INORGANIC COATINGS FOR IMPLANTS IN CARDIOVASCULAR SURGERY: CURRENT STATE OF THE ART (A REVIEW ARTICLE)
https://doi.org/10.17802/2306-1278-2025-14-3-192-202
Abstract
Highlights
- Cardiovascular diseases remain the leading cause of mortality worldwide, driving demand for effective implantable devices (stents, valves, vascular prostheses).
- Inorganic coatings play a pivotal role in enhancing implant biocompatibility, antithrombogenic properties, and long-term durability.
- This literature review critically examines both advantages and limitations of inorganic coatings for cardiovascular implants.
Abstract
Cardiovascular implants such as stents, valves, and vascular prostheses require continuous improvement to enhance their durability and biocompatibility. This review examines contemporary inorganic coatings, including titanium nitride, metal oxides, and diamond-like carbon coatings, which demonstrate potential for improving implant hemocompatibility. Particular focus is given to their role in preventing thrombosis, restenosis, and calcification. The paper analyzes both experimental and clinical data supporting the efficacy of these coatings.
About the Authors
Andrey V. ProtopopovRussian Federation
Postgraduate Student, Junior Researcher, Center for Surgery of the Aorta, Coronary and Peripheral Arteries, Institute of Circulation Pathology, Federal State Budgetary Institution “Meshalkin National Medical Research Center” of the Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
Maxim O. Zhulkov
Russian Federation
MD, PhD, Researcher, Center for Surgery of the Aorta, Coronary and Peripheral Arteries, Institute of Circulation Pathology, Federal State Budgetary Institution “Meshalkin National Medical Research Center” of the Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
Dmitry A. Sirota
Russian Federation
MD, PhD, Head of the Center for Surgery of the Aorta, Coronary and Peripheral Arteries, Institute of Circulation Pathology, Federal State Budgetary Institution “Meshalkin National Medical Research Center” of the Ministry of Health of Russian Federation, Novosibirsk, Russian Federation; Associate Professor, Department of Cardiovascular Surgery, Faculty of Advanced Training and Professional Retraining, Federal State Budgetary Educational Institution of Higher Education “Novosibirsk State Medical University” Ministry of Health of the Russian Federation Russian Federation, Novosibirsk, Russian Federation
Yaroslav M. Smirnov
Russian Federation
Anesthesia Nurse, Department of Anesthesiology and Intensive Care for Adult Patients, Federal State Budgetary Institution “Meshalkin National Medical Research Center” of the Ministry of Health of Russian Federation, Novosibirsk, Russian Federation; Medical Student, Faculty of Medicine, V. Zelman Institute of Medicine and Psychology, Federal State Autonomous Educational Institution of Higher Education “Novosibirsk National Research State University”, Novosibirsk, Russian Federation
Alexander S. Grenadyorov
Russian Federation
PhD, Senior Researcher, Laboratory of Applied Electronics, Deputy Director for Research, Federal State Budgetary Institution of Science “Institute of High Current Electronics” of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russian Federation
Maria A. Surovtseva
Russian Federation
MD, PhD, Laboratory Assistant, Laboratory of Experimental Surgery and Morphology, Institute of Experimental Biology and Medicine, Federal State Budgetary Institution “Meshalkin National Medical Research Center” of the Ministry of Health of Russian Federation, Novosibirsk, Russian Federation
References
1. Vaduganathan, M., Mensah, G. A., Turco, J. V., Fuster, V., & Roth, G. A. (2022). The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. Journal of the American College of Cardiology, 80(25), 2361–2371. https://doi.org/10.1016/J.JACC.2022.11.005
2. Ahadi, F., Azadi, M., Biglari, M., Bodaghi, M., & Khaleghian, A. (2023). Evaluation of coronary stents: A review of types, materials, processing techniques, design, and problems. Heliyon, 9(2), e13575. https://doi.org/10.1016/J.HELIYON.2023.E13575
3. Scafa Udris, A., Niculescu, A.-G., Mihai Grumezescu, A., Bădilă, E., Vitoria, B., Ciurana Gay, J., Eceiza Mendiguren, A., & Jesús Quiles Carrillo, L. (2021). Cardiovascular Stents: A Review of Past, Current, and Emerging Devices. Materials, 14(10), 2498. https://doi.org/10.3390/MA14102498
4. Wassif, H., & Welt, F. G. P. (2023). Restenosis of Stented Coronary Arteries. SCAI Interventional Cardiology Board Review: Second Edition, 10–15. https://doi.org/10.3109/9780203213810-14
5. Yigit, O., Topuz, M., & Dikici, B. (2025). Multifunctional coatings for biomedical applications. Multi-Scale and Multifunctional Coatings and Interfaces for Tribological Contacts, 217–244. https://doi.org/10.1201/9781032635347-14
6. Takeda, M., & Shiba, N. (2024). Non-invasive recanalization of first-generation sirolimus-eluting stent thrombosis due to stent fracture and coronary artery aneurysm after clopidogrel treatment 15 years after implantation. Journal of Cardiology Cases, 29(5), 209. https://doi.org/10.1016/J.JCCASE.2024.01.004
7. Serruys, P. W., Kutryk, M. J. B., & Ong, A. T. L. (2006). Coronary-artery stents. The New England Journal of Medicine, 354(5), 483–495. https://doi.org/10.1056/NEJMRA051091
8. Ong, A. T. L., McFadden, E. P., Regar, E., De Jaegere, P. P. T., Van Domburg, R. T., & Serruys, P. W. (2005). Late angiographic stent thrombosis (LAST) events with drug-eluting stents. Journal of the American College of Cardiology, 45(12), 2088–2092. https://doi.org/10.1016/J.JACC.2005.02.086
9. Togni, M., Windecker, S., Cocchia, R., Wenaweser, P., Cook, S., Billinger, M., Meier, B., & Hess, O. M. (2005). Sirolimus-eluting stents associated with paradoxic coronary vasoconstriction. Journal of the American College of Cardiology, 46(2), 231–236. https://doi.org/10.1016/J.JACC.2005.01.062
10. Udriște, A. S., Burdușel, A. C., Niculescu, A. G., Rădulescu, M., & Grumezescu, A. M. (2024). Coatings for Cardiovascular Stents—An Up-to-Date Review. International Journal of Molecular Sciences, 25(2), 1078. https://doi.org/10.3390/IJMS25021078
11. Chen, Y., Chen, Z., Zheng, Z., & Xia, Y. (2023). Bio-inspired nanocomposite coatings on orthodontic archwires with corrosion resistant and antibacterial properties. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/FBIOE.2023.1272527
12. Zhao, Y., Wang, Z., Bai, L., Zhao, F., Liu, S., Liu, Y., Yao, X., & Hang, R. (2021). Regulation of endothelial functionality through direct and immunomodulatory effects by Ni-Ti-O nanospindles on NiTi alloy. Materials Science & Engineering. C, Materials for Biological Applications, 123. https://doi.org/10.1016/J.MSEC.2021.112007
13. Dulski, M., Gawecki, R., Sułowicz, S., Cichomski, M., Kazek-Kęsik, A., Wala, M., Leśniak-Ziółkowska, K., Simka, W., Mrozek-Wilczkiewicz, A., Gawęda, M., Sitarz, M., & Dudek, K. (2021). Key Properties of a Bioactive Ag-SiO2/TiO2 Coating on NiTi Shape Memory Alloy as Necessary at the Development of a New Class of Biomedical Materials. International Journal of Molecular Sciences, 22(2), 1–17. https://doi.org/10.3390/IJMS22020507
14. Dudek, K., Dulski, M., & Losiewicz, B. (2020). Functionalization of the NiTi Shape Memory Alloy Surface by HAp/SiO2/Ag Hybrid Coatings Formed on SiO2-TiO2 Glass Interlayer. Materials (Basel, Switzerland), 13(7). https://doi.org/10.3390/MA13071648
15. Li, P., Liang, F., Wang, L., Jin, D., Shang, Y., Liu, X., Pan, Y., Yuan, J., Shen, J., & Yin, M. (2023). Bilayer vascular grafts with on-demand NO and H2S release capabilities. Bioactive Materials, 31, 38–52. https://doi.org/10.1016/J.BIOACTMAT.2023.07.020
16. Høl, P. J., Gjerdet, N. R., & Jonung, T. (2019). Corrosion and metal release from overlapping arterial stents under mechanical and electrochemical stress - An experimental study. Journal of the Mechanical Behavior of Biomedical Materials, 93, 31–35. https://doi.org/10.1016/J.JMBBM.2019.02.001
17. Zhang, B., Hu, Y., Du, H., Han, S., Ren, L., Cheng, H., Wang, Y., Gao, X., Zheng, S., Cui, Q., Tian, L., Liu, T., Sun, J., & Chai, R. (2024). Tissue engineering strategies for spiral ganglion neuron protection and regeneration. Journal of Nanobiotechnology, 22(1). https://doi.org/10.1186/S12951-024-02742-8
18. Zhulkov, M. O., Grenadyorov, A. S., Korneev, D. S., Agaeva, H. A., Chernyavsky, A. M., & Khlusov, I. A. (2020). The study of platelet reaction on a-C:H:SiOxcoatings obtained via plasma enhanced chemical vapor deposition with bipolar bias voltage. Bulletin of Siberian Medicine, 19(3), 15–21. https://doi.org/10.20538/1682-0363-2020-3-15-21
19. Tatami, Y., Tanaka, A., Ohashi, T., Kubota, R., Kaneko, S., Shinoda, M., Uemura, Y., Takagi, K., Tanaka, M., Umemoto, N., Tashiro, H., Shibata, N., Yoshioka, N., Watarai, M., Morishima, I., Takada, Y., Shimizu, K., Ishii, H., & Murohara, T. (2024). Clinical features, future cardiac events, and prognostic factors following percutaneous coronary intervention in young female patients. Heart and Vessels, 39(6), 505–513. https://doi.org/10.1007/S00380-024-02369-7
20. Grenadyorov, A. S., Solovyev, Oskomov, K. V., Yakovlev, E. V., & Zhulkov, M. O. (2022). AISI 316L stainless steel modification by surface alloy and a-C:H:SiOx coating synthesis. Vacuum, 204, 111369. https://doi.org/10.1016/J.VACUUM.2022.111369
21. Khlusov, I. A., Grenadyorov, A. S., Solovyev, A. A., Semenov, V. A., Zhulkov, M. O., Sirota, D. A., Chernyavskiy, A. M., Poveshchenko, O. V., Surovtseva, M. A., Kim, I. I., Bondarenko, N. A., & Semin, V. O. (2023). Endothelial Cell Behavior and Nitric Oxide Production on a-C:H:SiOx-Coated Ti-6Al-4V Substrate. International Journal of Molecular Sciences, 24(7), 6675. https://doi.org/10.3390/IJMS24076675
22. Grenadyorov, A. S., Solovyev, Ivanova, N. M., Zhulkov, M. O., Chernyavskiy, A. M., Malashchenko, V. V., & Khlusov, I. A. (2020). Enhancement of the adhesive strength of antithrombogenic and hemocompatible a-C:H:SiOx films to polypropylene. Surface and Coatings Technology, 399. https://doi.org/10.1016/J.SURFCOAT.2020.126132
23. Bajeu, I. T., Niculescu, A. G., Scafa-Udriște, A., & Andronescu, E. (2024). Intrastent Restenosis: A Comprehensive Review. International Journal of Molecular Sciences, 25(3). https://doi.org/10.3390/IJMS25031715
24. Anderson, D. E. J., Le, H. H., Vu, H., Johnson, J., Aslan, J. E., Goldman, J., & Hinds, M. T. (2024). Thrombogenicity of biodegradable metals. Bioactive Materials, 38, 411–421. https://doi.org/10.1016/J.BIOACTMAT.2024.05.002
25. Khlusov, I. A., Grenadyorov, A. S., Solovyev, A. A., Semenov, V. A., Zhulkov, M. O., Sirota, D. A., Chernyavskiy, A. M., Poveshchenko, O. V., Surovtseva, M. A., Kim, I. I., Bondarenko, N. A., & Semin, V. O. (2023). Endothelial Cell Behavior and Nitric Oxide Production on a-C:H:SiOx-Coated Ti-6Al-4V Substrate. International Journal of Molecular Sciences, 24(7). https://doi.org/10.3390/IJMS24076675
26. Beshchasna, N., Saqib, M., Kraskiewicz, H., Wasyluk, Ł., Kuzmin, O., Duta, O. C., Ficai, D., Ghizdavet, Z., Marin, A., Ficai, A., Sun, Z., Pichugin, V. F., Opitz, J., & Andronescu, E. (2020). Recent Advances in Manufacturing Innovative Stents. Pharmaceutics, 12(4), 349. https://doi.org/10.3390/PHARMACEUTICS12040349
27. Makhlouf, A. S. H. (2011). Current and advanced coating technologies for industrial applications. Nanocoatings and Ultra-Thin Films, 3–23. https://doi.org/10.1533/9780857094902.1.3
28. Ahadi, F., Azadi, M., Biglari, M., Bodaghi, M., & Khaleghian, A. (2023). Evaluation of coronary stents: A review of types, materials, processing techniques, design, and problems. Heliyon, 9(2). https://doi.org/10.1016/j.heliyon.2023.e13575
29. Александровна, Е. Т., Тарасович, Ф. В., & Викторович, М. Д. (2022). СОЗДАНИЕ ЛЕКАРСТВЕННЫХ ПОКРЫТИЙ МЕДИЦИНСКИХ АРТЕРИАЛЬНЫХ СТЕНТОВ ЭЛЕКТРОХИМИЧЕСКИМ МЕТОДОМ. NBI-Technologies, 16(1). https://doi.org/10.15688/NBПVJVOLSU.2022.1.5
30. Carvalho, I., Dias, N., Henriques, M., Calderon V, S., Ferreira, P., Cavaleiro, A., & Carvalho, S. (2020). Antibacterial Effects of Bimetallic Clusters Incorporated in Amorphous Carbon for Stent Application. ACS Applied Materials and Interfaces, 12(22), 24555–24563. https://doi.org/10.1021/ACSAMI.0C02821,
31. Boytsova, E. L., Leonova, L. A., & Pustovalova, A. A. (2020). Nitrogen-doped titanium dioxide nanofilms for medical application. ChemChemTech, 63(3), 54–59. https://doi.org/10.6060/IVKKT.20206303.6087
32. Stent coating with titanium-nitride-oxide for prevention of restenosis - PubMed. (n.d.). Retrieved March 22, 2025, from https://pubmed.ncbi.nlm.nih.gov/19755252/
33. Czollner, L., Papaplioura, E., Linder, T., Liu, R., Li, Y., Atanasov, A. G., Dirsch, V. M., Schnürch, M., & Mihovilovic, M. D. (2023). A silver-coated copper wire as inexpensive drug eluting stent model: determination of the relative releasing properties of leoligin and derivatives. Monatshefte Fur Chemie, 154(12), 1317–1326. https://doi.org/10.1007/S00706-020-02677-4/METRICS
34. Mikhalovska, L., Chorna, N., Lazarenko, O., Haworth, P., Sudre, A., & Mikhalovsky, S. (2011). Inorganic coatings for cardiovascular stents: In vitro and in vivo studies. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 96(2), 333–341. https://doi.org/10.1002/JBM.B.31772
35. Kalaskar, D. M., Priya, S., Bhilegaonkar, S. P., Somnache, S. N. N., & Kalaskar, D. M. (2023). Surface Engineering of Bioactive Coatings for Improved Stent Hemocompatibility: A Comprehensive Review. https://doi.org/10.20944/PREPRINTS202310.0470.V1
36. [Randomized intravascular ultrasound comparison between endoprostheses with and without amorphous silicon-carbide] - PubMed. (n.d.). Retrieved March 23, 2025, from https://pubmed.ncbi.nlm.nih.gov/15608991/
37. Mani, G., Feldman, M. D., Patel, D., & Agrawal, C. M. (2007). Coronary stents: a materials perspective. Biomaterials, 28(9), 1689–1710. https://doi.org/10.1016/J.BIOMATERIALS.2006.11.042
38. Biswas, H. S., Datta, J., Mandal, P., Poddar, S., Kundu, A. K., & Saha, I. (2022). Optimized study of the annealing effect on the electrical and structural properties of HDLC thin-films. RSC Advances, 12(46), 29805–29812. https://doi.org/10.1039/D2RA06255K
39. Roy, A., Bennett, A., & Pruitt, L. (2024). Feasibility of using diamond-like carbon films in total joint replacements: a review. Journal of Materials Science. Materials in Medicine, 35(1). https://doi.org/10.1007/S10856-024-06814-X
40. Baduruthamal, Z. A., Mohammed, A. S., Madhan Kumar, A., Hussein, M. A., & Al-Aqeeli, N. (2019). Tribological and Electrochemical Characterization of UHMWPE Hybrid Nanocomposite Coating for Biomedical Applications. Materials 2019, Vol. 12, Page 3665, 12(22), 3665. https://doi.org/10.3390/MA12223665
41. Khlusov, I. A., Grenadyorov, A. S., Solovyev, A. A., Semenov, V. A., Zhulkov, M. O., Sirota, D. A., Chernyavskiy, A. M., Poveshchenko, O. V., Surovtseva, M. A., Kim, I. I., Bondarenko, N. A., & Semin, V. O. (2023). Endothelial Cell Behavior and Nitric Oxide Production on a-C:H:SiOx-Coated Ti-6Al-4V Substrate. International Journal of Molecular Sciences, 24(7). https://doi.org/10.3390/IJMS24076675
42. Grenadyorov, A. S., Solovyev, A. A., Oskomov, K. V., Semenov, V. A., Zhulkov, M. O., Sirota, D. A., Chernyavskiy, A. M., Karmadonova, N. A., Malashchenko, V. V., Litvinova, L. S., Khaziakhmatova, O. G., Gazatova, N. D., & Khlusov, I. A. (2023). Morphofunctional reaction of leukocytes and platelets in in vitro contact with a-C:H:SiOx-coated Ti–6Al–4V substrate. Journal of Biomedical Materials Research - Part A, 111(3), 309–321. https://doi.org/10.1002/jbm.a.37470
Supplementary files
Review
For citations:
Protopopov A.V., Zhulkov M.O., Sirota D.A., Smirnov Ya.M., Grenadyorov A.S., Surovtseva M.A. INORGANIC COATINGS FOR IMPLANTS IN CARDIOVASCULAR SURGERY: CURRENT STATE OF THE ART (A REVIEW ARTICLE). Complex Issues of Cardiovascular Diseases. 2025;14(3):192-202. (In Russ.) https://doi.org/10.17802/2306-1278-2025-14-3-192-202