SOME ASPECTS OF THE CREATION OF TISSUE ENGINEERING CONSTRUCTS IN ACCORDANCE WITH THE FEATURES OF THE PATHOGENESIS OF A BURN WOUND: LITERATURE REVIEW
https://doi.org/10.17802/2306-1278-2025-14-3-180-191
Abstract
Highlights
For the treatment of skin wounds, it is important to create biomedical tissue engineering constructs in accordance with the features of the pathogenesis of the wound process. The article describes the issues of antibacterial protection and wound cleansing, as well as the principles of creation and the basic requirements for skin equivalents.
Abstract
Man-made disasters related to mining are often accompanied by polytrauma, characterized by burn and chemical injury to the skin of varying degrees. Currently, tissue engineering approaches are actively developing in the field of biomedical constructs, which are characterized by the use of autologous and allogeneic cells and extracellular matrix proteins, as well as various biocompatible materials acting as a cellular carrier. Therefore, it is possible to create skin equivalents that can act as effective wound healing agents, taking into account the depth of the lesion. This review examines the approach to creating tissue engineering constructs for the treatment of skin burn injuries in accordance with the features of the pathogenesis of the wound process. The article describes the issues of antibacterial protection and aspects of cleansing necrotic tissues, as well as the principles of creation and the basic requirements for skin equivalents.
Keywords
About the Authors
Marina Sergeevna KolomeetsRussian Federation
Junior Researcher at the Laboratory of Cell Technology, Department of Experimental Medicine, Federal State Budgetary Institution «Research Institute for Complex Issues of Cardiovascular Diseases», Kemerovo, Russian Federation
Ekaterina Sergeevna Prokudina
Russian Federation
PhD, Researcher at the Laboratory of Tissue Engineering and Intravascular visualization Department of Heart and Vascular Surgery, Federal State Budgetary Institution «Research Institute for Complex Issues of Cardiovascular Diseases», Kemerovo, Russian Federation
Larisa V. Antonova
Russian Federation
PhD, Leading Researcher at the Laboratory of Cell Technologies, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
References
1. Sarmin A.M, Connelly J.T. Fabrication of Human Skin Equivalents Using Decellularized Extracellular Matrix. Curr Protoc. 2022;2(3):e393. doi: 10.1002/cpz1.393.
2. Meleshina A.V., Bystrova A.S., Rogovaya O.S., Vorotelyak E.A., Vasiliev A.V., Zagaynova E.V. Tissue-engineered skin constructs and application of stem cells for creation of skin equivalents (review). Sovremennye tehnologii v medicine. 2017;9(1):198–218. doi: 10.17691/stm2017.9.1.24. (In Russian)
3. Vig K., Chaudhari A., Tripathi S., Dixit S., Sahu R., Pillai S., Dennis V.A., Singh S.R. Advances in Skin Regeneration Using Tissue Engineering. Int. J. Mol. Sci. 2017;18(4):789. doi: 10.3390/ijms18040789.
4. Zhuchkov M.V., Bolshakova E.E., Sonin D.B., Zhuchkova U.V. Place and role of topical antiseptic agents in the treatment of skin burns from the standpoint of adermatologist. Ambulatornaya khirurgiya. 2018;(3-4):66-71. doi:10.21518/1995-1477-2018-3-4-66-71. (In Russian)
5. Van Lieshout E.M., Van Yperen D.T., Van Baar M.E., Polinder S., Boersma D., Cardon A.Y., De Rijcke P.A., Guijt M. et al. Epidemiology of injuries, treatment (costs) and outcome in burn patients admitted to a hospital with or without dedicated burn centre (Burn-Pro): protocol for a multicentre prospective observational study. BMJ Open. 2018;8(11): e023709. doi: 10.1136/bmjopen-2018-023709.
6. Markiewicz-Gospodarek A., Kozioł M., Tobiasz M., Baj J., Radzikowska-Büchner E., Przekora A. Burn Wound Healing: Clinical Complications, Medical Care, Treatment, and Dressing Types: The Current State of Knowledge for Clinical Practice. Int. J. Environ Res. Public Health. 2022;19(3):1338. doi: 10.3390/ijerph19031338.
7. Zhang X., Liang Y., Huang S., Guo B. Chitosan-based self-healing hydrogel dressing for wound healing. Adv Colloid Interface Sci. 2024;332:103267. doi: 10.1016/j.cis.2024.103267.
8. Budkevich L.I., Kovalchuk V.I., Glutkin A.V., Brazol M.A., Mirzoyan G.V., Gnipov P.A., Salisty P.V., Chekinev Y.V., Shmyrin A.A., Gabitov R.B. Clinical efficiency of bioplastic collagen material «collost» in children with thermal injury (multicenter study). Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2018;8(3):34-44. doi: 10.30946/2219-4061-2018-8-3-34-44. (In Russian)
9. Suca H., Coma M., Tomsu J., Sabová J., Zajícek R., Brož A., Doubková M., Novotný T. et al. Current Approaches to Wound Repair in Burns: How far Have we Come From Cover to Close? A Narrative Review. J Surg Res. 2024;296:383-403. doi: 10.1016/j.jss.2023.12.043.
10. Rettinger C.L., Fletcher J.L., Carlsson A.H., Chan R.K. Accelerated epithelialization and improved wound healing metrics in porcine full-thickness wounds transplanted with full-thickness skin micrografts. Wound Repair Regen. 2017;25(5):816–827. doi: 10.1111/wrr.12585.
11. Foubert P., Liu M., Anderson S., Rajoria R., Gutierrez D., Zafra D., Tenenhaus M., Fraser J.K. Preclinical assessment of safety and efficacy of intravenous delivery of autologous adipose-derived regenerative cells (ADRCs) in the treatment of severe thermal burns using a porcine model. Burns. 2018;44(6):1531–1542. doi:10.1016/j.burns.2018.05.006.
12. Holmes J.H. 4th, Molnar J.A., Shupp J.W., Hickerson W.L., King B.T., Foster K.N., Cairns B.A., Carter J.E. Demonstration of the safety and effectiveness of the RECELL® System combined with split-thickness meshed autografts for the reduction of donor skin to treat mixed-depth burn injuries. Burns. 2019;44(6):772-782. doi: 10.1016/j.burns.2018.11.002.
13. Mordyakov А.Е., Charyshkin А.L., Slesareva Е.V. Evaluation of the results of local treatment of donor site wounds in patients with deep burns. Kazan medical journal. 2018;99(1):17–23. doi: 10.17816/KMJ2018-017. (In Russian)
14. Bailey J.K., Blackstone B.N., DeBruler D.M., Kim J.Y., Baumann M.E., McFarland K.L., Imeokparia F.O., Supp D.M., Powell H.M. Effects of early combinatorial treatment of autologous split-thickness skin grafts in red duroc pig model using pulsed dye laser and fractional CO2 laser. Lasers Surg. Med. 2018;50(1):78–87. doi: 10.1002/lsm.22702.
15. Hundeshagen G., Collins V.N., Wurzer P., Sherman W., Voigt C.D., Cambiaso-Daniel J., Nunez Lopez O., Sheaffer J., Herndon D.N., Finnerty C.C., Branski L.K. A Prospective, Randomized, Controlled Trial Comparing the Outpatient Treatment of 122 Pediatric and Adult Partial-Thickness Burns with Suprathel or Mepilex Ag. J. Burn Care Res. 2018;39(2):261–267. doi: 10.1097/BCR.0000000000000584.
16. Baytinger V.F., Selayninov K.V., Kurochkina O.S., Kamolov F.F., Baytinger A.V., Sukhinin T.Yu. Evolution of technologies for closure of vast and deep soft-tissue defects of human body. Voprosy Rekonstruktivnoi i Plas-ticheskoi Khirurgii. 2018;1(64):5–14. doi: 10.17223/1814147/64/01. (In Russian)
17. Vagner D.O., Zinoviev E..V, Krylov K.M., et al. Experience in the clinical use of allogeneic fibroblasts in patients with severe burns. Herald of North-Western State Medical University named after I.I. Mechnikov. 2018;10(3):65-72. doi: 10.17816/ mechnikov201810365-72. (In Russian)
18. Ahmadi A.R., Chicco M., Huang J., Qi L., Burdick J., Williams G.M., Cameron A.M., Sun Z. Stem cells in burn wound healing: A systematic review of the literature. Burns. 2018;44(6):1531–1542. doi:10.1016/j.burns.2018.10.017.
19. Kolimi P., Narala S., Nyavanandi D., Youssef AAA., Dudhipala N. Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells. 2022;11(15):2439. doi: 10.3390/cells11152439.
20. Radzikowska-Büchner E., Łopuszyńska I., Flieger W., Tobiasz M., Maciejewski R., Flieger J. An Overview of Recent Developments in the Management of Burn Injuries. Int. J. Mol. Sci. 2023;24(22):16357. doi: 10.3390/ijms242216357.
21. Chen J., Su F.Y., Das D., Srinivasan S., Son H.N., Lee B., Radella F., Whittington D., Monroe-Jones T., West T.E., Convertine A.J., Skerrett S.J., Stayton P.S., Ratner D.M. Glycan targeted polymeric antibiotic prodrugs for alveolar macrophage infections. Biomaterials. 2019;195:38–50. doi: 10.1016/j.biomaterials.2018.10.017.
22. Mulas K., Stefanowicz Z., Oledzka E. Current state of the polymeric delivery systems of fluoroquinolones – A review. J. Controll. Release. 2019;294:195–215. doi: 10.1016/j.jconrel.2018.12.021.
23. Grigor'eva A.E., Bardasheva A.V., Ryabova E.S., Tupitsyna A.V., Zadvornykh D.A., Koroleva L.S., Silnikov V.N., Tikunova N.V., Ryabchikova E.I. Changes in the Ultrastructure of Staphylococcus aureus Cells Make It Possible to Identify and Analyze the Injuring Effects of Ciprofloxacin, Polycationic Amphiphile and Their Hybrid. Microorganisms. 2023;11(9):2192. doi: 10.3390/microorganisms11092192.
24. Lan T., Guo Q., Shen X. Polyethyleneimine and quaternized ammonium polyethyleneimine: the versatile materials for combating bacteria and biofilms. J Biomater Sci Polym Ed. 2019;30(14):1243-1259. doi: 10.1080/09205063.2019.1627650.
25. Lu C., Xiao Y., Liu Y., Sun F., Qiu Y., Mu H., Duan J. Hyaluronic acid-based levofloxacin nanomicelles for nitric oxide-triggered drug delivery to treat bacterial infections. Carbohydr. Polym. 2020;229:115479. doi: 10.1016/j.carbpol.2019.115479.
26. Dorati R., De Trizio A., Genta I., Merelli A., Modena T., Conti B. Gentamicin-loaded thermosetting hydrogel and moldable composite scaffold: Formulation study and biologic evaluation. J. Pharm. Sci. 2017;106(6):1596–1607. doi: 10.1016/j.xphs.2017.02.031.
27. Liu X., Sun X., Huang P., He Y., Song P., Wang R. Highly Adhesive and Self-Healing Zwitterionic Hydrogels as Antibacterial Coatings for Medical Devices. Langmuir. 2024;40(1):125-132. doi: 10.1021/acs.langmuir.3c02258.
28. Nunes B., Cagide F., Fernandes C., Borges A., Borges F., Simões M. Efficacy of Novel Quaternary Ammonium and Phosphonium Salts Differing in Cation Type and Alkyl Chain Length against Antibiotic-Resistant Staphylococcus aureus. Int J Mol Sci. 2023;25(1):504. doi: 10.3390/ijms25010504.
29. Ciumac D., Gong H., Hu X., Lu J.R. Membrane targeting cationic antimicrobial peptides. J. Colloid Interface Sci. 2019;537:163–185. doi: 10.1016/j.jcis.2018.10.103.
30. Andrea A., Molchanova N., Jenssen H. Antibiofilm peptides and peptidomimetics with focus on surface immobilization. Biomolecules. 2018;8(2):27. doi: 10.3390/biom8020027.
31. Molchanova N., Hansen P.R., Franzyk H. Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules. 2017;22(9):1430. doi: 10.3390/molecules22091430.
32. Krivkina E.O., Мatveeva V.G., Antonova L.V. Antimicrobial vascular grafts: experimental development and implementation in clinical practice. Complex Issues of Cardiovascular Diseases. 2021;10(3):90-102. doi: 10.17802/2306-1278-2021-10-3-90-102. (In Russian)
33. Zimmermann L., Kempf J., Briée F., Swain J., Mingeot-Leclercq M.P., Décout J.L. Broad-spectrum antibacterial amphiphilic aminoglycosides: A new focus on the structure of the lipophilic groups extends the series of active dialkyl neamines. Eur. J. Med. Chem. 2018;157:1512–1525. doi: 10.1016/j.ejmech.2018.08.022.
34. Voynovskiy E.A., Menzul V.A., Rudenko T.G. Sistema lecheniya ozhogovykh ran v sobstvennoy zhidkoy srede. Moscow; 2015 (In Russian)
35. Heitzmann W., Fuchs P.C., Schiefer J.L. Historical Perspectives on the Development of Current Standards of Care for Enzymatic Debridement. Medicina (Kaunas). 2020;56(12):706. doi: 10.3390/medicina56120706.
36. Kansakar U., Trimarco V., Manzi M.V., Cervi E., Mone P., Santulli G. Exploring the Therapeutic Potential of Bromelain: Applications, Benefits, and Mechanisms. Nutrients. 2024;16(13):2060. doi: 10.3390/nu16132060.
37. Bogdanov S.B., Ostrovsky N.V., Afanasov I.M., Pyatakov S.N., Karakulev A.V., Gilevich I.V. et al. Skin equivalents. Guidelines for Doctors. Moscow; 2022. (In Russian)
38. Kondej K., Zawrzykraj M., Czerwiec K., Deptuła M., Tymińska A., Pikuła M. Bioengineering Skin Substitutes for Wound Management-Perspectives and Challenges. Int J Mol Sci. 2024;25(7):3702. doi: 10.3390/ijms25073702.
39. Przekora A. A Concise Review on Tissue Engineered Artificial Skin Grafts for Chronic Wound Treatment: Can We Reconstruct Functional Skin Tissue In vitro? Cells. 2020;9(7):1622. doi: 10.3390/cells9071622.
40. Shapovalov S.G., Kcheuso A.V., Koshelev T.E., Savchenkov D.K. The possibilities of using bioengineered skin substitutes in combustiology (literature review). Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2022;2:82-92. doi: 10.25016/2541-7487-2022-0-2-82-92. (In Russian)
41. Vecin N.M., Kirsner R.S. Skin substitutes as treatment for chronic wounds: current and future directions. Front Med (Lausanne). 2023;10:1154567. doi: 10.3389/fmed.2023.1154567.
42. Potekaev N.N., Frigo N.V., Petersen E.V. Artificial skin: types and applications. Russian Journal of Clinical Dermatology and Venereology. 2017;16(6):7-15. doi: 10.17116/klinderma20171667-15. (In Russian)
43. Fominykh E.M., Mitrofanov V.N., Zhivtsov O.P., Struchkov A.A., Zubritskiy V.F., Lebedeva Yu.N., Vorotelyak E.A., Sukhanov Yu.V. Tissue equivalent transplantation in the treatment of certain skin injuries. Russian Journal of Transplantology and Artificial Organs. 2020;22(1):165-173. doi: 10.15825/1995-1191-2020-1-165-173. (In Russian)
Supplementary files
Review
For citations:
Kolomeets M.S., Prokudina E.S., Antonova L.V. SOME ASPECTS OF THE CREATION OF TISSUE ENGINEERING CONSTRUCTS IN ACCORDANCE WITH THE FEATURES OF THE PATHOGENESIS OF A BURN WOUND: LITERATURE REVIEW. Complex Issues of Cardiovascular Diseases. 2025;14(3):180-191. (In Russ.) https://doi.org/10.17802/2306-1278-2025-14-3-180-191