ULTRASTRUCTURAL ANALYSIS OF KEMPERIPLAS-NEO XENOPERICARDIAL PATCH AFTER TRANSANNULAR PATCH REPAIR OF RIGHT VENTRICULAR OUTFLOW TRACT IN PATIENT WITH PULMONARY ATRESIA: 15 YEARS OF FOLLOW-UP
https://doi.org/10.17802/2306-1278-2025-14-3-163-179
Abstract
Highlights
- KemPeriplas-Neo xenopericardial patch, which is used for transannular patch repair at congenital heart disease, undergoes enzymatic degradation 15 years after the implantation.
- Extracellular matrix delaminates into three layers which respectively consist of fragmented, loose, and dense collagen fibers; however, pericardial patch durability is partially reinforced by neointimal hyperplasia.
- Disintegration of the collagen fibers are enhanced by natural aging of the xenopericardium, high hemodynamic load, precipitation of circulating collagenases, macrophage infiltration, and weak regeneration.
Abstract
Aim. To perform an ultrastructural analysis for assessing the remodeling of xenopericardial patch 15 years after transannular repair of right ventricular outflow tract.
Methods. KemPeriplas-Neo pericardial patch was explanted 15 years postoperation due to the structural deterioration. The patch was fixed in phosphate-buffered formalin, stained with heavy metals, dehydrated using ethanol and acetone, and impregnated into epoxy resin followed by its polymerization, grinding, polishing, lead citrate counterstaining, and sputter coating. Ultrastructural analysis was performed by backscattered scanning electron microscopy.
Results. The explanted patch exhibited extensive remodeling, including the development of a neointima and a tunica adventitia at the luminal and outer surfaces of the patch, respectively. Endothelial cells covering the neointima were elongated along the blood flow. The patch displayed a heterogeneous collagen matrix comprising fragmented, loose, and dense collagen layers. Heterogeneity of collagen fibers and significant macrophage infiltration suggested high proteolytic activity overwhelming the regenerative capacity of fibroblasts, thus indicating ongoing matrix remodeling. The adventitia consisted of loose connective tissue with numerous canonical macrophages and multiple microvessels, indicating active neovascularization. Non-implanted xenopericardial samples demonstrated a uniform collagen fiber architecture without any evidence of enzymatic degradation.
Conclusion. Here we provided ultrastructural evidence of long-term biological integration and remodeling of xenopericardial patches after the transannular repair of right ventricular outflow tract. Collagen fragmentation and macrophage infiltration highlighted the complex interplay of enzymatic degradation, hemodynamic stress, immune response, and precipitation of circulating proteases. These findings have critical implications for the design and longevity of next-generation bioprosthetic materials for cardiac surgery.
About the Authors
Rinat A. MukhamadiyarovRussian Federation
PhD, Senior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Ivan V. Milto
Russian Federation
PhD, Head of the Department of Morphology and General Pathology, Siberian State Medical University, Tomsk, Russian Federation
Vladislav A. Koshelev
Russian Federation
Junior Researcher, Laboratory of Molecular, Translational and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Anton A. Lyapin
Russian Federation
MD, PhD, Cardiovascular Surgeon, Cardiac Surgery Unit #2, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Alexander N. Stasev
Russian Federation
MD, PhD, Senior Researcher, Laboratory of Heart Valve Disease, Department of Cardiovascular Surgery, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Anton G. Kutikhin
Russian Federation
PhD, Head of the Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
References
1. Wang X., Bakhuis W., Veen K.M., Bogers A.J.J.C., Etnel J.R.G., van Der Ven C.C.E.M., Roos-Hesselink J.W., Andrinopoulou E.R., Takkenberg J.J.M. Outcomes after right ventricular outflow tract reconstruction with valve substitutes: A systematic review and meta-analysis. Front Cardiovasc Med. 2022;9:897946. doi: 10.3389/fcvm.2022.897946.
2. Carrel T. Past, present, and future options for right ventricular outflow tract reconstruction. Front Surg. 2023;10:1185324. doi: 10.3389/fsurg.2023.1185324.
3. Geva T., Wald R.M., Bucholz E., Cnota J.F., McElhinney D.B., Mercer-Rosa L.M., Mery C.M., Miles A.L., Moore J.; American Heart Association Council on Lifelong Congenital Heart Disease and Heart Health in the Young; Council on Cardiovascular Surgery and Anesthesia; Council on Clinical Cardiology; and Council on Cardiovascular and Stroke Nursing. Long-Term Management of Right Ventricular Outflow Tract Dysfunction in Repaired Tetralogy of Fallot: A Scientific Statement From the American Heart Association. Circulation. 2024;150(25):e689-e707. doi: 10.1161/CIR.0000000000001291.
4. Blais S., Marelli A., Blais S., Marelli A., Vanasse A., Dahdah N., Dancea A., Drolet C., Dallaire F. Comparison of Long-term Outcomes of Valve-Sparing and Transannular Patch Procedures for Correction of Tetralogy of Fallot. JAMA Netw Open. 2021;4(7):e2118141. doi: 10.1001/jamanetworkopen.2021.18141.
5. Wei X., Li T., Ling Y., Chai Z., Cao Z., Chen K., Qian Y. Transannular patch repair of tetralogy of Fallot with or without monocusp valve reconstruction: a meta-analysis. BMC Surg. 2022;22(1):18. doi: 10.1186/s12893-022-01474-6.
6. Martins R.S., Fatimi A.S., Mahmud O., Qureshi S., Nasim M.T., Virani S.S., Tameezuddin A., Yasin F., Malik M.A. Comparing clinical and echocardiographic outcomes following valve-sparing versus transannular patch repair of tetralogy of Fallot: a systematic review and meta-analysis. Interdiscip Cardiovasc Thorac Surg. 2024;39(1):ivae124. doi: 10.1093/icvts/ivae124.
7. Bejleri D., Davis M.E. Decellularized Extracellular Matrix Materials for Cardiac Repair and Regeneration. Adv Healthc Mater. 2019;8(5):e1801217. doi: 10.1002/adhm.201801217.
8. Patukale A., Daley M., Betts K., Justo R., Dhannapuneni R., Venugopal P., Karl T.R., Alphonso N. Outcomes of pulmonary valve leaflet augmentation for transannular repair of tetralogy of Fallot. J Thorac Cardiovasc Surg. 2021;162(5):1313-1320. doi: 10.1016/j.jtcvs.2020.12.145.
9. Shabaev I.F., Halivopulo I.K., Sizova I.N., Shabaldin A.V. Long-term outcomes of young patients after surgical closure of ventricular septal defect with epoxy-treated xeno-pericardial “KemPeriplas-Neo” patch. Complex Issues of Cardiovascular Diseases = Kompleksnye problemy serdečno-sosudistyh zabolevanij. 2024;13(4):55-61. doi: 10.17802/2306-1278-2024-13-4-55-61 (In Russian)
10. Sevostyanova V.V., Mironov A.V., Antonova L.V., Tarasov R.S. Vascular patches for arterial reconstruction, challenges and advanced technologies. Complex Issues of Cardiovascular Diseases = Kompleksnye problemy serdečno-sosudistyh zabolevanij. 2019;8(3):116-129. doi: 10.17802/2306-1278-2019-8-3-116-129. (In Russian)
11. Mukhamadiyarov R.A., Khalivopulo I.K., Evtushenko A.V., Lyapin A.A., Kutikhin A.G. 11-year efficacy of xenopericardial KemPeriplas-Neo patch for the repair of pulmonary trunk during total surgical repair of tetralogy of Fallot. Clinical and Experimental Surgery. Petrovsky Journal. 2023;11(4):145-154. doi: 10.33029/2308-1198-2023-11-4-145-154. (In Russian)
12. Mukhamadiyarov R.A., Kutikhin A.G. Histology and histopathology of blood vessels: backscattered scanning electron microscopy approach. Fundamental and Clinical Medicine = Fundamental'naya i klinicheskaya meditsina. 2019;4(1):6-14. doi: 10.23946/2500-0764-2019-4-1-6-14. doi: 10.23946/2500-0764-2019-4-1-6-14. (In Russian)
13. Mukhamadiyarov R.A., Koshelev V.A., Frolov A.V., Mironov A.V., Shabaev A.R., Evtushenko A.V., Lyapin A.A., Kutikhin A.G. Ultrastructure of neointima of native and artificial elements of the blood circulatory system. Russian Journal of Archive of Pathology = Arkhiv Patologii. 2022;84(3):14-23. doi: 10.17116/patol20228403114. (In Russian)
14. Mukhamadiyarov R.A., Evtushenko A.V., Tarasov R.S., Khalivopulo I.K., Lyapin A.A., Kutikhin A.G. Structure of neointima in bare metal stents and expanded poly(tetrafluoroethylene) patches in children after two-step surgical treatment of tetralogy of Fallot. Clinical and Experimental Surgery. Petrovsky Journal. 2022;10(3):64-75. doi: 10.33029/2308-1198-2022-10-3-64-75. (In Russian)
15. Mukhamadiyarov R.A., Bogdanov L.A., Glushkova T.V., Shishkova D.K., Kostyunin A.E., Koshelev V.A., Shabaev A.R., Frolov A.V., Stasev A.N., Lyapin A.A., Kutikhin A.G. EMbedding and Backscattered Scanning Electron Microscopy: A Detailed Protocol for the Whole-Specimen, High-Resolution Analysis of Cardiovascular Tissues. Front Cardiovasc Med. 2021;8:739549. doi: 10.3389/fcvm.2021.739549.
16. Chen K., Xu M., Lu F., He Y. Development of Matrix Metalloproteinases-Mediated Extracellular Matrix Remodeling in Regenerative Medicine: A Mini Review. Tissue Eng Regen Med. 2023;20(5):661-670. doi: 10.1007/s13770-023-00536-x.
17. Mead T.J., Bhutada S., Martin D.R., Apte S.S. Proteolysis: a key post-translational modification regulating proteoglycans. Am J Physiol Cell Physiol. 2022;323(3):C651-C665. doi: 10.1152/ajpcell.00215.2022.
18. Jariwala N., Ozols M., Bell M., Bradley E., Gilmore A., Debelle L., Sherratt M.J. Matrikines as mediators of tissue remodelling. Adv Drug Deliv Rev. 2022;185:114240. doi: 10.1016/j.addr.2022.114240.
19. Perepletchikova D., Kuchur P., Basovich L., Khvorova I., Lobov A., Azarkina K., Aksenov N., Bozhkova S., Karelkin V., Malashicheva A. Endothelial-mesenchymal crosstalk drives osteogenic differentiation of human osteoblasts through Notch signaling. Cell Commun Signal. 2025;23(1):100. doi: 10.1186/s12964-025-02096-0.
20. Kostina A., Semenova D., Kostina D., Uspensky V., Kostareva A., Malashicheva A. Human aortic endothelial cells have osteogenic Notch-dependent properties in co-culture with aortic smooth muscle cells. Biochem Biophys Res Commun. 2019;514(2):462-468. doi: 10.1016/j.bbrc.2019.04.177.
21. Rutkovskiy A., Lund M., Siamansour T.S., Reine T.M., Kolset S.O., Sand K.L., Ignatieva E., Gordeev M.L., Stensløkken K.O., Valen G., Vaage J., Malashicheva A. Mechanical stress alters the expression of calcification-related genes in vascular interstitial and endothelial cells. Interact Cardiovasc Thorac Surg. 2019;28(5):803-811. doi: 10.1093/icvts/ivy339.
22. Tan Y., Zhang M., Kong Y., Zhang F., Wang Y., Huang Y., Song W., Li Z. et al. Fibroblasts and endothelial cells interplay drives hypertrophic scar formation: Insights from in vitro and in vivo models. Bioeng Transl Med. 2023;9(2):e10630. doi: 10.1002/btm2.10630.
23. Šalingová B., Červenák Z., Adamičková A., Chomanicová N., Valášková S., Gažová A., Kyselovič J. Endothelial-Mesenchymal Transition or Functional Tissue Regeneration - Two Outcomes of Heart Remodeling. Physiol Res. 2021;70(Suppl 1):S13-S20. doi: 10.33549/physiolres.934780.
24. Méndez-Barbero N., Gutiérrez-Muñoz C., Blanco-Colio L.M. Cellular Crosstalk between Endothelial and Smooth Muscle Cells in Vascular Wall Remodeling. Int J Mol Sci. 2021;22(14):7284. doi: 10.3390/ijms22147284.
25. Randles M.J., Humphries M.J., Lennon R. Proteomic definitions of basement membrane composition in health and disease. Matrix Biol. 2017;57-58:12-28. doi: 10.1016/j.matbio.2016.08.006.
26. Lau S., Gossen M., Lendlein A. Designing Cardiovascular Implants Taking in View the Endothelial Basement Membrane. Int J Mol Sci. 2021;22(23):13120. doi: 10.3390/ijms222313120.
27. Lin P.K., Davis G.E. Extracellular Matrix Remodeling in Vascular Disease: Defining Its Regulators and Pathological Influence. Arterioscler Thromb Vasc Biol. 2023;43(9):1599-1616. doi: 10.1161/ATVBAHA.123.318237.
28. Moncla L.M., Briend M., Bossé Y., Mathieu P. Calcific aortic valve disease: mechanisms, prevention and treatment. Nat Rev Cardiol. 2023;20(8):546-559. doi: 10.1038/s41569-023-00845-7.
29. Kostyunin A.E., Glushkova T.V., Lobov A.A., Ovcharenko E.A., Zainullina B.R., Bogdanov L.A., Shishkova D.K., Markova V.E. et al. Proteolytic Degradation Is a Major Contributor to Bioprosthetic Heart Valve Failure. J Am Heart Assoc. 2023;12(1):e028215. doi: 10.1161/JAHA.122.028215.
30. Kostyunin A., Mukhamadiyarov R., Glushkova T., Bogdanov L., Shishkova D., Osyaev N., Ovcharenko E., Kutikhin A. Ultrastructural Pathology of Atherosclerosis, Calcific Aortic Valve Disease, and Bioprosthetic Heart Valve Degeneration: Commonalities and Differences. Int J Mol Sci. 2020;21(20):7434. doi: 10.3390/ijms21207434.
31. Kostyunin A.E., Yuzhalin A.E., Rezvova M.A., Ovcharenko E.A., Glushkova T.V., Kutikhin A.G. Degeneration of Bioprosthetic Heart Valves: Update 2020. J Am Heart Assoc. 2020;9(19):e018506. doi: 10.1161/JAHA.120.018506.
32. Kostyunin A.E., Glushkova T.V., Shishkova D.K., Markova V.E., Ovcharenko E.A. Screening analysis of proteolytic enzymes and their inhibitors in the leaflets of epoxy-treated bioprosthetic heart valves explanted due to dysfunction. Biomedical Chemistry = Biomeditsinskaya Khimiya. 2022;68(1):68-75. doi: 10.18097/PBMC20226801068. (In Russian)
33. Kostyunin A.E., Glushkova T.V. Expression of matrix metalloproteinases 1, 2, 9, 12 in xenogenic tissues of epoxy-crosslinked bioprosthetic heart valves explanted due to dysfunction. Russian Journal of Cardiology. 2020;25(10):3978. https://doi.org/10.15829/1560-4071-2020-3978
34. Kostyunin A.E., Glushkova T.V. Expression of matrix metalloproteinases 1, 2, 9, 12 in xenogenic tissues of epoxy-crosslinked bioprosthetic heart valves explanted due to dysfunction. Russian Journal of Cardiology. 2020;25(10):49-55. doi: 10.15829/1560-4071-2020-3978. (In Russian)
35. Kostyunin A.E., Glushkova T.V., Bogdanov L.A., Ovcharenko E.A. Expression of tissue inhibitors of metalloproteinases type 1 and type 2 in the leaflets of explanted bioprosthetic heart valves: a new pathogenetic parallel between structural valve degeneration and calcific aortic stenosis. Bulletin of Transplantology and Artificial Organs = Vestnik transplantologii i iskusstvennyh organov. 2021;23(3):115-121. doi: 10.15825/1995-1191-2021-3-115-121 (In Russian)
Supplementary files
Review
For citations:
Mukhamadiyarov R.A., Milto I.V., Koshelev V.A., Lyapin A.A., Stasev A.N., Kutikhin A.G. ULTRASTRUCTURAL ANALYSIS OF KEMPERIPLAS-NEO XENOPERICARDIAL PATCH AFTER TRANSANNULAR PATCH REPAIR OF RIGHT VENTRICULAR OUTFLOW TRACT IN PATIENT WITH PULMONARY ATRESIA: 15 YEARS OF FOLLOW-UP. Complex Issues of Cardiovascular Diseases. 2025;14(3):163-179. (In Russ.) https://doi.org/10.17802/2306-1278-2025-14-3-163-179