METHOD OF “DRY” STORAGE OF BIOLOGICAL PROSTHESES FOR CARDIOVASCULAR SURGERY
https://doi.org/10.17802/2306-1278-2025-14-4-77-89
Abstract
Highlights
- The technology of pre-implantation storage of bioprostheses plays a key role in the prevention of postoperative complications in cardiovascular surgery. The developed method of “dry storage” using glycerol allows to exclude the aqueous phase, thereby reducing the risk of damage to the collagen matrix during storage and transportation of the biomaterial. Glycerolization preserves the basic physical, mechanical and hemocompatible characteristics of the biotissue, without having a negative effect on its biocompatibility.
Absract
Aim. Development of a technology for “dry storage” of biological tissue using glycerol and evaluation of the effectiveness of the technology in an experiment.
Methods. Xenopericardial patches preserved with ethylene glycol diglycidyl ether, provided by NeoCor JSC, were immersed in a 57% glycerol solution for 24 hours, then kept in a vacuum chamber at a negative pressure of 700 mbar for 6 hours. After complete drying, the xenopericardial flaps were sterilized with ethylene oxide at a temperature of 37 °C. The following were assessed: physicomechanical, hemocompatible, cytotoxic properties, calcium-binding potential of the biomaterial after the glycerolization stage, as well as cycle resistance and hydrodynamic characteristics in dynamics up to 200 million cycles.
Results. The glycerolization process did not have a negative effect on the properties of the biomaterial. Relative elongation of the biomaterial increased by 27.6% (p = 0.02), while the rigidity of the biotissue did not change. During subcutaneous implantation of the biomaterial in rats at implantation periods of up to 60 days, no calcification foci were found in the samples treated with glycerol. The amount of hemolysis of erythrocytes after contact with glycerolized samples did not exceed 0.2%, with an acceptable rate of 2%. The process of glycerolization and subsequent drying does not have a negative effect on platelets and made it possible to significantly reduce the cytotoxic effect, provided that the biomaterial is briefly washed in saline for 5 minutes. The Uniline heart valve bioprostheses of sizes 25 and 30 have successfully passed tests of 200 million cycles. At the same time, for both size 19 prostheses, initially relatively high values of the average transprosthetic gradient were noted, which increased by 3–4.7 times to the 200 ml cycles mark.
Conclusion. The developed technology of “dry” storage, based on glycerolization of biomaterial, does not have a negative effect on the physical and mechanical, bio- and hemocompatible properties of bioprostheses, does not cause calcification of biotissue in an experiment on laboratory animals and does not reduce resistance to cyclic loads in dynamics up to 200 million cycles.
About the Authors
Yulia A. KudryavtsevaRussian Federation
Dr. Sci. (Biol), Chief Researcher, Department of Experimental Medicine, Federal State Budgetary Institutes «Research Institute for Complex Issues of Cardiovascular Diseases», Kemerovo, Russian Federation
Evgeny A. Ovcharenko
Russian Federation
Ph.D., Head of the Laboratory of New Biomaterials, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Kirill Yu. Klyshnikov
Russian Federation
Researcher at the Laboratory of New Biomaterials, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Vera G. Matveeva
Russian Federation
Researcher at the Laboratory of Cellular technology, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Anastasia Yu. Kanonykina
Russian Federation
junior Research Scientist, Laboratory of Molecular, Translational and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institutes «Research Institute for Complex Issues of Cardiovascular Diseases», Kemerovo, Russian Federation
Tatyana N. Akentyeva
Russian Federation
Junior Researcher at the Laboratory of New Biomaterials, Department of Experimental Medicine, Federal State Budgetary Scientific Institution “Research Institute for Complex Problems of Cardiovascular Diseases”, Kemerovo, Russian Federation
Pavel S. Onishchenko
Russian Federation
Junior researcher at the Laboratory of New Biomaterials, Department of Experimental Medicine, Federal State Budgetary Scientific Institution «Research Institute for Complex Problems of Cardiovascular Diseases», Kemerovo, Russian Federation
Olga L.. Barbarash
Russian Federation
PhD, Professor, Academician of the Russian Academy of Sciences, Director of the Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
References
1. Aroz S.G., Spaggiari M., Jeon H., Oberholzer J., Benedetti E., Tzvetanov I. The use of bovine pericardial patch for vascular reconstruction in infected fields for transplant recipients // J Vasc Surg Cases Innov Tech. 2017 Mar 6;3(1):47-49. DOI: 10.1016/j.jvscit.2016.10.006.
2. Ивченко А.О., Шведов А.Н., Ивченко О.А. Сосудистые протезы, используемые при реконструктивных операциях на магистральных артериях нижних конечностей. Бюллетень сибирской медицины. 2017; 16 (1): 132–139. DOI 10.20538/1682-0363-2017-1-132–139.
3. Kueri S., Kari F.A., Ayala Fuentes R., Sievers H.H., Beyersdorf F., Bothe W. The use of biological heart valves—types of prosthesis, durability and complications. Dtsch Arztebl Int 2019; 116: 423–30. DOI: 10.3238/arz tebl.2019.0423
4. Iop L., Palmosi T., Dal Sasso E., Gerosa G. Bioengineered tissue solutions for repair, correction and reconstruction in cardiovascular surgery. J Thorac Dis. 2018 Jul;10(Suppl 20):S2390-S2411. DOI: 10.21037/jtd.2018.04.27.
5. Кудрявцева Ю.А., Овчаренко Е.А., Клышников К.Ю., Антонова Л.В., Сенокосова Е.А., Понасенко А.В., Барбараш О.Л., Барбараш Л.С. Биологические протезы для сердечно-сосудистой хирургии – полувековая история и перспективы развития. Комплексные проблемы сердечно-сосудистых заболеваний. 2024;13(1):196-210. DOI:10.17802/2306-1278-2024-13-1-196-210
6. Рогулина Н.В., Горбунова Е.В., Кондюкова Н.В., Одаренко Ю.Н., Барбараш Л.С. Сравнительная оценка качества жизни реципиентов механических и биологических протезов при митральном пороке. Российский кардиологический журнал. 2015;(7):94-97. DOI:10.15829/1560-4071-2015-7-94-97
7. Singab H., Sami G. Mitral Valve Bioprosthesis Is Safer Than Mechanical Mitral Prosthesis in Young Women. The Heart Surgery Forum, 2020. 23(5), E677-E684. DOI:10.1532/hsf.3145
8. 8 Барбараш Л.С., Журавлева И.Ю. Эволюция биопротезов клапанов сердца: достижения и проблемы двух десятилетий. Комплексные проблемы сердечно-сосудистых заболеваний. 2012;(1):4-11. DOI:10.17802/2306-1278-2012-1-4-11
9. Zvyagina A.I., Minaychev V.V., Kobyakova M.I., Lomovskaya Y.V., Senotov A.S., Pyatina K.V., Akatov V.S., Fadeev R.S., Fadeeva I.S. Soft Biomimetic Approach for the Development of Calcinosis-Resistant Glutaraldehyde-Fixed Biomaterials for Cardiovascular Surgery. Biomimetics (Basel) 2023 Aug 10;8(4):357. DOI:10.3390/biomimetics8040357.
10. Патент №2457867, Рос. Федерация: МКП A61L 2/16, A61L 27/00, А61К 31/498. Способ стерилизации и предимплантационного хранения биологических протезов из ксеногенной и аллогенной ткани для сердечнососудистой хирурги [Текст] / Костава В.Т., Бакулева Н.П., Лютова И.Г. и др.; патентообладатель: Учреждение Российской академии медицинских наук Научный центр сердечно-сосудистой хирургии им. А.Н. Бакулева РАМН (RU). №2011117782/15; заявл. 05.05.2011; опубл. 10.08.2012 г., бюл. №22
11. Патент № 2633062, Рос. Федерация: МКП A61F2/24. Способ предимплантационного хранения биологических протезов для сердечно-сосудистой хирургии [Текст] / Барбараш Л.С., Кудрявцева Ю.А. Патентообладатель: Барбараш Л.С., Кудрявцева Ю.А. №2016145488; заявл. 21.11.2016; 11.10.2017 Бюл. № 29.
12. Fumoto H., Chen J-F., Zhou O., Massiello A.L, Dessoffy R., Fukamachi K., Navia J.L Performance of Bioprosthetic Valves after Glycerol Dehydration, Ethylene Oxide Sterilization, and Rehydration. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery. – 2011. – Vol. 6, № 1. – P. 32–36. DOI: 10.1097/imi.0b013e31820a7cd6
13. Osinowo O, Monro J L, Ross J K. The use of glycerol-preserved homologous dura mater grafts in cardiac surgery: the Southampton experience. Ann Thorac Surg 1985 Apr;39(4):367-70. DOI: 10.1016/s0003-4975(10)62635-5.
14. Jin L., He H., Yang F., Xu L., Guo G., WangY . Tough pNAGA hydrogel hybridized porcine pericardium for the pre-mounted TAVI valve with improved anti-tearing properties and hemocompatibility / Biomed Mater. 2020 Oct 3;15(6):065013. doi: 10.1088/1748-605X/aba239
15. Fahner P.J., Legemate D.A., van der Wal A.C., van Marle J., Peters S.L.M., van Eck C.F., van Gulik T.M., Idu M.M. Comparison of Preserved Vascular Allografts Using Glycerol and University of Wisconsin Solution in a Goat Carotid Artery Transplantation Model. Eur Surg Res (2012) 48 (2): 64–72. DOI:10.1159/000334170
16. Патент № 2827028 «Способ предимплантационной обработки биологических протезов для сердечно-сосудистой хирургии». Кудрявцева Ю.А., Резвова М.А., Овчаренко Е.А., Барбараш Л.С. Опубликовано: 20.09.2024 Бюл. № 26. A61L 27/00; A61K 31/72; A01N 1/02
17. Бокерия Л.А., Милиевская Е.Б., Прянишников В.В., Орлов И.А. Сердечно-сосудистая хирургия – 2022. Болезни и врожденные аномалии системы кровообращения. М:НМИЦ ССХ им. А.Н. Бакулева Минздрава России; 2023. 344 с.
18. David T. How to decide between a bioprosthetic and mechanical valve, Canadian Journal of Cardiology (2020), doi: https://doi.org/10.1016/j.cjca.2020.09.011.
19. Глушкова Т.В., Овчаренко Е.А., Рогулина Н.В., Клышников К.Ю., Кудрявцева Ю.А., Барбараш Л.С. Дисфункции эпоксиобработанных биопротезов клапанов сердца. Кардиология. 2019;59(10):49–59. DOI: 10.18087/cardio.2019.10.n327
20. Larsen K., Petrovski G., Boix-Lemonche G. Alternative cryoprotective agent for corneal stroma-derived mesenchymal stromal cells for clinical applications. Sci Rep. 2024 Jul 9;14(1):15788. DOI: 10.1038/s41598-024-65469-4.
21. Best B.P. Correction to: Cryoprotectant Toxicity: Facts, Issues, and Questions. Rejuvenation Res 2015;18(5):422-436; DOI: 10.1089/rej.2014.1656.
22. Almansoori, K. A., Prasad, V., Forbes, J. F., Law, G. K., McGann, L. E., Elliott, J. A. W., & Jomha, N. M. (2012). Cryoprotective agent toxicity interactions in human articular chondrocytes. Cryobiology, 64(3), 185–191. DOI:10.1016/j.cryobiol.2012.01.006
23. Землянских Н.Г., Бабийчук Л.А. Пространственно-конформационные модификации белков мембранно-цитоскелетного комплекса криоконсервированных эритроцитов. Биологические мембраны: Журнал мембранной и клеточной биологии. 2019, 36 (2):125-136. DOI: 10.1134/S0233475519010055
24. Sadri V., Trusty P.M, Madukauwa-David I.D.a, Yoganathan A.P. Long-term durability of a new surgical aortic valve: A 1 billion cycle in vitro study. JTCVS 2021 Nov 4:9:59-69. DOI: 10.1016/j.xjon.2021.10.056.
25. Raghav V., Okafor I., Quach M., Dang L., Marquez S., Yoganathan A.P. Long-Term Durability of Carpentier-Edwards Magna Ease Valve: A One Billion Cycle In Vitro Study.Ann Thorac Surg. 2016 May;101(5):1759-65. doi: 10.1016/j.athoracsur.2015.10.069.
26.
Supplementary files
Review
For citations:
Kudryavtseva Yu.A., Ovcharenko E.A., Klyshnikov K.Yu., Matveeva V.G., Kanonykina A.Yu., Akentyeva T.N., Onishchenko P.S., Barbarash O.L. METHOD OF “DRY” STORAGE OF BIOLOGICAL PROSTHESES FOR CARDIOVASCULAR SURGERY. Complex Issues of Cardiovascular Diseases. 2025;14(4):77-89. (In Russ.) https://doi.org/10.17802/2306-1278-2025-14-4-77-89