Preview

Комплексные проблемы сердечно-сосудистых заболеваний

Расширенный поиск

СРАВНЕНИЕ ЭКСПРЕССИИ МОДИФИЦИРОВАННЫХ ФОРМ ЭНДОТЕЛИАЛЬНОЙ СИНТАЗЫ МОНООКСИДА АЗОТА У ГИПЕР- И НОРМОТЕНЗИВНЫХ КРЫС

https://doi.org/10.17802/2306-1278-2025-14-2-110-126

Аннотация

Основные положения

  • Эндотелий интимы аорты и периаортальной жировой ткани имеет различный профиль распределения фосфорилированных форм eNOS.
  • Эндотелий интимы аорты гипертензивных крыс линии НИСАГ характеризуется повышением экспрессии форм eNOS с активирующим фосфорилированием, а эндотелий микрососудов периаортальной жировой ткани – повышением экспрессии форм eNOS с ингибирующим фосфорилированием.
  • Эндотелий микрососудов периаортальной жировой ткани имеет более высокую экспрессию общей фракции eNOS и ее фосфорилированных форм в сравнении с эндотелием интимы аорты.

 

Резюме

Цель. Изучить экспрессию эндотелиальной синтазы монооксида азота (eNOS) и ее модифицированных форм в эндотелии интимы аорты и микрососудов периаортальной жировой ткани гипер- и нормотензивных крыс.

Материалы и методы. В исследование были включены самцы гипертензивных крыс линии НИСАГ (n = 12) и нормотензивных крыс линии Wistar (n = 12) в возрасте 4 мес. После подготовки криосрезов нисходящей аорты проводили иммуногистохимическое окрашивание различными антителами к eNOS и фосфорилированным формам eNOS (Ser117, Thr495, Ser632, Ser1177). После оцифровки препаратов на слайд-сканере выполняли полуколичественный анализ интенсивности иммуногистохимического сигнала в эндотелии интимы аорты и микрососудов периаортальной жировой ткани в программе ImageJ. Статистический анализ проводили при помощи критерия Манна – Уитни (при сравнении экспрессии в эндотелии гипер- и нормотензивных крыс) и критерия Уилкоксона (при сравнении экспрессии в эндотелии интимы аорты и микрососудов периаортальной жировой ткани).

Результаты. Эндотелий интимы аорты и периаортальной жировой ткани гипертензивных крыс НИСАГ характеризовался тенденцией повышения экспрессии общей фракции eNOS независимо от применяемого антитела (хотя паттерн окрашивания при использовании различных антител несколько отличался). В эндотелии интимы аорты гипертензивных крыс отмечено статистически значимое повышение экспрессии форм eNOS, фосфорилированных в позициях Ser632 и Ser1177 (активирующее фосфорилирование), а в эндотелии микрососудов периаортальной жировой ткани – статистически значимое повышение экспрессии общей фракции eNOS (при оценке одним из антител) и форм eNOS, фосфорилированных в позициях Ser117, Thr495 (ингибирующее фосфорилирование) и Ser632 (активирующее фосфорилирование). Экспрессия общей фракции eNOS и всех ее фосфорилированных форм в эндотелии микрососудов периаортальной жировой ткани была статистически значимо выше, чем в эндотелии интимы аорты.

Заключение. В сравнении с нормотензивными крысами Wistar гипертензивные крысы НИСАГ характеризовались повышением экспрессии различных фосфорилированных форм eNOS в эндотелии интимы аорты (где преобладали формы, повышающие активность eNOS) и эндотелии микрососудов периаортальной жировой ткани (где преобладали формы, снижающие активность eNOS). В сравнении с эндотелием интимы аорты эндотелий микрососудов периаортальной жировой ткани демонстрировал повышенную экспрессию как общей фракции eNOS, так и ее фосфорилированных форм.

Об авторах

Лев Александрович Богданов
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

кандидат биологических наук научный сотрудник лаборатории молекулярной, трансляционной и цифровой медицины отдела экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация



Егор Андреевич Кондратьев
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

младший научный сотрудник лаборатории молекулярной, трансляционной и цифровой медицины отдела экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация



Владислав Александрович Кошелев
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

младший научный сотрудник лаборатории молекулярной, трансляционной и цифровой медицины отдела экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация



Ринат Авхадиевич Мухамадияров
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

кандидат биологических наук старший научный сотрудник лаборатории молекулярной, трансляционной и цифровой медицины отдела экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация



Анастасия Юрьевна Каноныкина
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

младший научный сотрудник лаборатории молекулярной, трансляционной и цифровой медицины отдела экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация



Анастасия Ивановна Лазебная
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

младший научный сотрудник лаборатории молекулярной, трансляционной и цифровой медицины отдела экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация



Арина Евгеньевна Тюрина
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

младший научный сотрудник лаборатории молекулярной, трансляционной и цифровой медицины отдела экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация



Антон Геннадьевич Кутихин
Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

доктор медицинских наук заведующий отделом экспериментальной медицины федерального государственного бюджетного научного учреждения «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний», Кемерово, Российская Федерация



Список литературы

1. Kutikhin AG, Shishkova DK, Velikanova EA, Sinitsky MY, Sinitskaya AV, Markova VE. Endothelial Dysfunction in the Context of Blood-Brain Barrier Modeling. J Evol Biochem Physiol. 2022;58(3):781-806. doi: 10.1134/S0022093022030139.

2. Gimbrone MA Jr, García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016;118(4):620-36. doi: 10.1161/CIRCRESAHA.115.306301.

3. Шишкова Д.К., Фролов А.В., Маркова В.Е., Маркова Ю.О., Каноныкина А.Ю., Лазебная А.И., Матвеева В.Г., Торгунакова Е.А., Кутихин А.Г. Современные подходы к моделированию дисфункции эндотелия и системному поиску ее циркулирующих маркеров. Комплексные проблемы сердечно-сосудистых заболеваний. 2024. Т. 13. № S3. С. 173-190. doi: 10.17802/2306-1278-2024-13-3S-173-190.

4. Богданов Л.А., Кошелев В.А., Мухамадияров Р.А., Каноныкина А.Ю., Лазебная А.И., Кондратьев Е.А., Степанов А.Д., Кутихин А.Г. Современные подходы к идентификации клеточных маркеров дисфункции эндотелия. Комплексные проблемы сердечно-сосудистых заболеваний. 2024. Т. 13. № S3. С. 191-207. doi: 10.17802/2306-1278-2024-13-3S-191-207.

5. da Silva FC, de Araújo BJ, Cordeiro CS, Arruda VM, Faria BQ, Guerra JFDC, Araújo TG, Fürstenau CR. Endothelial dysfunction due to the inhibition of the synthesis of nitric oxide: Proposal and characterization of an in vitro cellular model. Front Physiol. 2022;13:978378. doi: 10.3389/fphys.2022.978378.

6. Ghosh S, Gupta M, Xu W, Mavrakis DA, Janocha AJ, Comhair SA, Haque MM, Stuehr DJ, Yu J, Polgar P, Naga Prasad SV, Erzurum SC. Phosphorylation inactivation of endothelial nitric oxide synthesis in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2016;310(11):L1199-205. doi: 10.1152/ajplung.00092.2016.

7. Li G, Zhang H, Zhao L, Zhang Y, Yan D, Liu Y. Angiotensin-converting enzyme 2 activation ameliorates pulmonary endothelial dysfunction in rats with pulmonary arterial hypertension through mediating phosphorylation of endothelial nitric oxide synthase. J Am Soc Hypertens. 2017;11(12):842-852. doi: 10.1016/j.jash.2017.10.009.

8. Förstermann U, Xia N, Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ Res. 2017;120(4):713-735. doi: 10.1161/CIRCRESAHA.116.309326.

9. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829-37, 837a-837d. doi: 10.1093/eurheartj/ehr304.

10. Qian J, Fulton D. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front Physiol. 2013;4:347. doi: 10.3389/fphys.2013.00347.

11. Heiss EH, Dirsch VM. Regulation of eNOS enzyme activity by posttranslational modification. Curr Pharm Des. 2014;20(22):3503-13. doi: 10.2174/13816128113196660745.

12. Iring A, Jin YJ, Albarrán-Juárez J, Siragusa M, Wang S, Dancs PT, Nakayama A, Tonack S, Chen M, Künne C, Sokol AM, Günther S, Martínez A, Fleming I, Wettschureck N, Graumann J, Weinstein LS, Offermanns S. Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. J Clin Invest. 2019;129(7):2775-2791. doi: 10.1172/JCI123825.

13. Michell BJ, Chen Zp, Tiganis T, Stapleton D, Katsis F, Power DA, Sim AT, Kemp BE. Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem. 2001;276(21):17625-8. doi: 10.1074/jbc.C100122200.

14. Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R. Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res. 2001;88(11):E68-75. doi: 10.1161/hh1101.092677.

15. Lee CH, Wei YW, Huang YT, Lin YT, Lee YC, Lee KH, Lu PJ. CDK5 phosphorylates eNOS at Ser-113 and regulates NO production. J Cell Biochem. 2010;110(1):112-7. doi: 10.1002/jcb.22515.

16. Kennard S, Ruan L, Buffett RJ, Fulton D, Venema RC. TNFα reduces eNOS activity in endothelial cells through serine 116 phosphorylation and Pin1 binding: Confirmation of a direct, inhibitory interaction of Pin1 with eNOS. Vascul Pharmacol. 2016;81:61-8. doi: 10.1016/j.vph.2016.04.003.

17. Li C, Ruan L, Sood SG, Papapetropoulos A, Fulton D, Venema RC. Role of eNOS phosphorylation at Ser-116 in regulation of eNOS activity in endothelial cells. Vascul Pharmacol. 2007;47(5-6):257-64. doi: 10.1016/j.vph.2007.07.001.

18. Shishkova D, Markova V, Markova Y, Sinitsky M, Sinitskaya A, Matveeva V, Torgunakova E, Lazebnaya A, Stepanov A, Kutikhin A. Physiological Concentrations of Calciprotein Particles Trigger Activation and Pro-Inflammatory Response in Endothelial Cells and Monocytes. Biochemistry (Mosc). 2025;90(1):132-160. doi: 10.1134/S0006297924604064.

19. Ku KH, Dubinsky MK, Sukumar AN, Subramaniam N, Feasson MYM, Nair R, Tran E, Steer BM, Knight BJ, Marsden PA. In Vivo Function of Flow-Responsive Cis-DNA Elements of eNOS Gene: A Role for Chromatin-Based Mechanisms. Circulation. 2021;144(5):365-381. doi: 10.1161/CIRCULATIONAHA.120.051078.

20. Jin YJ, Chennupati R, Li R, Liang G, Wang S, Iring A, Graumann J, Wettschureck N, Offermanns S. Protein kinase N2 mediates flow-induced endothelial NOS activation and vascular tone regulation. J Clin Invest. 2021;131(21):e145734. doi: 10.1172/JCI145734.

21. Cattaneo MG, Vanetti C, Decimo I, Di Chio M, Martano G, Garrone G, Bifari F, Vicentini LM. Sex-specific eNOS activity and function in human endothelial cells. Sci Rep. 2017;7(1):9612. doi: 10.1038/s41598-017-10139-x.

22. Smith AR, Visioli F, Frei B, Hagen TM. Age-related changes in endothelial nitric oxide synthase phosphorylation and nitric oxide dependent vasodilation: evidence for a novel mechanism involving sphingomyelinase and ceramide-activated phosphatase 2A. Aging Cell. 2006;5(5):391-400. doi: 10.1111/j.1474-9726.2006.00232.x.

23. Sansbury BE, Cummins TD, Tang Y, Hellmann J, Holden CR, Harbeson MA, Chen Y, Patel RP, Spite M, Bhatnagar A, Hill BG. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ Res. 2012 Oct 12;111(9):1176-89. doi: 10.1161/CIRCRESAHA.112.266395.

24. Bu S, Nguyen HC, Nikfarjam S, Michels DCR, Rasheed B, Maheshkumar S, Singh S, Singh KK. Endothelial cell-specific loss of eNOS differentially affects endothelial function. PLoS One. 2022;17(9):e0274487. doi: 10.1371/journal.pone.0274487.

25. Shu X, Keller TC 4th, Begandt D, Butcher JT, Biwer L, Keller AS, Columbus L, Isakson BE. Endothelial nitric oxide synthase in the microcirculation. Cell Mol Life Sci. 2015;72(23):4561-75. doi: 10.1007/s00018-015-2021-0.

26. Fries DM, Paxinou E, Themistocleous M, Swanberg E, Griendling KK, Salvemini D, Slot JW, Heijnen HF, Hazen SL, Ischiropoulos H. Expression of inducible nitric-oxide synthase and intracellular protein tyrosine nitration in vascular smooth muscle cells: role of reactive oxygen species. J Biol Chem. 2003;278(25):22901-7. doi: 10.1074/jbc.M210806200.

27. Singh A, Sventek P, Larivière R, Thibault G, Schiffrin EL. Inducible nitric oxide synthase in vascular smooth muscle cells from prehypertensive spontaneously hypertensive rats. Am J Hypertens. 1996;9(9):867-77. doi: 10.1016/s0895-7061(96)00104-5.

28. Di Pietro N, Di Tomo P, Di Silvestre S, Giardinelli A, Pipino C, Morabito C, Formoso G, Mariggiò MA, Pandolfi A. Increased iNOS activity in vascular smooth muscle cells from diabetic rats: potential role of Ca(2+)/calmodulin-dependent protein kinase II delta 2 (CaMKIIdelta(2)). Atherosclerosis. 2013;226(1):88-94. doi: 10.1016/j.atherosclerosis.2012.10.062.

29. Preeclampsia is associated with loss of neuronal nitric oxide synthase expression in vascular smooth muscle cells of the human umbilical cord. Schönfelder G, Fuhr N, Hadzidiakos D, John M, Hopp H, Paul M. Histopathology. 2004;44(2):116-28. doi: 10.1111/j.1365-2559.2004.01806.x.

30. Boulanger CM, Heymes C, Benessiano J, Geske RS, Lévy BI, Vanhoutte PM. Neuronal nitric oxide synthase is expressed in rat vascular smooth muscle cells: activation by angiotensin II in hypertension. Circ Res. 1998;83(12):1271-8. doi: 10.1161/01.res.83.12.1271.

31. Gomez-Alamillo C, Juncos LA, Cases A, Haas JA, Romero JC. Interactions between vasoconstrictors and vasodilators in regulating hemodynamics of distinct vascular beds. Hypertension. 2003;42(4):831-6. doi: 10.1161/01.HYP.0000088854.04562.DA.

32. Bruno RM, Ghiadoni L, Seravalle G, Dell'oro R, Taddei S, Grassi G. Sympathetic regulation of vascular function in health and disease. Front Physiol. 2012;3:284. doi: 10.3389/fphys.2012.00284.

33. Sheng Y, Zhu L. The crosstalk between autonomic nervous system and blood vessels. Int J Physiol Pathophysiol Pharmacol. 2018;10(1):17-28.

34. Durand MJ, Gutterman DD. Diversity in mechanisms of endothelium-dependent vasodilation in health and disease. Microcirculation. 2013;20(3):239-47. doi: 10.1111/micc.12040.

35. Maruhashi T, Kihara Y, Higashi Y. Assessment of endothelium-independent vasodilation: from methodology to clinical perspectives. J Hypertens. 2018;36(7):1460-1467. doi: 10.1097/HJH.0000000000001750.


Дополнительные файлы

Рецензия

Для цитирования:


Богданов Л.А., Кондратьев Е.А., Кошелев В.А., Мухамадияров Р.А., Каноныкина А.Ю., Лазебная А.И., Тюрина А.Е., Кутихин А.Г. СРАВНЕНИЕ ЭКСПРЕССИИ МОДИФИЦИРОВАННЫХ ФОРМ ЭНДОТЕЛИАЛЬНОЙ СИНТАЗЫ МОНООКСИДА АЗОТА У ГИПЕР- И НОРМОТЕНЗИВНЫХ КРЫС. Комплексные проблемы сердечно-сосудистых заболеваний. 2025;14(2):110-126. https://doi.org/10.17802/2306-1278-2025-14-2-110-126

For citation:


Bogdanov L.A., Kondratiev E.A., Koshelev V.A., Mukhamadiyarov R.A., Kanonykina A.Yu., Lazebnaya A.A., Tyurina A.E., Kutikhin A.G. COMPARISON OF MODIFIED ENDOTHELIAL NITRIC OXIDE SYNTHASE FORMS IN HYPERTENSIVE AND NORMOTENSIVE RATS. Complex Issues of Cardiovascular Diseases. 2025;14(2):110-126. (In Russ.) https://doi.org/10.17802/2306-1278-2025-14-2-110-126

Просмотров: 114


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)