Preview

Complex Issues of Cardiovascular Diseases

Advanced search

SORBS2 AS A NOVEL MOLECULAR TARGET IN THE DIAGNOSIS AND TREATMENT OF CARDIOVASCULAR DISEASES

Abstract

Highlights      

  • Sorbs2 is an adaptor and cytoskeletal protein predominantly expressed in the cardiovascular system-specifically in cardiomyocytes, vascular smooth muscle cells, and endothelial cells. It plays a critical role in maintaining myocardial structural integrity, regulating contractility, and facilitating intercellular communication. In addition, Sorbs2 functions as an RNA-binding protein, influencing the stability and translation of mRNAs that encode essential ion channels and junctional proteins.
  • Sorbs2 dysfunction is associated with a wide range of cardiovascular diseases, from cardiomyopathies and arrhythmias to dyslipidemia, hypertension, and diabetic angiopathy. Sorbs2 expression varies depending on the type of pathology and disease stage. For example, in dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy, Sorbs2 levels are decreased, correlating with the severity of fibrosis, disruption of intercalated disc structure, and reduced ejection fraction. In pressure overload conditions (aortic constriction model), a compensatory increase in Sorbs2 expression has been observed during myocardial hypertrophy. Conversely, in diabetic vasculopathy, Sorbs2 expression in coronary arteries is reduced, which is linked to impaired BK-channel activity and decreased coronary perfusion.
  • Given its multifunctionality and involvement in key processes underlying cardiovascular pathology, Sorbs2 is emerging as a promising molecular target. Its role in regulating inflammation, ion homeostasis, and myocardial structure suggests that Sorbs2 could serve as both a biomarker and a therapeutic target in cardiovascular diseases. However, further experimental and clinical studies are required to validate its diagnostic value and explore its full therapeutic potential.

           

Abstract

Sorbin and SH3 domain-containing protein 2 (Sorbs2) is a multifunctional adaptor protein that plays a key role in regulating cellular architecture, signal transduction, and gene expression in the cardiovascular system. Sorbs2 is highly expressed in cardiomyocytes, vascular smooth muscle cells, and endothelial cells, contributing to both the mechanical stability and electrical excitability of cardiac tissue. Recent studies have demonstrated that Sorbs2 is involved in the pathogenesis of a wide range of cardiovascular diseases, including dyslipidemia, atherosclerosis, hypertension, cardiomyopathies, arrhythmias, atrial fibrillation, congenital heart defects, diabetic vasculopathy, and aortic aneurysms. Beyond its structural role as part of the cytoskeleton, Sorbs2 functions as an RNA-binding protein that regulates the stability and translation of mRNAs encoding proteins of ion channels and intercellular junctions, which are essential for cardiac conduction.. Dysregulation of Sorbs2 has been associated with myocardial fibrosis, atrial remodeling, and impaired cardiac contractility. Notably, the data on its role in inflammation are contradictory, highlighting the need for further investigation. This review summarizes current knowledge on the molecular biology of Sorbs2, its regulatory mechanisms, and its pathophysiological relevance in the context of cardiovascular diseases. The potential of Sorbs2 as a diagnostic biomarker and therapeutic target is discussed. A deeper understanding of Sorbs2 may open new avenues for personalized medicine and targeted treatment strategies in cardiovascular pathology.

About the Authors

Artem G. Atoyan
Federal State Budgetary Educational Institution of Higher Education “Rostov State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Student, Federal State Budgetary Educational Institution of Higher Education “Rostov State Medical University” of the Ministry of Healthcare of the Russian Federation, Rostov-on-Don, Russian Federation



Margarita A. Zholkovskaya
Federal State Budgetary Educational Institution of Higher Education “Rostov State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Student, Federal State Budgetary Educational Institution of Higher Education “Rostov State Medical University” of the Ministry of Healthcare of the Russian Federation, Rostov-on-Don, Russian Federation



Amina A. Savlokhova
North Ossetian State Medical Academy
Russian Federation

Student, North Ossetian State Medical Academy, Vladikavkaz, Russian Federation



Anastasia S. Toryanik
State Budgetary Institution of the Rostov Region “City Hospital No. 6” in Rostov-on-Don
Russian Federation

therapist, State Budgetary Institution of the Rostov Region “City Hospital No. 6” in Rostov-on-Don, Rostov-on-Don, Russian Federation



Umsaitin M. Mamaeva
Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Student, Federal State Budgetary Educational Institution of Higher Education “Astrakhan State Medical University” of the Ministry of Healthcare of the Russian Federation, Astrakhan, Russian Federation



Akhmed A. Believ
Stavropol State Medical University
Russian Federation

Student, Stavropol State Medical University, Stavropol, Russian Federation



Amir Kh. Khatukaev
Stavropol State Medical University
Russian Federation

Student, Stavropol State Medical University, Stavropol, Russian Federation



Saida M. Borlakova
Stavropol State Medical University
Russian Federation

Student, Stavropol State Medical University, Stavropol, Russian Federation



Luiza A. Arapieva
Federal State Budgetary Educational Institution of Higher Education “Rostov State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Student, Federal State Budgetary Educational Institution of Higher Education “Rostov State Medical University” of the Ministry of Healthcare of the Russian Federation, Rostov-on-Don, Russian Federation



Anastasia D. Rocheva
Federal State Budgetary Educational Institution of Higher Education “Rostov State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Student, Federal State Budgetary Educational Institution of Higher Education “Rostov State Medical University” of the Ministry of Healthcare of the Russian Federation, Rostov-on-Don, Russian Federation



Daria D. Gorokhova
Federal State Budgetary Educational Institution of Higher Education “Rostov State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Student, Federal State Budgetary Educational Institution of Higher Education “Rostov State Medical University” of the Ministry of Healthcare of the Russian Federation, Rostov-on-Don, Russian Federation



Savely A. Okulov
Federal State Budgetary Educational Institution of Higher Education “Rostov State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Student, Federal State Budgetary Educational Institution of Higher Education “Rostov State Medical University” of the Ministry of Healthcare of the Russian Federation, Rostov-on-Don, Russian Federation



Ilya G. Nasonov
Federal State Budgetary Educational Institution of Higher Education “Rostov State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Student, Federal State Budgetary Educational Institution of Higher Education “Rostov State Medical University” of the Ministry of Healthcare of the Russian Federation, Rostov-on-Don, Russian Federation



Kseniya V. Korchmar
Federal State Budgetary Educational Institution of Higher Education “Rostov State Medical University” of the Ministry of Healthcare of the Russian Federation
Russian Federation

Student, Federal State Budgetary Educational Institution of Higher Education “Rostov State Medical University” of the Ministry of Healthcare of the Russian Federation, Rostov-on-Don, Russian Federation



References

1. Mensah GA, Fuster V, Roth GA. A Heart-Healthy and Stroke-Free World: Using Data to Inform Global Action. J Am Coll Cardiol. 2023;82(25):2343-2349. doi: 10.1016/j.jacc.2023.11.003.

2. Kosolapov VP, Yarmonova MV. The analysis of high cardiovascular morbidity and mortality in the adult population as a medical and social problem and the search for ways to solve it. Ural Medical Journal. 2021;20(1):58-64. (In Russ.) https://doi.org/10.52420/2071-5943-2021-20-1-58-64

3. Borovkova N.Yu., Tokareva A.S., Savitskaya N.N., et al. Current status of the problem of cardiovascular diseases in the Nizhny Novgorod region: possible ways to reduce mortality. Russian Journal of Cardiology. 2022;27(5):5024. (In Russ.) https://doi.org/10.15829/1560-4071-2022-5024

4. Fozilov H.G., Ataniyazov H.H., Khamidullaeva G.A., et al. Early Detection and Control of Risk Factors for Cardiovascular Diseases in the Aral Region: Experience of Uzbekistan. Kardiologiia. 2024;64(1):37-43. https://doi.org/10.18087/cardio.2024.1.n2614

5. Li C, Zheng Y, Liu Y, et al. The interaction protein of SORBS2 in myocardial tissue to find out the pathogenic mechanism of LVNC disease. Aging (Albany NY). 2022;14(2):800-810. doi: 10.18632/aging.203841

6. Zhang S, Tong Y. Advances in the previous two decades in our understanding of the post-translational modifications, functions, and drug perspectives of ArgBP2 and its family members. Biomed Pharmacother. 2022;155:113853. doi: 10.1016/j.biopha.2022.113853.

7. Jaufmann J, Franke FC, Sperlich A, et al. The emerging and diverse roles of the SLy/SASH1-protein family in health and disease-Overview of three multifunctional proteins. FASEB J. 2021;35(4):e21470. doi: 10.1096/fj.202002495R.

8. Ichikawa T, Kita M, Matsui TS, et al. Vinexin family (SORBS) proteins play different roles in stiffness-sensing and contractile force generation. J Cell Sci. 2017;130(20):3517-3531. doi: 10.1242/jcs.200691.

9. Bai Y, Wang H, Li C. SAPAP Scaffold Proteins: From Synaptic Function to Neuropsychiatric Disorders. Cells. 2022;11(23):3815. doi: 10.3390/cells11233815.

10. Murase K, Ito H, Kanoh H, et al. Cell biological characterization of a multidomain adaptor protein, ArgBP2, in epithelial NMuMG cells, and identification of a novel short isoform. Med Mol Morphol. 2012;45(1):22-8. doi: 10.1007/s00795-010-0537-9.

11. Zhang Q, Gao X, Li C, et al. Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice. J Neurosci. 2016;36(7):2247-60. doi: 10.1523/JNEUROSCI.2528-15.2016.

12. Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol. 2020;92(5):e12951. doi: 10.1111/sji.12951.

13. GTEx Consortium; Laboratory, Data Analysis &Coordinating Center (LDACC)–Analysis Working Group; Statistical Methods groups–Analysis Working Group; Enhancing GTEx (eGTEx) groups; NIH Common Fund; NIH/NCI; NIH/NHGRI; NIH/NIMH; NIH/NIDA; Biospecimen Collection Source Site–NDRI; Biospecimen Collection Source Site–RPCI; Biospecimen Core Resource–VARI; Brain Bank Repository–University of Miami Brain Endowment Bank; Leidos Biomedical–Project Management; ELSI Study; Genome Browser Data Integration &Visualization–EBI; Genome Browser Data Integration &Visualization–UCSC Genomics Institute, University of California Santa Cruz; Lead analysts:; Laboratory, Data Analysis &Coordinating Center (LDACC):; NIH program management:; Biospecimen collection:; Pathology:; eQTL manuscript working group:; Battle A, Brown CD, Engelhardt BE, Montgomery SB. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204-213. doi: 10.1038/nature24277.

14. Lv Q, Dong F, Zhou Y, et al. RNA-binding protein SORBS2 suppresses clear cell renal cell carcinoma metastasis by enhancing MTUS1 mRNA stability. Cell Death Dis. 2020;11(12):1056. doi: 10.1038/s41419-020-03268-1.

15. Ding Y, Yang J, Chen P, et al. Knockout of SORBS2 Protein Disrupts the Structural Integrity of Intercalated Disc and Manifests Features of Arrhythmogenic Cardiomyopathy. J Am Heart Assoc. 2020;9(17):e017055. doi: 10.1161/JAHA.119.017055.

16. Sanger JM, Wang J, Gleason LM, et al. Arg/Abl-binding protein, a Z-body and Z-band protein, binds sarcomeric, costameric, and signaling molecules. Cytoskeleton (Hoboken). 2010;67(12):808-23. doi: 10.1002/cm.20490.

17. Qian LL, Sun X, Yang J, et al. Changes in ion channel expression and function associated with cardiac arrhythmogenic remodeling by Sorbs2. Biochim Biophys Acta Mol Basis Dis. 2021;1867(12):166247. doi: 10.1016/j.bbadis.2021.166247.

18. Sun X, Lee HC, Lu T. Sorbs2 Deficiency and Vascular BK Channelopathy in Diabetes. Circ Res. 2024;134(7):858-871. doi: 10.1161/CIRCRESAHA.123.323538.

19. Zhao L, Wang W, Huang S, et al. The RNA binding protein SORBS2 suppresses metastatic colonization of ovarian cancer by stabilizing tumor-suppressive immunomodulatory transcripts. Genome Biol. 2018;19(1):35. doi: 10.1186/s13059-018-1412-6.

20. Van Nostrand EL, Freese P, Pratt GA, et al. A large-scale binding and functional map of human RNA-binding proteins. Nature. 2020;583(7818):711-719. doi: 10.1038/s41586-020-2077-3.

21. Gebauer F, Schwarzl T, Valcárcel J, Hentze MW. RNA-binding proteins in human genetic disease. Nat Rev Genet. 2021;22(3):185-198. doi: 10.1038/s41576-020-00302-y.

22. Timmer LT, den Hertog E, Versteeg D, et al. Cardiomyocyte SORBS2 expression increases in heart failure and regulates integrin interactions and extracellular matrix composition. Cardiovasc Res. 2025;121(4):585-600. doi: 10.1093/cvr/cvaf021.

23. Dovinova I, Kvandová M, Balis P, et al. The role of Nrf2 and PPARgamma in the improvement of oxidative stress in hypertension and cardiovascular diseases. Physiol Res. 2020;69(Suppl 4):S541-S553. doi: 10.33549/physiolres.934612.

24. Zhu L, Choudhary K, Gonzalez-Teran B, et al. Transcription Factor GATA4 Regulates Cell Type-Specific Splicing Through Direct Interaction With RNA in Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitors. Circulation. 2022;146(10):770-787. doi: 10.1161/CIRCULATIONAHA.121.057620.

25. Lu T, Sun X, Li Y, et al. Role of Nrf2 Signaling in the Regulation of Vascular BK Channel β1 Subunit Expression and BK Channel Function in High-Fat Diet-Induced Diabetic Mice. Diabetes. 2017;66(10):2681-2690. doi: 10.2337/db17-0181.

26. Gutiérrez-Cuevas J, Galicia-Moreno M, Monroy-Ramírez HC, et al. The Role of NRF2 in Obesity-Associated Cardiovascular Risk Factors. Antioxidants (Basel). 2022; 11(2):235. doi: 10.3390/antiox11020235.

27. Artemenkov AA. Plasma dyslipidemia: pathogenesis and diagnostic value. Literature review. Perm Medical Journal. 2023;40(1):78-93 (In Russ.) doi: 10.17816/pmj40178-93

28. Liu MM, Peng J, Guo YL, et al. SORBS2 as a molecular target for atherosclerosis in patients with familial hypercholesterolemia. J Transl Med. 2022;20(1):233. doi: 10.1186/s12967-022-03381-z.

29. Feng X, Yu W, Li X, et al. Apigenin, a modulator of PPARγ, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem Pharmacol. 2017 Jul 15;136:136-149. doi: 10.1016/j.bcp.2017.04.014.

30. Ren K, Li H, Zhou HF, et al. Mangiferin promotes macrophage cholesterol efflux and protects against atherosclerosis by augmenting the expression of ABCA1 and ABCG1. Aging (Albany NY). 2019;11(23):10992-11009. doi: 10.18632/aging.102498.

31. Jiang M, Li X. Activation of PPARγ does not contribute to macrophage ABCA1 expression and ABCA1-mediated cholesterol efflux to apoAI. Biochem Biophys Res Commun. 2017;482(4):849-856. doi: 10.1016/j.bbrc.2016.11.123.

32. Kalashnikov V.Y., Michurova M.S. Atherosclerotic Cardiovascular Diseases and Type 2 Diabetes Mellitus – new Developments in the Treatment. Kardiologiia. 2021;61(1):78-86. (In Russ.) https://doi.org/10.18087/cardio.2021.1.n1148

33. Xiong X, Zhou J, Fu Q, et al. The associations between TMAO-related metabolites and blood lipids and the potential impact of rosuvastatin therapy. Lipids Health Dis. 2022;21(1):60. doi: 10.1186/s12944-022-01673-3.

34. Kashirskikh D.A., Khotina V.A., Sukhorukov V.N., et al. Cell and tissue markers of atherosclerosis. Complex Issues of Cardiovascular Diseases. 2020;9(2):102-113. (In Russ.) https://doi.org/10.17802/2306-1278-2020-9-2-102-113

35. Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond). 2018;132(12):1243-1252. doi: 10.1042/CS20180306.

36. Zhu Y, Xian X, Wang Z, et al. Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules. 2018;8(3):80. doi: 10.3390/biom8030080.

37. Badimon L, Peña E, Arderiu G, et al. C-Reactive Protein in Atherothrombosis and Angiogenesis. Front Immunol. 2018;9:430. doi: 10.3389/fimmu.2018.00430.

38. Akinyelure OP, Colantonio LD, Chaudhary NS, et al. Inflammation biomarkers and incident coronary heart disease: the Reasons for Geographic And Racial Differences in Stroke Study. Am Heart J. 2022;253:39-47. doi: 10.1016/j.ahj.2022.07.001

39. Kumari P, Kumar H. Dimensions of inflammation in host defense and diseases. Int Rev Immunol. 2022;41(1):1-3. doi: 10.1080/08830185.2022.2014174.

40. Vdovenko D, Bachmann M, Wijnen WJ, et al. The adaptor protein c-Cbl-associated protein (CAP) limits pro-inflammatory cytokine expression by inhibiting the NF-κB pathway. Int Immunopharmacol. 2020;87:106822. doi: 10.1016/j.intimp.2020.106822.

41. Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest. 2014;124(5):2136-46. doi: 10.1172/JCI70577.

42. Wang H, Bei Y, Shen S, et al. miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2. J Mol Cell Cardiol. 2016;94:43-53. doi: 10.1016/j.yjmcc.2016.03.014.

43. Shan B, Li JY, Liu YJ, et al. LncRNA H19 Inhibits the Progression of Sepsis-Induced Myocardial Injury via Regulation of the miR-93-5p/SORBS2 Axis. Inflammation. 2021;44(1):344-357. doi: 10.1007/s10753-020-01340-8.

44. Алиева АМ, Алмазова ИИ, Резник ЕВ, и др. Гипертрофическая кардиомиопатия: современный взгляд на проблему. CardioСоматика. 2020;11(1):39-45. doi: 10.26442/22217185.2020.1.200116 [Alievа A.M., Almazova I.I., Reznik E.V. et al. Hypertrophic cardiomyopathy: a modern view of the problem. Cardiosomatics. 2020; 11 (1): 40–46. DOI: 10.26442/22217185.2020.1.200116]

45. Galeeva Z.M., Galyavich A.S., Baleeva L.V., et al. About the сases of dilated cardiomyopathy. South Russian Journal of Therapeutic Practice. 2022;3(3):85-90. (In Russ.) https://doi.org/10.21886/2712-8156-2022-3-3-85-90

46. McLendon JM, Zhang X, Matasic DS, et al. Knockout of Sorbin And SH3 Domain Containing 2 (Sorbs2) in Cardiomyocytes Leads to Dilated Cardiomyopathy in Mice. J Am Heart Assoc. 2022;11(13):e025687. doi: 10.1161/JAHA.122.025687.

47. Gagliano Taliun SA, VandeHaar P, Boughton AP, et al. Exploring and visualizing large-scale genetic associations by using PheWeb. Nat Genet. 2020;52(6):550-552. doi: 10.1038/s41588-020-0622-5.

48. Ashar FN, Mitchell RN, Albert CM, et al. A comprehensive evaluation of the genetic architecture of sudden cardiac arrest. Eur Heart J. 2018;39(44):3961-3969. doi: 10.1093/eurheartj/ehy474.

49. Li C, Liu F, Liu S, et al. Elevated myocardial SORBS2 and the underlying implications in left ventricular noncompaction cardiomyopathy. EBioMedicine. 2020;53:102695. doi: 10.1016/j.ebiom.2020.102695.

50. Li C, Zhang L, Hu X, et al. SORBS2 upregulation may contribute to dysfunction in LVNC via the Notch pathway. Acta Biochim Biophys Sin (Shanghai). 2022;55(2):327-329. doi: 10.3724/abbs.2022177

51. Guo A, Wang Y, Chen B, et al. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science. 2018;362(6421):eaan3303. doi: 10.1126/science.aan3303

52. Prins KW, Asp ML, Zhang H, et al. Microtubule-Mediated Misregulation of Junctophilin-2 Underlies T-Tubule Disruptions and Calcium Mishandling in mdx Mice. JACC Basic Transl Sci. 2016;1(3):122-130. doi: 10.1016/j.jacbts.2016.02.002

53. Khalikov AA, Kuznetsov KO, Iskuzhina LR, Khalikova LV. Forensic aspects of sudden autopsy-negative cardiac death. Forensic Medical Expertise. 2021;64(3):59‑63. (In Russ.) https://doi.org/10.17116/sudmed20216403159

54. Petrova E.A., KoltsovaE.A. Cardiac arrhythmias and stroke. Consilium Medicum. 2017; 19 (2):30–34 (In Russ.).

55. Kanorskii S.G. Atrial fibrillation in old age: current treatment options. South Russian Journal of Therapeutic Practice. 2022;3(1):7-14. (In Russ.) https://doi.org/10.21886/2712-8156-2022-3-1-7-14

56. Antipov G.N., Postol A.S., Kotov S.N., et al. Atrial remodelling comparison after maze-3 and cryo-maze procedures in combined cardiac interventions: a retrospective study. Kuban Scientific Medical Bulletin. 2022;29(2):14-27. https://doi.org/10.25207/1608-6228-2022-29-2-14-27

57. Nattel S, Dobrev D. Controversies About Atrial Fibrillation Mechanisms: Aiming for Order in Chaos and Whether it Matters. Circ Res. 2017 ;120(9):1396-1398. doi: 10.1161/CIRCRESAHA.116.310489.

58. Nielsen JB, Thorolfsdottir RB, Fritsche LG, et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat Genet. 2018;50(9):1234-1239. doi: 10.1038/s41588-018-0171-3.

59. Roselli C, Rienstra M, Ellinor PT. Genetics of Atrial Fibrillation in 2020: GWAS, Genome Sequencing, Polygenic Risk, and Beyond. Circ Res. 2020;127(1):21-33. doi: 10.1161/CIRCRESAHA.120.316575.

60. Kim JA, Chelu MG, Li N. Genetics of atrial fibrillation. Curr Opin Cardiol. 2021;36(3):281-287. doi: 10.1097/HCO.0000000000000840.

61. Sheng Y, Wang YY, Chang Y, et al. Deciphering mechanisms of cardiomyocytes and non-cardiomyocyte transformation in myocardial remodeling of permanent atrial fibrillation. J Adv Res. 2024;61:101-117. doi: 10.1016/j.jare.2023.09.012.

62. Pomortsev A.V., Karakhalis M.N., Matulevich S.A., et al. Congenital Heart Diseases: Risk Factors and Ultrasound Diagnostic Potential at the First Screening. Innovative Medicine of Kuban. 2023;(4):51-59. (In Russ.) https://doi.org/10.35401/2541-9897-2023-8-4-51-59

63. Molck MC, Simioni M, Paiva Vieira T, et al. Genomic imbalances in syndromic congenital heart disease. J Pediatr (Rio J). 2017;93(5):497-507. doi: 10.1016/j.jped.2016.11.007.

64. Xu W, Ahmad A, Dagenais S, Iyer RK, Innis JW. Chromosome 4q deletion syndrome: narrowing the cardiovascular critical region to 4q32.2-q34.3. Am J Med Genet A. 2012;158A(3):635-40. doi: 10.1002/ajmg.a.34425.

65. Strehle EM, Yu L, Rosenfeld JA, et al. Genotype-phenotype analysis of 4q deletion syndrome: proposal of a critical region. Am J Med Genet A. 2012;158A(9):2139-51. doi: 10.1002/ajmg.a.35502.

66. Liang F, Wang B, Geng J, et al. SORBS2 is a genetic factor contributing to cardiac malformation of 4q deletion syndrome patients. Elife. 2021;10:e67481. doi: 10.7554/eLife.67481.

67. Bondar I.A., Demin A.A., Grazhdankina D.V. Diabetes mellitus type 2: the relationship of baseline clinical, laboratory and echocardiographic parameters with long-term major adverse cardiovascular events. Diabetes mellitus. 2022;25(2):136-144. (In Russ.) https://doi.org/10.14341/DM12823

68. Lu T, Chai Q, Jiao G, et al. Downregulation of BK channel function and protein expression in coronary arteriolar smooth muscle cells of type 2 diabetic patients. Cardiovasc Res. 2019;115(1):145-153. doi: 10.1093/cvr/cvy137.

69. Vujkovic M, Keaton JM, Lynch JA, et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet. 2020;52(7):680-691. doi: 10.1038/s41588-020-0637-y.

70. Spracklen CN, Horikoshi M, Kim YJ, et al. Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature. 2020;582(7811):240-245. doi: 10.1038/s41586-020-2263-3.

71. Lu T, Lee HC. Coronary Large Conductance Ca2+-Activated K+ Channel Dysfunction in Diabetes Mellitus. Front Physiol. 2021;12:750618. doi: 10.3389/fphys.2021.750618.

72. Nystoriak MA, Nieves-Cintrón M, Nygren PJ, et al. AKAP150 contributes to enhanced vascular tone by facilitating large-conductance Ca2+-activated K+ channel remodeling in hyperglycemia and diabetes mellitus. Circ Res. 2014;114(4):607-15. doi: 10.1161/CIRCRESAHA.114.302168.

73. Yi F, Wang H, Chai Q, et al. Regulation of large conductance Ca2+-activated K+ (BK) channel β1 subunit expression by muscle RING finger protein 1 in diabetic vessels. J Biol Chem. 2014;289(15):10853-10864. doi: 10.1074/jbc.M113.520940

74. Sun X, Qian LL, Li Y, et al. Regulation of KCNMA1 transcription by Nrf2 in coronary arterial smooth muscle cells. J Mol Cell Cardiol. 2020;140:68-76. doi: 10.1016/j.yjmcc.2020.03.001.

75. Turusheva A.V., Kotovskaya Yu.V., Frolova E.V., еt al. The impact of hypertension on mortality and the risk of developing geriatric syndromes. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2022;28(4):419-427. (In Russ.) https://doi.org/10.18705/1607-419X-2022-28-4-419-427

76. Hoffmann TJ, Ehret GB, Nandakumar P, et al. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat Genet. 2017;49(1):54-64. doi: 10.1038/ng.3715.

77. Kobalava Zh.D., Konradi A.O., Nedogoda S.V., et al. 2024 Clinical practice guidelines for Hypertension in adults. Russian Journal of Cardiology. 2024;29(9):6117. (In Russ.) https://doi.org/10.15829/1560-4071-2024-6117. EDN: GUEWLU

78. Wang D, Uhrin P, Mocan A, Waltenberger B, et al. Vascular smooth muscle cell proliferation as a therapeutic target. Part 1: molecular targets and pathways. Biotechnol Adv. 2018;36(6):1586-1607. doi: 10.1016/j.biotechadv.2018.04.006.

79. Zhang JR, Sun HJ. MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction. Hypertens Res. 2021;44(2):129-146. doi: 10.1038/s41440-020-00553-6.

80. Zheng F, Ye C, Ge R, et al. MiR-21-3p in extracellular vesicles from vascular fibroblasts of spontaneously hypertensive rat promotes proliferation and migration of vascular smooth muscle cells. Life Sci. 2023;330:122023. doi: 10.1016/j.lfs.2023.122023.

81. Holtzclaw JD, Grimm PR, Sansom SC. Role of BK channels in hypertension and potassium secretion. Curr Opin Nephrol Hypertens. 2011;20(5):512-7. doi: 10.1097/MNH.0b013e3283488889.

82. Yang Y, Li PY, Cheng J, et al. Function of BKCa channels is reduced in human vascular smooth muscle cells from Han Chinese patients with hypertension. Hypertension. 2013;61(2):519-25. doi: 10.1161/HYPERTENSIONAHA.111.00211.

83. Cho MJ, Lee MR, Park JG. Aortic aneurysms: current pathogenesis and therapeutic targets. Exp Mol Med. 2023;55(12):2519-2530. doi: 10.1038/s12276-023-01130-w.

84. Pinard A, Jones GT, Milewicz DM. Genetics of Thoracic and Abdominal Aortic Diseases. Circ Res. 2019;124(4):588-606. doi: 10.1161/CIRCRESAHA.118.312436.

85. Wang C, Qu B, Wang Z, et al. Proteomic identification of differentially expressed proteins in vascular wall of patients with ruptured intracranial aneurysms. Atherosclerosis. 2015;238(2):201-6. doi: 10.1016/j.atherosclerosis.2014.11.027.


Review

For citations:


Atoyan A.G., Zholkovskaya M.A., Savlokhova A.A., Toryanik A.S., Mamaeva U.M., Believ A.A., Khatukaev A.Kh., Borlakova S.M., Arapieva L.A., Rocheva A.D., Gorokhova D.D., Okulov S.A., Nasonov I.G., Korchmar K.V. SORBS2 AS A NOVEL MOLECULAR TARGET IN THE DIAGNOSIS AND TREATMENT OF CARDIOVASCULAR DISEASES. Complex Issues of Cardiovascular Diseases. (In Russ.)

Views: 160


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)