Preview

Complex Issues of Cardiovascular Diseases

Advanced search

COMPARISON OF MODIFIED ENDOTHELIAL NITRIC OXIDE SYNTHASE FORMS IN HYPERTENSIVE AND NORMOTENSIVE RATS

https://doi.org/10.17802/2306-1278-2025-14-2-110-126

Abstract

Highlights

  • Aortic endothelial cells and perivascular endothelial cells have distinct distribution of phosphorylated forms of endothelial nitric oxide synthase (eNOS)
  • In hypertensive rats, aortic endothelial cells have increased levels of activated eNOS (Ser632 and Ser1177) whilst perivascular endothelial cells have elevated levels of inhibited eNOS (Ser117 and Thr495).
  • Perivascular endothelial cells have increased levels of total and phosphorylated eNOS in comparison with aortic endothelial cells.

 

Abstract

Aim. To study the expression of endothelial nitric oxide synthase (eNOS) and its modified forms in the aortic endothelial cells and perivascular endothelial cells in hypertensive and normotensive rats.

Methods. The study included 12 male hypertensive ISIAH rats and 12 male normotensive Wistar rats at the 4 months of age. Following the cryosectioning, we performed an immunohistochemical staining of descending aorta using different antibodies to total eNOS and to phosphorylated eNOS (Ser117, Thr495, Ser632, Ser1177). Next, we scanned the whole slide images and conducted a semi-quantitative analysis of immunohistochemical signal in the aortic endothelial cells and perivascular endothelial cells using ImageJ software. Statistical analysis was carried out by Mann–Whitney U-test (when comparing eNOS expression in the endothelium of hypertensive and normotensive rats) and Wilcoxon matched-pairs signed-rank test (when comparing eNOS expression in the aortic endothelial cells and perivascular endothelial cells).

Results. Aortic endothelial cells and perivascular endothelial cells of hypertensive rats tended to the increase in total eNOS regardless of the antibody, although the staining pattern differed across the antibodies. Aortic endothelial cells of hypertensive rats had higher expression of eNOS phosphorylated at Ser632 and Ser1177 sites (activating phosphorylation) whereas perivascular endothelial cells displayed elevated levels of eNOS phosphorylated at Ser117 and Thr495 (inhibiting phosphorylation) and Ser632 (activating phosphorylation). Expression of total and phosphorylated eNOS in perivascular endothelial cells was significantly higher than in the aortic endothelial cells.

Conclusion. In comparison with normotensive Wistar rats, hypertensive ISIAH rats are characterised by an increased expression of activated eNOS in the aortic endothelial cells (Ser632 and Ser1177 phosphorylation) and by an elevated expression of inhibited eNOS (Ser117 and Thr395 phosphorylation) in the perivascular endothelial cells. Perivascular endothelial cells have a higher expression of total and phosphorylated eNOS than aortic endothelial cells.

About the Authors

Leo A. Bogdanov
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Researcher, Laboratory of Molecular, Translational and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Egor A. Kondratiev
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Junior Researcher, Laboratory of Molecular, Translational and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Vladislav A. Koshelev
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Junior Researcher, Laboratory of Molecular, Translational and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Rinat A. Mukhamadiyarov
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Senior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Anastasia Yu. Kanonykina
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Junior Researcher, Laboratory of Molecular, Translational and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Anastasia A. Lazebnaya
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Junior Researcher, Laboratory of Molecular, Translational and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Arina E. Tyurina
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Junior Researcher, Laboratory of Molecular, Translational and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



Anton G. Kutikhin
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Head of the Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation



References

1. Kutikhin AG, Shishkova DK, Velikanova EA, Sinitsky MY, Sinitskaya AV, Markova VE. Endothelial Dysfunction in the Context of Blood-Brain Barrier Modeling. J Evol Biochem Physiol. 2022;58(3):781-806. doi: 10.1134/S0022093022030139.

2. Gimbrone MA Jr, García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016;118(4):620-36. doi: 10.1161/CIRCRESAHA.115.306301.

3. Шишкова Д.К., Фролов А.В., Маркова В.Е., Маркова Ю.О., Каноныкина А.Ю., Лазебная А.И., Матвеева В.Г., Торгунакова Е.А., Кутихин А.Г. Современные подходы к моделированию дисфункции эндотелия и системному поиску ее циркулирующих маркеров. Комплексные проблемы сердечно-сосудистых заболеваний. 2024. Т. 13. № S3. С. 173-190. doi: 10.17802/2306-1278-2024-13-3S-173-190.

4. Богданов Л.А., Кошелев В.А., Мухамадияров Р.А., Каноныкина А.Ю., Лазебная А.И., Кондратьев Е.А., Степанов А.Д., Кутихин А.Г. Современные подходы к идентификации клеточных маркеров дисфункции эндотелия. Комплексные проблемы сердечно-сосудистых заболеваний. 2024. Т. 13. № S3. С. 191-207. doi: 10.17802/2306-1278-2024-13-3S-191-207.

5. da Silva FC, de Araújo BJ, Cordeiro CS, Arruda VM, Faria BQ, Guerra JFDC, Araújo TG, Fürstenau CR. Endothelial dysfunction due to the inhibition of the synthesis of nitric oxide: Proposal and characterization of an in vitro cellular model. Front Physiol. 2022;13:978378. doi: 10.3389/fphys.2022.978378.

6. Ghosh S, Gupta M, Xu W, Mavrakis DA, Janocha AJ, Comhair SA, Haque MM, Stuehr DJ, Yu J, Polgar P, Naga Prasad SV, Erzurum SC. Phosphorylation inactivation of endothelial nitric oxide synthesis in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2016;310(11):L1199-205. doi: 10.1152/ajplung.00092.2016.

7. Li G, Zhang H, Zhao L, Zhang Y, Yan D, Liu Y. Angiotensin-converting enzyme 2 activation ameliorates pulmonary endothelial dysfunction in rats with pulmonary arterial hypertension through mediating phosphorylation of endothelial nitric oxide synthase. J Am Soc Hypertens. 2017;11(12):842-852. doi: 10.1016/j.jash.2017.10.009.

8. Förstermann U, Xia N, Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ Res. 2017;120(4):713-735. doi: 10.1161/CIRCRESAHA.116.309326.

9. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829-37, 837a-837d. doi: 10.1093/eurheartj/ehr304.

10. Qian J, Fulton D. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front Physiol. 2013;4:347. doi: 10.3389/fphys.2013.00347.

11. Heiss EH, Dirsch VM. Regulation of eNOS enzyme activity by posttranslational modification. Curr Pharm Des. 2014;20(22):3503-13. doi: 10.2174/13816128113196660745.

12. Iring A, Jin YJ, Albarrán-Juárez J, Siragusa M, Wang S, Dancs PT, Nakayama A, Tonack S, Chen M, Künne C, Sokol AM, Günther S, Martínez A, Fleming I, Wettschureck N, Graumann J, Weinstein LS, Offermanns S. Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. J Clin Invest. 2019;129(7):2775-2791. doi: 10.1172/JCI123825.

13. Michell BJ, Chen Zp, Tiganis T, Stapleton D, Katsis F, Power DA, Sim AT, Kemp BE. Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem. 2001;276(21):17625-8. doi: 10.1074/jbc.C100122200.

14. Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R. Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res. 2001;88(11):E68-75. doi: 10.1161/hh1101.092677.

15. Lee CH, Wei YW, Huang YT, Lin YT, Lee YC, Lee KH, Lu PJ. CDK5 phosphorylates eNOS at Ser-113 and regulates NO production. J Cell Biochem. 2010;110(1):112-7. doi: 10.1002/jcb.22515.

16. Kennard S, Ruan L, Buffett RJ, Fulton D, Venema RC. TNFα reduces eNOS activity in endothelial cells through serine 116 phosphorylation and Pin1 binding: Confirmation of a direct, inhibitory interaction of Pin1 with eNOS. Vascul Pharmacol. 2016;81:61-8. doi: 10.1016/j.vph.2016.04.003.

17. Li C, Ruan L, Sood SG, Papapetropoulos A, Fulton D, Venema RC. Role of eNOS phosphorylation at Ser-116 in regulation of eNOS activity in endothelial cells. Vascul Pharmacol. 2007;47(5-6):257-64. doi: 10.1016/j.vph.2007.07.001.

18. Shishkova D, Markova V, Markova Y, Sinitsky M, Sinitskaya A, Matveeva V, Torgunakova E, Lazebnaya A, Stepanov A, Kutikhin A. Physiological Concentrations of Calciprotein Particles Trigger Activation and Pro-Inflammatory Response in Endothelial Cells and Monocytes. Biochemistry (Mosc). 2025;90(1):132-160. doi: 10.1134/S0006297924604064.

19. Ku KH, Dubinsky MK, Sukumar AN, Subramaniam N, Feasson MYM, Nair R, Tran E, Steer BM, Knight BJ, Marsden PA. In Vivo Function of Flow-Responsive Cis-DNA Elements of eNOS Gene: A Role for Chromatin-Based Mechanisms. Circulation. 2021;144(5):365-381. doi: 10.1161/CIRCULATIONAHA.120.051078.

20. Jin YJ, Chennupati R, Li R, Liang G, Wang S, Iring A, Graumann J, Wettschureck N, Offermanns S. Protein kinase N2 mediates flow-induced endothelial NOS activation and vascular tone regulation. J Clin Invest. 2021;131(21):e145734. doi: 10.1172/JCI145734.

21. Cattaneo MG, Vanetti C, Decimo I, Di Chio M, Martano G, Garrone G, Bifari F, Vicentini LM. Sex-specific eNOS activity and function in human endothelial cells. Sci Rep. 2017;7(1):9612. doi: 10.1038/s41598-017-10139-x.

22. Smith AR, Visioli F, Frei B, Hagen TM. Age-related changes in endothelial nitric oxide synthase phosphorylation and nitric oxide dependent vasodilation: evidence for a novel mechanism involving sphingomyelinase and ceramide-activated phosphatase 2A. Aging Cell. 2006;5(5):391-400. doi: 10.1111/j.1474-9726.2006.00232.x.

23. Sansbury BE, Cummins TD, Tang Y, Hellmann J, Holden CR, Harbeson MA, Chen Y, Patel RP, Spite M, Bhatnagar A, Hill BG. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ Res. 2012 Oct 12;111(9):1176-89. doi: 10.1161/CIRCRESAHA.112.266395.

24. Bu S, Nguyen HC, Nikfarjam S, Michels DCR, Rasheed B, Maheshkumar S, Singh S, Singh KK. Endothelial cell-specific loss of eNOS differentially affects endothelial function. PLoS One. 2022;17(9):e0274487. doi: 10.1371/journal.pone.0274487.

25. Shu X, Keller TC 4th, Begandt D, Butcher JT, Biwer L, Keller AS, Columbus L, Isakson BE. Endothelial nitric oxide synthase in the microcirculation. Cell Mol Life Sci. 2015;72(23):4561-75. doi: 10.1007/s00018-015-2021-0.

26. Fries DM, Paxinou E, Themistocleous M, Swanberg E, Griendling KK, Salvemini D, Slot JW, Heijnen HF, Hazen SL, Ischiropoulos H. Expression of inducible nitric-oxide synthase and intracellular protein tyrosine nitration in vascular smooth muscle cells: role of reactive oxygen species. J Biol Chem. 2003;278(25):22901-7. doi: 10.1074/jbc.M210806200.

27. Singh A, Sventek P, Larivière R, Thibault G, Schiffrin EL. Inducible nitric oxide synthase in vascular smooth muscle cells from prehypertensive spontaneously hypertensive rats. Am J Hypertens. 1996;9(9):867-77. doi: 10.1016/s0895-7061(96)00104-5.

28. Di Pietro N, Di Tomo P, Di Silvestre S, Giardinelli A, Pipino C, Morabito C, Formoso G, Mariggiò MA, Pandolfi A. Increased iNOS activity in vascular smooth muscle cells from diabetic rats: potential role of Ca(2+)/calmodulin-dependent protein kinase II delta 2 (CaMKIIdelta(2)). Atherosclerosis. 2013;226(1):88-94. doi: 10.1016/j.atherosclerosis.2012.10.062.

29. Preeclampsia is associated with loss of neuronal nitric oxide synthase expression in vascular smooth muscle cells of the human umbilical cord. Schönfelder G, Fuhr N, Hadzidiakos D, John M, Hopp H, Paul M. Histopathology. 2004;44(2):116-28. doi: 10.1111/j.1365-2559.2004.01806.x.

30. Boulanger CM, Heymes C, Benessiano J, Geske RS, Lévy BI, Vanhoutte PM. Neuronal nitric oxide synthase is expressed in rat vascular smooth muscle cells: activation by angiotensin II in hypertension. Circ Res. 1998;83(12):1271-8. doi: 10.1161/01.res.83.12.1271.

31. Gomez-Alamillo C, Juncos LA, Cases A, Haas JA, Romero JC. Interactions between vasoconstrictors and vasodilators in regulating hemodynamics of distinct vascular beds. Hypertension. 2003;42(4):831-6. doi: 10.1161/01.HYP.0000088854.04562.DA.

32. Bruno RM, Ghiadoni L, Seravalle G, Dell'oro R, Taddei S, Grassi G. Sympathetic regulation of vascular function in health and disease. Front Physiol. 2012;3:284. doi: 10.3389/fphys.2012.00284.

33. Sheng Y, Zhu L. The crosstalk between autonomic nervous system and blood vessels. Int J Physiol Pathophysiol Pharmacol. 2018;10(1):17-28.

34. Durand MJ, Gutterman DD. Diversity in mechanisms of endothelium-dependent vasodilation in health and disease. Microcirculation. 2013;20(3):239-47. doi: 10.1111/micc.12040.

35. Maruhashi T, Kihara Y, Higashi Y. Assessment of endothelium-independent vasodilation: from methodology to clinical perspectives. J Hypertens. 2018;36(7):1460-1467. doi: 10.1097/HJH.0000000000001750.

36.


Supplementary files

Review

For citations:


Bogdanov L.A., Kondratiev E.A., Koshelev V.A., Mukhamadiyarov R.A., Kanonykina A.Yu., Lazebnaya A.A., Tyurina A.E., Kutikhin A.G. COMPARISON OF MODIFIED ENDOTHELIAL NITRIC OXIDE SYNTHASE FORMS IN HYPERTENSIVE AND NORMOTENSIVE RATS. Complex Issues of Cardiovascular Diseases. 2025;14(2):110-126. (In Russ.) https://doi.org/10.17802/2306-1278-2025-14-2-110-126

Views: 112


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)