Preview

Complex Issues of Cardiovascular Diseases

Advanced search

GENETIC ARCHITECTURE OF CORONARY MICROVASCULAR DYSFUNCTION: POLYMORPHISMS, SIGNALING PATHWAYS, AND MOLECULAR TARGETS

Abstract

Highlights     

  • Coronary microvascular dysfunction (CMD) is a pathophysiological condition characterized by impaired regulation of coronary microvascular tone and structure in the absence of obstructive epicardial artery disease. CMD is now recognized as a major contributor to myocardial ischemia, particularly in patients with angina and normal coronary angiograms (INOCA), as well as in cases of myocardial infarction with non-obstructive coronary arteries (MINOCA). The key mechanisms underlying CMD include impaired endothelium-dependent vasodilation, excessive vasoconstriction, inflammation, and capillary remodeling.
  • The molecular regulation of coronary blood flow involves a complex network of signaling cascades, including ion channels, nitric oxide (NO), endothelin-1, cytokines, and regulatory non-coding RNAs. Single nucleotide polymorphisms (SNPs) in genes encoding these mediators and enzymes significantly affect microvascular function. Notably, SNPs in NOS3, KCNJ11, JAK2, HMOX1, VEGFA, and other genes have been associated with altered vasomotor reactivity, oxidative stress, inflammatory activation, and impaired angiogenesis.
  • MicroRNAs (miRNAs) play a particularly important role in the pathogenesis of CMD by regulating gene expression at the post-transcriptional level. Dysregulation of miRNAs such as miR-126, miR-155, and miR-30 has been linked to endothelial dysfunction, reduced capillary density, and impaired myocardial energy metabolism. The interplay of molecular and genetic factors provides a mechanistic framework for CMD and offers new opportunities for personalized approaches in the diagnosis, prognosis, and treatment of microvascular forms of ischemic heart disease.

 

Abstract

Coronary microvascular dysfunction (CMD) has increasingly been recognized as an independent and clinically significant pathophysiological mechanism of myocardial ischemia, even in the absence of obstructive coronary artery disease. CMD is caused by both functional impairments, such as imbalance between vasodilation and vasoconstriction–and structural alterations of the microcirculatory network. Recent research highlights the crucial role of molecular and genetic factors in the development of CMD, including single nucleotide polymorphisms (SNPs) in genes encoding endothelial nitric oxide synthase (NOS3), ion channel subunits (KCNJ11, CACNA1C), inflammatory and angiogenic mediators (JAK2, VEGFA, HMOX1). In addition, the antioxidant system plays an important role in the pathogenesis of coronary microcirculatory dysfunction, which is involved in maintaining vascular homeostasis and protecting against oxidative stress. The main studied genes of the antioxidant system include SOD1–3, GPX1, CAT, HMOX1 and NOX2/NOX4, which provide a balance of production and utilization of reactive oxygen species and play a significant role in the pathophysiology of the vascular wall. Of particular interest are microRNAs that regulate the expression of genes involved in vascular reactivity, angiogenesis, oxidative stress, and inflammation. Dysregulation of microRNAs such as miR-126, miR-155, and miR-30 has been associated with endothelial dysfunction and capillary remodeling. This review explores key signaling pathways and molecular mechanisms underlying CMD, with a focus on their genetic and epigenetic modulation. A better understanding of these processes opens new perspectives for the development of personalized diagnostic and therapeutic approaches in microvascular forms of ischemic heart disease.

About the Authors

Anzhela K. Sheikhgasova
Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

student, Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation, Astrakhan, Russian Federation



Diana A. Cherkashina
Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

student, Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation, Astrakhan, Russian Federation



Fatima A. Salavatova
Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

student, Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation, Astrakhan, Russian Federation



Rafida M. Alieva
Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

student, Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation, Astrakhan, Russian Federation



Farida M. Alieva
Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

student, Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation, Astrakhan, Russian Federation



Natalya A. Nenastyeva
Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

student, Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation, Astrakhan, Russian Federation



Ziyarat N. Adiguzelova
Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

student, Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation, Astrakhan, Russian Federation



Gyulshan A. Kerimova
Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

student, Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation, Astrakhan, Russian Federation



Patimat K. Abdurakhmanova
Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

student, Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation, Astrakhan, Russian Federation



Eduard R. Muradkhanov
Stavropol State Medical University
Russian Federation

student, Stavropol State Medical University, Stavropol, Russian Federation



Vladislav E. Kushnarev
Stavropol State Medical University
Russian Federation

student, Stavropol State Medical University, Stavropol, Russian Federation



Aleksandra A. Govorukha
V.I. Vernadsky Crimean Federal University
Russian Federation

student, V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation



Veronika A. Anfimiadi
Federal State Budgetary Educational Institution of Higher Education “Rostov State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

student, Federal State Budgetary Educational Institution of Higher Education “Rostov State Medical University” of the Ministry of Healthcare of the Russian Federation, Rostov-on-Don, Russian Federation



References

1. Sapin M.R., Milyukov V.E., Dolgov E.N., Zharikova T.S. Coronary vessels and myocardium microcirculatory bed in normal heart and ischemic heart disease. Regional blood circulation and microcirculation. 2013;12(1):5-10. (In Russ.). https://doi.org/10.24884/1682-6655-2013-12-1-5-10

2. Kopylov FIu, Bykova AA, Vasilevsky YuV, Simakov SS. Role of measurement of fractional flow reserve in coronary artery atherosclerosis. Therapeutic Archive. 2015;87(9):106‑113. (In Russ.) https://doi.org/10.17116/terarkh2015879106-113

3. Hong KS, Kim K, Hill MA. Regulation of blood flow in small arteries: mechanosensory events underlying myogenic vasoconstriction. J Exerc Rehabil. 2020;16(3):207-215. doi: 10.12965/jer.2040432.216.

4. Fedele F, Severino P, Bruno N, Stio R, Caira C, D'Ambrosi A, Brasolin B, Ohanyan V, Mancone M. Role of ion channels in coronary microcirculation: a review of the literature. Future Cardiol. 2013;9(6):897-905. doi: 10.2217/fca.13.65.

5. Kopyeva K.V., Maltseva A.N., Mochula A.V., Grakova E.V., Zavadovsky K.V. Adverse cardiovascular events in patients with coronary microvascular dysfunction: results of a 12-month follow-up with a control group. Russian Journal of Cardiology. 2023;28(3):5269. (In Russ.). https://doi.org/10.15829/1560-4071-2023-5269

6. Sueda S, Sakaue T. Intracoronary ergonovine testing among 505 consecutive Japanese patients with angina-like chest pain and unobstructed coronary artery disease. Heart Vessels. 2022;37(6):931-941. doi: 10.1007/s00380-021-02002-x.

7. Kopeva K.V., Maltseva A.N., Mochula A.V., et al. The role of markers of endothelial dysfunction in the pathogenesis of coronary microvascular dysfunction in patients with non-obstructive coronary artery disease. Bulletin of Siberian Medicine. 2024;23(3):49-58 (In Russ.). https://doi.org/10.20538/1682-0363-2024-3-49-58

8. Yildiz M, Ashokprabhu N, Shewale A, et al. Myocardial infarction with non-obstructive coronary arteries (MINOCA). Front Cardiovasc Med. 2022;9:1032436. doi: 10.3389/fcvm.2022.1032436.

9. Kopeva KV, Maltseva AN, Mochula AV, et al. The role of microvascular dysfunction in the pathogenesis of heart failure with preserved efficiency fraction. Kazan medical journal. 2022;103(6):918-927. (In Russ.). doi: 10.17816/KMJ109034

10. Boytsov S.A., Shakhnovich R.M., Tereschenko S.N., et al. Features of the Reperfusion Therapy for ST-Segment Elevation Myocardial Infarction According to the Russian Registry of Acute Myocardial Infarction – REGION-IM. Kardiologiia. 2024;64(2):3-17. https://doi.org/10.18087/cardio.2024.2.n2601

11. Sherashov A.V., Shilova A.S., Pershina E.S., et al. Myocardial infarction with nonobstructive coronary arteries. Kardiologiia. 2020;60(3):89-95. (In Russ.) https://doi.org/10.18087/cardio.2020.3.n881

12. Vrints C, Andreotti F, Koskinas KC, et al. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur Heart J. 2024;45(36):3415-3537. doi: 10.1093/eurheartj/ehae177.

13. Wium-Andersen MK, Villumsen MD, Wium-Andersen IK, et al. The familial and genetic contribution to the association between depression and cardiovascular disease: a twin cohort study. Mol Psychiatry. 2021;26(8):4245-4253. doi: 10.1038/s41380-020-00954-6.

14. Shi S, Zhong VW. Genetic susceptibility modifies the association between egg consumption and coronary artery disease. Am J Clin Nutr. 2023;118(4):735-736. doi: 10.1016/j.ajcnut.2023.07.021

15. Stein AP, Harder J, Holmes HR, et al. Single Nucleotide Polymorphisms in Coronary Microvascular Dysfunction. J Am Heart Assoc. 2024;13(4):e032137. doi: 10.1161/JAHA.123.032137.

16. Severino P, D'Amato A, Pucci M, et al. Ischemic Heart Disease and Heart Failure: Role of Coronary Ion Channels. Int J Mol Sci. 2020 ;21(9):3167. doi: 10.3390/ijms21093167.

17. Cheng J, Wen J, Wang N, et al. Ion Channels and Vascular Diseases. Arterioscler Thromb Vasc Biol. 2019;39(5):e146-e156. doi: 10.1161/ATVBAHA.119.312004

18. Goodwill AG, Dick GM, Kiel AM, Tune JD. Regulation of Coronary Blood Flow. Compr Physiol. 2017;7(2):321-382. doi: 10.1002/cphy.c160016

19. Yang HQ, Martinez-Ortiz W, Hwang J, et al. Palmitoylation of the KATP channel Kir6.2 subunit promotes channel opening by regulating PIP2 sensitivity. Proc Natl Acad Sci U S A. 2020;117(19):10593-10602. doi: 10.1073/pnas.1918088117.

20. Li Y, Aziz Q, Tinker A. The Pharmacology of ATP-Sensitive K+ Channels (KATP). Handb Exp Pharmacol. 2021;267:357-378. doi: 10.1007/164_2021_466.

21. Severino P, D'Amato A, Mancone M, et al. Protection against Ischemic Heart Disease: A Joint Role for eNOS and the KATP Channel. Int J Mol Sci. 2023;24(9):7927. doi: 10.3390/ijms24097927.

22. Yang M, Dart C, Kamishima T, Quayle JM. Hypoxia and metabolic inhibitors alter the intracellular ATP:ADP ratio and membrane potential in human coronary artery smooth muscle cells. PeerJ. 2020;8:e10344. doi: 10.7717/peerj.10344.

23. Severino P, D'Amato A, Netti L, et al. Susceptibility to ischaemic heart disease: Focusing on genetic variants for ATP-sensitive potassium channel beyond traditional risk factors. Eur J Prev Cardiol. 2021;28(13):1495-1500. doi: 10.1177/2047487320926780.

24. Do Couto NF, Fancher I, Granados ST, et al. Impairment of microvascular endothelial Kir2.1 channels contributes to endothelial dysfunction in human hypertension. Am J Physiol Heart Circ Physiol. 2024;327(4):H1004-H1015. doi: 10.1152/ajpheart.00732.2023.

25. Severino P, D'Amato A, Prosperi S, et al. Potential Role of eNOS Genetic Variants in Ischemic Heart Disease Susceptibility and Clinical Presentation. J Cardiovasc Dev Dis. 2021;8(9):116. doi: 10.3390/jcdd8090116.

26. Dwenger MM, Ohanyan V, Navedo MF, Nystoriak MA. Coronary microvascular Kv1 channels as regulatory sensors of intracellular pyridine nucleotide redox potential. Microcirculation. 2018;25(1):10.1111/micc.12426. doi: 10.1111/micc.12426.

27. Xing H, Sabe SA, Shi G, et al. Role of Protein Kinase C in Metabolic Regulation of Coronary Endothelial Small Conductance Calcium-Activated Potassium Channels. J Am Heart Assoc. 2024;13(3):e031028. doi: 10.1161/JAHA.123.031028.

28. Halikov AA, Kildyushov EM, Kuznetsov KO, et al. Use of microRNA to estimate time science death: review. Russian Journal of Forensic Medicine. 2021;7(3):132-138. doi: 10.17816/fm412

29. Kong AS, Lai KS, Lim SE, et al. miRNA in Ischemic Heart Disease and Its Potential as Biomarkers: A Comprehensive Review. Int J Mol Sci. 2022;23(16):9001. doi: 10.3390/ijms23169001.

30. Sun L, Wang J, Lei J, et al. Differential gene expression and miRNA regulatory network in coronary slow flow. Sci Rep. 2024;14(1):8419. doi: 10.1038/s41598-024-58745-w.

31. Seyhan AA. Trials and Tribulations of MicroRNA Therapeutics. Int J Mol Sci. 2024;25(3):1469. Doi: 10.3390/ijms25031469.

32. Li X, Sun M, Wang Z, et al. Recent advances in mechanistic studies of heart failure with preserved ejection fraction and its comorbidities-Role of microRNAs. Eur J Clin Invest. 2024;54(3):e14130. doi: 10.1111/eci.14130.

33. Singh R, Yadav V, Kumar S, Saini N. MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1. Sci Rep. 2015;5:17454. doi: 10.1038/srep17454.

34. Wakabayashi I, Eguchi R, Sotoda Y, et al. Blood levels of microRNAs associated with ischemic heart disease differ between Austrians and Japanese: a pilot study. Sci Rep. 2020;10(1):13628. doi: 10.1038/s41598-020-69332-0.

35. Nakagawa Y, Nishikimi T, Kuwahara K, et al. MiR30-GALNT1/2 Axis-Mediated Glycosylation Contributes to the Increased Secretion of Inactive Human Prohormone for Brain Natriuretic Peptide (proBNP) From Failing Hearts. J Am Heart Assoc. 2017;6(2):e003601. doi: 10.1161/JAHA.116.003601.

36. Horton WB, Barrett EJ. Microvascular Dysfunction in Diabetes Mellitus and Cardiometabolic Disease. Endocr Rev. 2021;42(1):29-55. doi: 10.1210/endrev/bnaa025.

37. Veitch S, Njock MS, Chandy M, et al. MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes. Cardiovasc Diabetol. 2022;21(1):31. doi: 10.1186/s12933-022-01458-z.

38. Hu Y, Xiong J, Wen H, et al. MiR-98-5p promotes ischemia/reperfusion-induced microvascular dysfunction by targeting NGF and is a potential biomarker for microvascular reperfusion. Microcirculation. 2021;28(1):e12657. doi: 10.1111/micc.12657.

39. Juni RP, Kocken JMM, Abreu RC, et al. MicroRNA-216a is essential for cardiac angiogenesis. Mol Ther. 2023;31(6):1807-1828. doi: 10.1016/j.ymthe.2023.04.007

40. Shah RV, Rong J, Larson MG, et al. Associations of Circulating Extracellular RNAs With Myocardial Remodeling and Heart Failure. JAMA Cardiol. 2018;3(9):871-876. doi: 10.1001/jamacardio.2018.2371.

41. Greco S, Zaccagnini G, Perfetti A, et al. Long noncoding RNA dysregulation in ischemic heart failure. J Transl Med. 2016;14(1):183. doi: 10.1186/s12967-016-0926-5.

42. Greco S, Gorospe M, Martelli F. Noncoding RNA in age-related cardiovascular diseases. J Mol Cell Cardiol. 2015;83:142-55. doi: 10.1016/j.yjmcc.2015.01.011.

43. Thum T, Condorelli G. Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ Res. 2015;116(4):751-62. doi: 10.1161/CIRCRESAHA.116.303549.

44. Yang KC, Yamada KA, Patel AY, et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation. 2014;129(9):1009-21. doi: 10.1161/CIRCULATIONAHA.113.003863.

45. Yoshino S, Cilluffo R, Best PJ, et al. Single nucleotide polymorphisms associated with abnormal coronary microvascular function. Coron Artery Dis. 2014;25(4):281-9. doi: 10.1097/MCA.0000000000000104.

46. Cugino D, Gianfagna F, Santimone I, et al. Type 2 diabetes and polymorphisms on chromosome 9p21: a meta-analysis. Nutr Metab Cardiovasc Dis. 2012;22(8):619-25. doi: 10.1016/j.numecd.2010.11.010

47. Holdt LM, Teupser D. From genotype to phenotype in human atherosclerosis--recent findings. Curr Opin Lipidol. 2013;24(5):410-8. doi: 10.1097/MOL.0b013e3283654e7c.

48. Holdt LM, Hoffmann S, Sass K, et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9(7):e1003588. doi: 10.1371/journal.pgen.1003588

49. Li YY, Wang H, Zhang YY. CDKN2B-AS1 gene rs4977574 A/G polymorphism and coronary heart disease: A meta-analysis of 40,979 subjects. J Cell Mol Med. 2021;25(18):8877-8889. doi: 10.1111/jcmm.16849.

50. Fernandes T, Magalhães FC, Roque FR, et al. Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: role of microRNAs-16, -21, and -126. Hypertension. 2012;59(2):513-20. doi: 10.1161/HYPERTENSIONAHA.111.185801.

51. Gomes JL, Fernandes T, Soci UP, et al. Obesity Downregulates MicroRNA-126 Inducing Capillary Rarefaction in Skeletal Muscle: Effects of Aerobic Exercise Training. Oxid Med Cell Longev. 2017;2017:2415246. doi: 10.1155/2017/2415246.

52. Soboleva G.N., Fedulov V.K., Samko A.N., et al. Prognostic value of endothelial dysfunction in coronary and brachial arteries, and common risk factors in development of cardiovascular complications in patients with microvascular angina. Russian Journal of Cardiology. 2017;(3):54-58. (In Russ.). https://doi.org/10.15829/1560-4071-2017-3-54-58

53. Alexy T, Detterich J, Connes P, et al. Physical Properties of Blood and their Relationship to Clinical Conditions. Front Physiol. 2022;13:906768. doi: 10.3389/fphys.2022.906768.

54. Rajendran P, Rengarajan T, Thangavel J, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057-69. doi: 10.7150/ijbs.7502

55. Shan J, Liu S, Liu Y, Zhu J. C/EBP Homologous Protein: A Potential Therapeutic Target for Atherosclerosis Treatment? Cardiovasc Drugs Ther. 2024;38(3):415. doi: 10.1007/s10557-022-07424-x.

56. Davenport AP, Hyndman KA, Dhaun N, et al. Endothelin. Pharmacol Rev. 2016;68(2):357-418. doi: 10.1124/pr.115.011833.

57. Ford TJ, Corcoran D, Padmanabhan S, et al. Genetic dysregulation of endothelin-1 is implicated in coronary microvascular dysfunction. Eur Heart J. 2020;41(34):3239-3252. doi: 10.1093/eurheartj/ehz915.

58. Hynynen MM, Khalil RA. The vascular endothelin system in hypertension--recent patents and discoveries. Recent Pat Cardiovasc Drug Discov. 2006;1(1):95-108. doi: 10.2174/157489006775244263.

59. Rodríguez-Pascual F, Redondo-Horcajo M, Lamas S. Functional cooperation between Smad proteins and activator protein-1 regulates transforming growth factor-beta-mediated induction of endothelin-1 expression. Circ Res. 2003;92(12):1288-95. doi: 10.1161/01.RES.0000078491.79697.7F.

60. Loomis ED, Sullivan JC, Osmond DA, et al. Endothelin mediates superoxide production and vasoconstriction through activation of NADPH oxidase and uncoupled nitric-oxide synthase in the rat aorta. J Pharmacol Exp Ther. 2005;315(3):1058-64. doi: 10.1124/jpet.105.091728.

61. Xu H, Lin L, Yuan WJ. Antiarrhythmic effect of endothelin-A receptor antagonist on acute ischemic arrhythmia in isolated rat heart. Acta Pharmacol Sin. 2003;24(1):37-44.

62. Virdis A, Schiffrin EL. Vascular inflammation: a role in vascular disease in hypertension? Curr Opin Nephrol Hypertens. 2003;12(2):181-7. doi: 10.1097/00041552-200303000-00009.

63. Lin CC, Hsieh HL, Shih RH, et al. Up-regulation of COX-2/PGE2 by endothelin-1 via MAPK-dependent NF-κB pathway in mouse brain microvascular endothelial cells. Cell Commun Signal. 2013;11(1):8. doi: 10.1186/1478-811X-11-8.

64. Gupta RM, Hadaya J, Trehan A, et al. A Genetic Variant Associated with Five Vascular Diseases Is a Distal Regulator of Endothelin-1 Gene Expression. Cell. 2017;170(3):522-533.e15. doi: 10.1016/j.cell.2017.06.049.

65. Cox ID, Bøtker HE, Bagger JP, et al. Elevated endothelin concentrations are associated with reduced coronary vasomotor responses in patients with chest pain and normal coronary arteriograms. J Am Coll Cardiol. 1999;34(2):455-60. doi: 10.1016/s0735-1097(99)00224-7

66. Konijn LCD, Takx RAP, Mali WPTM, et al. Different Lower Extremity Arterial Calcification Patterns in Patients with Chronic Limb-Threatening Ischemia Compared with Asymptomatic Controls. J Pers Med. 2021;11(6):493. doi: 10.3390/jpm11060493.

67. Matsuzawa Y, Lerman A. Endothelial dysfunction and coronary artery disease: assessment, prognosis, and treatment. Coron Artery Dis. 2014;25(8):713-24. doi: 10.1097/MCA.0000000000000178.

68. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23(2):168-75. doi: 10.1161/01.atv.0000051384.43104.fc.

69. Eroglu E, Kocyigit I, Lindholm B. The endothelin system as target for therapeutic interventions in cardiovascular and renal disease. Clin Chim Acta. 2020;506:92-106. doi: 10.1016/j.cca.2020.03.008.

70. Zhang Q, Church JE, Jagnandan D, et al. Functional relevance of Golgi- and plasma membrane-localized endothelial NO synthase in reconstituted endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26(5):1015-21. doi: 10.1161/01.ATV.0000216044.49494.c4.

71. Fedele G, Castiglioni S, Trapani V, et al. Impact of Inducible Nitric Oxide Synthase Activation on Endothelial Behavior under Magnesium Deficiency. Nutrients. 2024;16(10):1406. doi: 10.3390/nu16101406.

72. Mehta PK, Huang J, Levit RD, et al. Ischemia and no obstructive coronary arteries (INOCA): A narrative review. Atherosclerosis. 2022;363:8-21. doi: 10.1016/j.atherosclerosis.2022.11.009.

73. Nakayama M, Yasue H, Yoshimura M, et al. T-786-->C mutation in the 5'-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation. 1999;99(22):2864-70. doi: 10.1161/01.cir.99.22.2864.

74. Joshi MS, Mineo C, Shaul PW, Bauer JA. Biochemical consequences of the NOS3 Glu298Asp variation in human endothelium: altered caveolar localization and impaired response to shear. FASEB J. 2007;21(11):2655-63. doi: 10.1096/fj.06-7088com.

75. Tousoulis D, Kampoli AM, Tentolouris C, et al. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol. 2012;10(1):4-18. doi: 10.2174/157016112798829760.

76. Niu W, Qi Y. An updated meta-analysis of endothelial nitric oxide synthase gene: three well-characterized polymorphisms with hypertension. PLoS One. 2011;6(9):e24266. doi: 10.1371/journal.pone.0024266.

77. Nassereddine S, Hassani Idrissi H, Habbal R, et al. The polymorphism G894 T of endothelial nitric oxide synthase (eNOS) gene is associated with susceptibility to essential hypertension (EH) in Morocco. BMC Med Genet. 2018;19(1):127. doi: 10.1186/s12881-018-0638-1

78. Aoyama R, Kubota Y, Tara S, et al. Vascular Endothelial Dysfunction in Myeloproliferative Neoplasms and Gene Mutations. Int Heart J. 2022;63(4):661-668. doi: 10.1536/ihj.22-003

79. Wiszniak S, Schwarz Q. Exploring the Intracrine Functions of VEGF-A. Biomolecules. 2021;11(1):128. doi: 10.3390/biom11010128

80. Giordano FJ, Gerber HP, Williams SP, et al. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci U S A. 2001;98(10):5780-5. doi: 10.1073/pnas.091415198.

81. Carmeliet P, Ng YS, Nuyens D, et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med. 1999;5(5):495-502. doi: 10.1038/8379.

82. Dittrich GM, Froese N, Wang X, et al. Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis. Basic Res Cardiol. 2021;116(1):26. doi: 10.1007/s00395-021-00862-y.

83. Taimeh Z, Loughran J, Birks EJ, Bolli R. Vascular endothelial growth factor in heart failure. Nat Rev Cardiol. 2013;10(9):519-30. doi: 10.1038/nrcardio.2013.94.

84. Tang J, Wang J, Kong X, et al. Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway. Exp Cell Res. 2009;315(20):3521-31. doi: 10.1016/j.yexcr.2009.09.026.

85. Friehs I, Barillas R, Vasilyev NV, et al. Vascular endothelial growth factor prevents apoptosis and preserves contractile function in hypertrophied infant heart. Circulation. 2006;114(1 Suppl):I290-5. doi: 10.1161/CIRCULATIONAHA.105.001289.

86. Zentilin L, Puligadda U, Lionetti V, et al. Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J. 2010;24(5):1467-78. doi: 10.1096/fj.09-143180.

87. Sato T, Takeda N. The roles of HIF-1α signaling in cardiovascular diseases. J Cardiol. 2023;81(2):202-208. doi: 10.1016/j.jjcc.2022.09.002.

88. Abraham D, Hofbauer R, Schäfer R, et al. Selective downregulation of VEGF-A(165), VEGF-R(1), and decreased capillary density in patients with dilative but not ischemic cardiomyopathy. Circ Res. 2000;87(8):644-7. doi: 10.1161/01.res.87.8.644.

89. Olkhovskiy I.A., Gorbenko A.S., Stolyar M.A., et al. Somatic mutation of the V617F JAK2 gene in patients of the cardiovascular diseases. Therapeutic Archive. 2019; 91 (7): 25–28. DOI: 10.26442/00403660.2019.07.000245

90. Hu X, Li J, Fu M, et al. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 2021;6(1):402. doi: 10.1038/s41392-021-00791-1.

91. Guy A, Gourdou-Latyszenok V, Le Lay N, et al. Vascular endothelial cell expression of JAK2V617F is sufficient to promote a pro-thrombotic state due to increased P-selectin expression. Haematologica. 2019;104(1):70-81. doi: 10.3324/haematol.2018.195321.

92. Beckman JD, DaSilva A, Aronovich E, et al. JAK-STAT inhibition reduces endothelial prothrombotic activation and leukocyte-endothelial proadhesive interactions. J Thromb Haemost. 2023;21(5):1366-1380. doi: 10.1016/j.jtha.2023.01.027

93. Guadall A, Lesteven E, Letort G, et al. Endothelial Cells Harbouring the JAK2V617F Mutation Display Pro-Adherent and Pro-Thrombotic Features. Thromb Haemost. 2018;118(9):1586-1599. doi: 10.1055/s-0038-1667015.

94. Mashiba J, Koike G, Kamiunten H, et al. Vasospastic angina and microvascular angina are differentially influenced by PON1 A632G polymorphism in the Japanese. Circ J. 2005;69(12):1466-71. doi: 10.1253/circj.69.1466.

95. Asleh R, Levy AP, Levy NS, et al. Haptoglobin Phenotype Is Associated With High-Density Lipoprotein-Bound Hemoglobin Content and Coronary Endothelial Dysfunction in Patients With Mild Nonobstructive Coronary Artery Disease. Arterioscler Thromb Vasc Biol. 2019;39(4):774-786. doi: 10.1161/ATVBAHA.118.312232.

96. Lai WK, Kan MY. Homocysteine-Induced Endothelial Dysfunction. Ann Nutr Metab. 2015;67(1):1-12. doi: 10.1159/000437098

97. Weng L, Taylor KD, Chen YD, et al. Genetic loci associated with nonobstructive coronary artery disease in Caucasian women. Physiol Genomics. 2016;48(1):12-20. doi: 10.1152/physiolgenomics.00067.2015

98. Wenzel P, Rossmann H, Müller C, et al. Heme oxygenase-1 suppresses a pro-inflammatory phenotype in monocytes and determines endothelial function and arterial hypertension in mice and humans. Eur Heart J. 2015;36(48):3437-46. doi: 10.1093/eurheartj/ehv544.

99. Ayer A, Zarjou A, Agarwal A, Stocker R. Heme Oxygenases in Cardiovascular Health and Disease. Physiol Rev. 2016;96(4):1449-508. doi: 10.1152/physrev.00003.2016.

100. Liang KW, Lee WJ, Lee IT, et al. Subjects with microvascular angina have longer GT repeats polymorphism in the haem oxygenase-1 gene promoter. Biomarkers. 2020;25(2):144-148. doi: 10.1080/1354750X.2020.1713214.


Review

For citations:


Sheikhgasova A.K., Cherkashina D.A., Salavatova F.A., Alieva R.M., Alieva F.M., Nenastyeva N.A., Adiguzelova Z.N., Kerimova G.A., Abdurakhmanova P.K., Muradkhanov E.R., Kushnarev V.E., Govorukha A.A., Anfimiadi V.A. GENETIC ARCHITECTURE OF CORONARY MICROVASCULAR DYSFUNCTION: POLYMORPHISMS, SIGNALING PATHWAYS, AND MOLECULAR TARGETS. Complex Issues of Cardiovascular Diseases. (In Russ.)

Views: 36


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)