Preview

Complex Issues of Cardiovascular Diseases

Advanced search

FINITE ELEMENT ANALYSIS OF THE TRANSCATHETER AORTIC VALVE BIOPROSTHESIS

https://doi.org/10.17802/2306-1278-2016-1-6-11

Abstract

Purpose. Modelling of the interaction of biomechanical systems «aortic root – transcatheter heart valve prosthesis» via finite element method.

Materials and methods. The object of the study used a model of transcatheter aortic valve size 23 mm, contains a self-extracting mesh support frame, with mounted a tubular leaflet apparatus made of porcine pericardium stabilized glutaraldehyde. Modeling of the prosthetic aortic valve implantation was performed in an environment CAE Abaqus/CAE in the three-dimensional aortic root model № 19 size.

Results. As a result of the interaction of the prosthesis and the aortic root has been found that the resulting voltage at the nodes flap apparatus does not exceed the permissible tensile strength: 0.96 MPa against 10.62 MPa, respectively. The individual finite elements of the prosthesis frame showed a slight excess of the tensile strength, but the maximum amount of permanent deformation was not more than 0.4 %.

Conclusion. The work demonstrated the consistency of modeling approach prosthetic implant assembly allowing for the interaction between the support frame and the leaflet apparatus with the aortic root.

About the Authors

E. A. OVCHARENKO
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
Russian Federation


K. U. KLYSHNIKOV
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
Russian Federation

6, Sosnoviy blvd., Kemerovo, 650002, Russian Federation Tel. +7 (3842) 64-45-27



T. V. GLUSHKOVA
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
Russian Federation


L. S. BARBARASH
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
Russian Federation


References

1. Bernardini A., Larrabide I., Petrini L., Pennati G., Flore E., Kim M. et al. Deployment of self-expandable stents in aneurysmatic cerebral vessels: comparison of different computational approaches for interventional planning. Computer Methods in Biomechanics and Biomedical Engineering. 2011;15 (3): 303–311. DOI: 10.1080/10255842.2010.527838.

2. Larrabide I., Kim M., Augsburger L., Villa-Uriol M. C., Rüfenacht D., Frangi A. F. Fast virtual deployment of selfexpandable stents: Method and in vitro evaluation for intracranial aneurismal stenting. Medical Image Analysis. 2012; 16 (3): 721–730. DOI: 10.1016/j.media.2010.04.009.

3. Бегун П. И . Биомеханическое моделирование объектов протезирования. СПб.; 2011. Begun P. I. Biomechanical modeling of objects of prosthetics. Sankt-Peterburg; 2011.

4. Takashima K., Kitou T., Mori K., Ikeuchi K. Simulation and experimental observation of contact conditions between stents and artery models. Medical Engineering & Physics. 2007; 29 (3): 326–335.

5. Tzamtzis S., Viquerat J., Yap J., Mullen M. J., Burriesci G. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Medical Engineering & Physics. 2013; 35 (1): 125–130. DOI: 10.1016/j.medengphy.2012.04.009.

6. Mummert J., Sirois E., Sun W. Quantification of biomechanical interaction of transcatheter aortic valve stent deployed in porcine and ovine hearts. Annals of Biomedical Engineering. 2013; 41 (3): 577–586. DOI: 10.1007/s10439- 012-0694-1.

7. Кудрявцева Ю. А., Насонова М. В., Глушкова Т. В., Акентьева Т. Н., Бураго А. Ю. Сравнительный анализ биоматериала, потенциально пригодного для создания протеза аортального клапана сердца для транскатетерной имплантации. Сибирский медицинский журнал (Иркутск). 2013; 120 (5): 66–69.

8. Kudryavtseva Yu. A., Nasonova M. V., Glushkova T. V., Akentieva T. N., Burago A. Yu. Comparative analysis of the biological material potentially suitable for the creation of the aortic heart valve prosthesis for transcatheter implantation. Siberian Medical Journal (Irkutsk). 2013; 120 (5): 66–69.

9. Ovcharenko E. A., Klyshnikov K. U., Vlad A. R., Sizova I. N., Kokov A. N., Nushtaev D. V. et al. omputer-aided design of the human aortic root. Computers in Biology and Medicine. 2014; 54 (1): 109–115. DOI: 10.1016/j.compbiomed.2014.08.023.

10. Овчаренко Е . А., Клышников К . Ю., Нуштаев Д. В., Саврасов Г . В., Кудрявцева Ю. А., Барбараш Л . С. Исследование геометрии тубулярного створчатого аппарата протеза клапана аорты методом конечных элементов. Биофизика. 2015; 60 (5): 1000–1009. Ovcharenko E. A., Klyshnikov K. Yu., Nushtaev D. V., Savrasov G. V., Kudryavtseva Yu. A., Barbarash L. S. Research of tubular geometry leaflet apparatus of the aortic valve prosthesis via finite element method. Biophysics. 2015; 60 (5): 1000–1009.

11. Auricchio F., Taylor R. L., Lubliner J. Shape-Memory Alloys: Macromodeling and Numerical Simulations of the Superelastic Behavior. Computer Methods in Applied Mechanics and Engineering. 1997; 146: 281.

12. Auricchio F., Taylor R. L. Shape-Memory Alloys: Modeling and Numerical Simulations of the Finite-Strain Superelastic Behavior. Computer Methods in Applied Mechanics and Engineering. 1996; 143: 175–194.

13. Овчаренко Е . А., Клышников К . Ю., Глушкова Т. В., Бураго А. Ю., Журавлева И . Ю. Нелинейная изотропная модель корня аорты человека. Технологии живых систем. 2014; 6: 43–47. Ovcharenko E. A., Klyshnikov K. Yu., Glushkova T. V., Burago A. Yu., Zhuravleva I. Yu. Nonlinear isotropic model of the aortic root. Living Systems Technologies. 2014; 6: 43–47.

14. Hamdan A., Guetta V., Konen E., Goitein O., Segev A., Raanani E. et al. Deformation dynamics and mechanical properties of the aortic annulus by 4-dimensional computed tomography: insights into the functional anatomy of the aortic valve complex and implications for transcatheter aortic valve therapy. J. Am. Coll. Cardiol. 2012; 59 (2): 119–27. DOI: 10.1016/j.jacc.2011.09.045.

15. Овчаренко Е . А., Клышников К . Ю., Глушкова Т. В.,Нуштаев Д. В., Кудрявцева Ю. А., Саврасов Г . В. Выбор ксеноперикардиального лоскута для створчатого аппарата транскатетерных биопротезов клапанов сердца. Медицинская техника. 2015; 5: 1–4. Ovcharenko E. A., Klyshnikov K. Yu., Glushkova T. V., Nushtaev D. V., Kudryavtseva Yu. A., Savrasov G. V. The choosing of the xenopericardial patch for transcatheter heart valve. Medical equipment. 2015; 5: 1–4.

16. Stuchebrov S., Batranin A., Verigin D., Lukyanenko Y., Siniagina M., Wagner A. Estimation of radiation doses in x-ray visualization of biological objects Advanced. Materials Research. 2014; 880: 53–56.

17. Беликов Н. В., Башлай А. П. Определение упруго-деформативных и прочностных характеристик кровеносных сосудов при одноосном растяжении. Молодежный научно-технический вестник. 2013; 6: 35. Belikov N. V., Bashlai A. P. Determination of elasticdeformation and strength characteristics of the blood vessels under uniaxial tension. Youth Science and Technology Gazette. 2013; 6: 35.


Review

For citations:


OVCHARENKO E.A., KLYSHNIKOV K.U., GLUSHKOVA T.V., BARBARASH L.S. FINITE ELEMENT ANALYSIS OF THE TRANSCATHETER AORTIC VALVE BIOPROSTHESIS. Complex Issues of Cardiovascular Diseases. 2016;(1):6-11. (In Russ.) https://doi.org/10.17802/2306-1278-2016-1-6-11

Views: 815


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)