing the two-year results, the bypass group demonstrated advantages over the stenting group in terms of primary patency (79.6% vs. 45.5%, respectively, (p = 0.002)), repeat unplanned intervention (4.2% vs. 45.5%, respectively, (p < 0.001)). The groups did not show significant differences in the number of amputations and aneurysm formation.
Conclusion. According to the results obtained, when choosing a treatment strategy between a stenting procedure with unmodified stents and a femoropopliteal bypass, in the absence of a pronounced comorbidities, specialists should choose the open revascularization. Considering the data obtained in a continuous sample of patients, the clinical effectiveness of endovascular interventions is still debatable, but it still has its place in clinical practice.
About the Authors
Nerses K. SogoyanRussian Federation
Postgraduate Student, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Roman S. Tarasov
Russian Federation
PhD, Associate Professor, Head of the Laboratory of Image-guided Endovascular and Reconstructive Surgery of the Heart and Blood Vessels, Department of Heart and Vascular Surgery, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Roman V. Sultanov
Russian Federation
PhD, Head of the Department of Vascular Surgery, State Autonomous Healthcare Institution “Kuzbass Regional Clinical Hospital named after S.V. Belyaev”, Kemerovo, Russian Federation
Farid R. Alizada
Russian Federation
Vascular Surgeon at the State Autonomous Healthcare Institution Kuzbass “Regional Clinical Hospital named after S.V. Belyaev”, Kemerovo, Russian Federation
Alexander S. Krikovtsov
Russian Federation
Researcher at the Laboratory of Cardiac Arrhythmias and Electrocardiostimulation, Department of Heart and Vascular Surgery, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
References
1. Vascular surgery by V. S. Savelyev: national guidelines. Brief edition. edited by I. I. Zatevakhin, A. I. Kiriyenko. Moscow: GEOTAR-Media, 2022. (In Russian)
2. Marmagkiolis K., Hakeem A., Choksi N., Al-Hawwas M., Edupuganti M.M., Leesar M.A., Cilingiroglu M. 12-month primary patency rates of contemporary endovascular device therapy for femoro-popliteal occlusive disease in 6,024 patients: Beyond balloon angioplasty. Catheter Cardiovasc Interv 2014;84:555–64. doi: 10.1002/ccd.25510
3. Zeller T. Current state of endovascular treatment of femoropopliteal artery disease. Vasc Med 2007;12:223–34. doi: 10.1177/1358863X07079823
4. Burakovsky V.I., Bokeria L.A. Cardiovascular surgery. Moscow, 1996 (In Russian)
5. Skrylev S.I. Surgical treatment of patients with critical ischemia of the lower extremities with lesions of the arteries of the femoral-popliteal-tibial segment. dissertation. Moscow, 2004 (In Russian)
6. Davidovich L.I., Lotina S., Havelka M., Kostyak D., Yakovlrvich N. True aneurysms of the great saphenous vein graft in femoral-popliteal bypass. Angiology and vascular surgery. 2002; 8(2): 107-188 (In Russian)
7. Burov Yu.A. Differentiated approach to the treatment of patients with critical ischemia of the lower extremities of atherosclerotic genesis. dissertation. Saratov, 2000 (In Russian)
8. Gruss I. D. Autovenous bypass using the IN SITU technique. Angiology and vascular surgery. 1995;1: 30 – 43. (In Russian)
9. Maistrenko D. N., Zherebtsov F. K., Granov D. A., Karlov K.A. Results of femoropopliteal arterial reconstructions depending on hemodynamic conditions. Bulletin of surgery named after I. I. Grekov. 2009; 4:41-44 (In Russian)
10. Gavrilenko A.V. Justification of expediency and technology of autovenous bypass "in situ" in reconstructive surgery of lower extremity vessels. Annals of the Scientific Center of Surgery. 1996;6: 101-110 (In Russian)
11. Johnson B.L., Bandyk D.F., Back M.R., Avino A.J., Roth S.M. Intraoperative duplex monitoring of infrainguinal vein bypass procedures. J Vasc Surg. 2000;31(4):678-90. doi: 10.1067/mva.2000.104420.
12. Buckley C.J., Abernathy S., Lee S.D., Arko F.R., Patterson D.E., Manning L.G. Suggested treatment protocol for improving patency of femoral-infrapopliteal cryopreserved saphenous vein allografts. J Vasc Surg. 2000;32(4):731-8. doi: 10.1067/mva.2000.110049.
13. Sriram B.M SRB’s Surgical Operations: Text and Atlas. New Delhi: Jaypee Brothers Medical Publishers., 2014. 1340.
14. Norgren L., Hiatt W.R., Dormandy J.A., Nehler M.R., Harris K.A., Fowkes F.G.; TASC II Working Group.. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J. Vasc. Surg. 2007;45(S):S5–67. dоi:10.1016/j.jvs.2006.12.037.
15. Jaff M.R., White C.J., Hiatt W.R., Fowkes G.R., Dormandy J., Razavi M., Reekers J., Norgren L. An update on methods for revascularization and expansion of the TASC lesion classification to include below-the-knee arteries: A supplement to the Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II): TASC steering committee. Catheter Cardiovasc. Interv. 2015;86(4):611–625. dоi: 10.1002/ccd.26122.
16. Gostev A.A., Osipova O.S., Bugurov S.V., Saaya Sh.B., Rabtsun A.A., Cheban A.V., Ignatenko P.V., Karpenko A.A. Comparative retrospective analysis of the results of femoropopliteal bypass grafting and stenting with a braided biomimetic stent in patients with prolonged occlusions of the arteries of the femoropopliteal segment. Siberian Journal of Clinical and experimental medicine. 2022;37(1):96-107. doi:10.29001/2073-8552-2021-36-4-96-107. (In Russian)
17. National guidelines on the diagnosis and treatment of diseases of the arteries of the lower extremities. Moscow; 2019.110 (In Russian)
18. Aboyans V., Ricco J.B., Bartelink M.E.L., Björck M., Brodmann M., Cohnert T., Collet J.P., Czerny M., et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries. Endorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018;39(9):763–816. dоi: 10.1093/eurheartj/ehx095.
19. Lin Y., Tang X., Fu W., Kovach R., George J.C., Guo D. Stent fractures after superficial femoral artery stenting: Risk factors and impact on patency. J. Endovasc. Ther. 2015;22(3):319–326. dоi: 10.1177/1526602815580783.
20. Duda S.H., Bosiers M., Lammer J., Scheinert D., Zeller T., Oliva V., Tielbeek A., Anderson J., et al. Drug-eluting and bare nitinol stents for the treatment of atherosclerotic lesions in the superficial femoral artery: Long-term results from the SIROCCO trial. J. Endovasc. Ther. 2006;13(6):701–710. dоi: 10.1583/05-1704.1.
21. Laird J.R., Katzen B.T., Scheinert D., Lammer J., Carpenter J., Buchbinder M., Dave R., Ansel G, et al. Nitinol stent implantation vs. balloon angioplasty for lesions in the superficial femoral and proximal popliteal arteries of patients with claudication: Three-year follow-up from the RESILIENT randomized trial. J. Endovasc. Ther. 2012;19(1):1–9. dоi: 10.1583/11-3627.1.
22. Ivchenko A.O., Shvedov A.N., Ivchenko O.A. Vascular prostheses used in infrainguinal arterial reconstruction. Bulletin of Siberian Medicine. 2017;16(1):132-139. doi:10.20538/1682-0363-2017-1-132-139 (In Russian)
23. Ivanov S.V. Xenogenic biomaterials treated with diepoxide in reconstructive surgery of arteries. Dissertation. Novosibirsk, 2005. (In Russian)
24. Neufang A., Duenschede F., Espinola-Klein C., Weisser G., Savvidis S., Poplawski A., Vahl C.F., Dorweiler B. Contemporary results with the biosynthetic glutaraldehyde denatured ovine collagen graft (Omniflow II) in femoropopliteal position. J Vasc Surg. 2020;71(5):1630-1643. doi: 10.1016/j.jvs.2019.08.234.
25. Socrate A.M., Spampinato B., Zuccon G., Ferraris M., Costantini A., Piffaretti G. Outcomes of biosynthetic vascular graft for infrainguinal femoro-popliteal and femoro-distal revascularizatio. J Cardiovasc Surg (Torino). 2021;62(4):369-376. doi: 10.23736/S0021-9509.21.11769-0.
26. Khorev N.G., Kon'kova V.O., Beller A.V., Borovikov E.V., Shoikhet Y.N. Structural alterations of a biological prosthesis. Angiol Sosud Khir. 2016;22(4):151-157.
27. Wilasrusmee C., Siribumrungwong B., Horsirimanont S., Poprom N., Jirasiritham J., Thakkinstian A. Clinical results of biologic prosthesis: A systematic review and meta-analysis of comparative studies. Ann Med Surg (Lond). 2017;15:26-33. doi: 10.1016/j.amsu.2017.01.018.
28. van de Weijer M.A., Kruse R.R., Schamp K., Zeebregts C.J., Reijnen M.M. Morbidity of femoropopliteal bypass surgery. Semin Vasc Surg. 2015;28(2):112-21. doi: 10.1053/j.semvascsurg.2015.09.004.
29. Hatzibaloglou A., Velissaris I., Kaitzis D., Grekas D., Avdelidou A., Kiskinis D. ProCol vascular bioprosthesis for vascular access: midterm results. J Vasc Access. 2004;5(1):16-8. doi: 10.1177/112972980400500104
30. Association of Cardiovascular Surgeons of Russia, Russian Society of Angiologists and Vascular Surgeons, Russian Society of Surgeons, Russian Cardiology Society, Russian Association of Endocrinologists. National Guidelines for the Diagnosis and Treatment of Lower Extremity Arterial Diseases. Moscow, 2019. (In Russian)
31. Kocaoglu AS, Demirdizen G, Dernek S. The comparison of the short and mid-term results of endovascular interventions and bypass graft surgery in the treatment of patients with intermittent claudication complaints because of isolated femoropopliteal artery disease. Perfusion. 2024;39(6):1247-1255. doi: 10.1177/02676591231187957.
32. Barbarash L.S., Ivanov S.V., Zhuravleva I.Yu., Anufriev A.I., Kazachek Ya.V., Kudryavtseva Yu.A., Zinets M.G. 12-year experience of using bioprostheses to replace infrainguinal arteries. Angiology and vascular surgery. 2006; 12(3):91-97. (In Russian)
33. Lutsenko V.A., Sultanov R.V., Evtushenko A.V., Barbarash L.S. Results of infrainguinal reconstructions with distal anastomosis below the knee joint fissure in patients with critical ischemia when using various prosthetic materials. Complex Issues of Cardiovascular Diseases. 2021;10(2):45-49. doi:10.17802/2306-1278-2021-10-2S-45-49 (In Russian)
34. Antoniou G.A., Chalmers N., Georgiadis G.S., Lazarides M.K., Antoniou S.A., Serracino-Inglott F., Smyth J.V., Murray D. A meta-analysis of endovascular versus surgical reconstruction of femoropopliteal arterial disease. J Vasc Surg. 2013;57(1):242-53. doi: 10.1016/j.jvs.2012.07.038.
35. Sukovatykh B.S., Belikov L.N., Sukovatykh M.B., Sidorov D.V., Inokhodova E.B. Femoropopliteal bypass grafting with a free autovenous graft below the knee joint space in the treatment of critical lower limb ischemia. Surgical news. 2015; 23(6): 637-643. (In Russian)
36. Kluckner M., Gratl A., Wipper S.H., Hitzl W., Nierlich P., Aspalter M., Linni K., Enzmann F.K. Comparison of Prosthetic and Vein Bypass with Nitinol Stents in Long Femoropopliteal Lesions. Ann Vasc Surg. 2022;78:272-280. doi: 10.1016/j.avsg.2021.05.052.
37. van den Hondel D., van Walraven L.A., Holewijn S., Reijnen M.M. Endovascular bypass as a strategy for long femoropopliteal lesions. J Cardiovasc Surg (Torino). 2022;63(5):562-574. doi: 10.23736/S0021-9509.22.12318-9.
38. Björkman P., Auvinen T., Hakovirta H., Romsi P., Turtiainen J., Manninen H., Venermo M. Drug-Eluting Stent Shows Similar Patency Results as Prosthetic Bypass in Patients with Femoropopliteal Occlusion in a Randomized Trial. Ann Vasc Surg. 2018;53:165-170. doi: 10.1016/j.avsg.2018.04.014.
39. Okuno S., Iida O., Iida T., Yamaoka T., Kitano I., Asai M., Masuda M., Okamoto S., Ishihara T., Nanto K., Kanda T., Tsujimura T., Matsuda Y., Mano T. Comparison of clinical outcomes between endovascular therapy with self-expandable nitinol stent and femoral-popliteal bypass for trans-atlantic inter-society consensus II C and D femoropopliteal lesions. Ann. Vasc. Surg. 2019;57:137–143. dоi: 10.1016/j.avsg.2018.09.024.
40. Siracuse J.J., Giles K.A., Pomposelli F.B., Hamdan A.D., Wyers M.C., Chaikof E.L., Nedeau A.E., Schermerhorn M.L. Results for primary bypass versus primary angioplasty/stent for intermittent claudication due to superficial femoral artery occlusive disease. J. Vasc. Surg. 2012;55(4):1001–1007. dоi: 10.1016/j. jvs.2011.10.128.
41. Аihara H., Soga Y., Mii S., Okazaki J., Yamaoka T., Kamoi D., Shintani Y., Ishikawa T.; RECANALISE Registry Investigators. Comparison of long-term outcome after endovascular therapy versus bypass surgery in claudication patients with Trans-Atlantic Inter-Society Consensus-II C and D femoropopliteal disease. Circ. J. 2014;78(2):457–464. dоi: 10.1253/circj.cj-13-1147.
42. Enzmann F.K., Nierlich P., Aspalter M., Hitzl W., Dabernig W., Hölzenbein T., Ugurluoglu A., Seitelberger R., Linni K. Nitinol stent versus bypass in long femoropopliteal lesions: 2-year results of a randomized controlled trial. JACC Cardiovasc. Interv. 2019;12(24):2541–2549. dоi: 10.1016/j.jcin.2019.09.006.
43. Sogoyan N.K., Sultanov R.V., Alizada F.R., Tarasov R.S. Comparative analysis of immediate and mid-term results of femoropopliteal bypass grafting with epoxy-treated linear xenoprostheses and stenting procedures for atherosclerotic disease of the lower extremities. In Horizons of Modern Angiology, Vascular and Roentgen-endovascular Surgery: Proceedings of the XXXIX International Conference. Moscow, 2024. (In Russian)
44. Kankaria A., Majumdar M., Lee S., Hall R.P., Suarez Ferreira S.P., Lee I., Patel S.S., Jessula S., D'Oria M., Dua A. Platelet function testing and clinical outcomes in peripheral arterial disease: Systematic review and narrative synthesis. J Vasc Surg. 2023:S0741-5214(23)02427-8. doi: 10.1016/j.jvs.2023.12.028.
45. Markel K.M., Avgerinos E.D. Clopidogrel Resistance in Lower Extremity Arterial Endovascular Interventions. Curr Pharm Des. 2018;24(38):4554-4557. doi: 10.2174/1381612825666190101111123. .
46. Cho S., Lee Y.J., Ko Y.G., Kang T.S., Lim S.H., Hong S.J., Ahn C.M., Kim J.S., et al. Optimal Strategy for Antiplatelet Therapy After Endovascular Revascularization for Lower Extremity Peripheral Artery Disease. JACC Cardiovasc Interv. 2019;12(23):2359-2370. doi: 10.1016/j.jcin.2019.08.006. .
47. Majumdar M., Waller D., Poyant J., McElroy I., Lella S., Feldman Z.M., Levine E., Kim Y., Nuzzolo K., Kirshkaln A., DeCarlo C., Dua A. Variability of antiplatelet response in patients with peripheral artery disease. J Vasc Surg. 2023;77(1):208-215.e3. doi: 10.1016/j.jvs.2022.08.015.
48. Mazzaccaro D., Giannetta M., Ranucci M., Righini P., Di Dedda U., Baryshnikova E., Milani V, Nano G. Clopidogrel Resistance and Ticagrelor Replacement in Dual Antiplatelet Therapy for Carotid Artery Stenting. Ann Vasc Surg. 2023;90:128-136. doi: 10.1016/j.avsg.2022.09.063.
49. Bonaca M.P., Bhatt D.L., Storey R.F., Steg P.G., Cohen M., Kuder J., Goodrich E., Nicolau J.C., et al. Ticagrelor for Prevention of Ischemic Events After Myocardial Infarction in Patients With Peripheral Artery Disease. J Am Coll Cardiol. 2016;67(23):2719-2728. doi: 10.1016/j.jacc.2016.03.524.
Review
For citations:
Sogoyan N.K., Tarasov R.S., Sultanov R.V., Alizada F.R., Krikovtsov A.S. RESULTS OF FEMOROPOPLITEAL BYPASS GRAFTING WITH EPOXY-TREATED VASCULAR XENOGRAFT AND STENTING IN ATHEROSCLEROSIS OF THE LOWER EXTREMITIES. Complex Issues of Cardiovascular Diseases. 2025;14(2):63-77. (In Russ.) https://doi.org/10.17802/2306-1278-2025-14-2-63-77