Preview

Complex Issues of Cardiovascular Diseases

Advanced search

TISSUE ENGINEERED SCAFFOLD MODIFIED BY BIOACTIVE MOLECULES FOR DIRECTED TISSUE REGENERATION

https://doi.org/10.17802/2306-1278-2016-1-18-25

Abstract

Search of an ideal polymer for the preparation of the artificial scaffolds is an important goal of vascular tissue engineering. Biofunctionalization of the scaffolds may assist in creation of the bioactive environment at the site of implantation. Combination of biodegradable polymers and growth factors may be an appropriate approach for the directed regeneration of the vascular tissues.

Purpose. To assess tissue reaction to nonwoven scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/polycaprolactone (PCL) with vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and stromal-derived growth factor-1α (SDF -1α) implanted into the rat pericardial sac.

Materials and methods. Nonwoven PHBV/PCL scaffolds with and without VEGF, bFGF, and SDF -1α were prepared using electrospinning and implanted into the rat pericardial sac for 2 weeks, 1, 2, and 3 months with the further histological examination.

Results. Implantation of the scaffolds did not cause any inflammatory reaction. We detected an active neoangiogenesis in both PHBV/PCL/VEGF and PHBV/PCL/SDF -1α scaffolds and adjacent tissues at all the time points. Moreover, we observed a considerable cell infiltration and production of extracellular matrix in PHBV/PCL/SDF -1α scaffolds. PHBV/PCL/bFGF scaffolds were colonized by fibroblasts and were surrounded by a connective tissue capsule. Therefore, growth factors retained their bioactivity in the tissues during the whole time of the experiment.

Conclusions. Incorporation of the growth factors into biodegradable polymers is an appropriate approach for the creation of thetissue engineered scaffolds for directed tissue regeneration. VEGF, bFGF, and SDF -1α may be used for the creation of biodegradable vascular graft promoting de novo formation of the vascular tissue after the implantation.

About the Authors

L. V. ANTONOVA
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
Russian Federation


E. O. KRIVKINA
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
Russian Federation

6, Sosnoviy blvd., Kemerovo, 650002, Russian Federation Tel. +7 (3842) 64-38-02



E. A. SERGEEVA
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
Russian Federation


V. V. SEVOSTYANOVA
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
Russian Federation


A. Yu. BURAGO
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
Russian Federation


N. N. BURKOV
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
Russian Federation


R. F. SHARIFULIN
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
Russian Federation


E. A. VELIKANOVA
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
Russian Federation


Yu. A. KUDRYAVTSEVA
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
Russian Federation


O. L. BARBARASH
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
Russian Federation


L. S. BARBARASH
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
Russian Federation


References

1. Бокерия Л . А., Гудкова Р . Г . Сердечно-сосудистая хирургия – 2014. Болезни и аномалии системы кровообращения. М.; 2015.

2. Bokeriya L. A., Gudkova R. G. Serdechno-sosudistaya khirurgiya – 2014. Bolezni i anomalii sistemy krovoobrashcheniya. Moscow; 2015. [In Russ].

3. Allender S., Scarborough P., O’Flaherty M., Capewell S. Patterns of coronary heart disease mortality over the 20th century in England and Wales: possible plateaus in the rate of decline. BMC Public Health. 2008; 8: 148–160. DOI: 10.1186/1471-2458-8-148.

4. Бокерия Л . А. Повторные операции у больных ишемической болезнью сердца – современное состояние проблемы. Бюллетень НЦССХ им. Бакулева РАМН. 2009; 10 (3): 5–27.

5. Bokeria L. A. Reoperations in patients with coronary heart disease state of the art (meta-analysis). Bulletin NTSSSH them. Bakuleva RAMS. 2009; 10 (3): 5–27. [In Russ].

6. Матвеев А. Т., Афанасов И . М. Получение нановолокон методом электроформования. М.; 010. Matveev A. T., Afanasov I. M. Poluchenie nanovolokon metodom jelektroformovanija. Moscow; 2010. [In Russ].

7. Teo W., Inai R., Ramakrishna S. Technological advances in electrospinning of nanofibers. Science and technology of advanced materials. 2011; 12: 1–19.

8. Greenwald S. E., Berry C. L. Improving vascular grafts: the importance of mechanical and haemodynamic properties. J. Pathol. 2000; 190: 292–299.

9. Barnes C. P., Sell S. A., Boland E. D., Simpson D. G., Bowlin G. L. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv. Drug. Deliv. Rev. 2007; 59 (14): 1413–1433.

10. Антонова Л . В., Матвеева В. Г ., Барбараш Л . С. Использование метода электроспиннинга в создании биодеградируемых сосудистых графтов малого диаметра: проблемы и решения (обзор). Комплексные проблемы сердечно-сосудистых заболеваний. 2015; 3: 12–22. DOI: 10.17802/2306-1278-2015-3-12-22. Antonova L. V., Matveeva V. G., Barbarash L. S. Electrospinning and biodegradable small-diamet ervascular grafts: problems and solutions (review). Complex Issues of Cardiovascular Diseases. 2015; 3: 12–22. DOI: 10.17802/2306- 1278-2015-3-12-22. [In Russ].

11. Briggs T., Arinzeh T. L. Growth factor delivery from electrospun materials. J. Biomater. Tissue Eng. 2011; 1 (2):129–138. DOI: 10.1002/jbm.a.34730.

12. Повещенко О . В., Повещенко А. Ф., Коненков В. И . Эндотелиальные прогениторные клетки и неоваскулогенез. Успехи современной биологии. 2012; 132 (1): 69–76. Poveshhenko O. V., Poveshhenko A. F., Konenkov V. I. Jendotelialnye progenitornye kletki i neovaskulogenez. Biology Bulletin Reviews. 2012; 132 (1): 69–76. [In Russ].

13. Vlodavsky C. R., Brakenhielm E., Pawliuk R., Wariaro D., Post M. J., Wahlberg E. et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nature Med.2003; 9 (5): 604–613. DOI: 10.1038/nm848.

14. Сологуб Т. В., Романцов М. Г ., Кремень Н. В., Александрова Л . М., Аникина О . В., Суханов Д. С. Свободно-радикальные процессы и воспаление (патогенетические, клинические и терапевтические аспекты). М.; 2008. Sologub T. V., Romancov M. G., Kremen’ N. V., Aleksandrova L. M., Anikina O. V., Suhanov D. S. Svobodnoradikal’nye processy i vospalenie (patogeneticheskie, klinicheskie i terapevticheskie aspekty). Мoscow; 2008. [In Russ].

15. Kano M. R., Morishita Y., Iwata C., Iwasaka S., Watabe T., Ouchi Y. et al. VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B–PDGFR signaling. Journal of Cell Science. 2005; 118: 3759–3768.

16. Zheng H., Fu G., Dai T., Huang H. Migration of endothelial progenitor cells mediated by stromal cell-derived factor-1alpha/CXCR4 via PI3K/Akt/eNOS signal transduction pathway. Journal of Cardiovascular Pharmacology. 2007;50(3): 274–280. DOI: 10.1097/FJC.0b013e318093ec8f.

17. Neuhaus T., Stier S., Totzke G., Gruenewald E., Fronhoffs S., Sachinidis A. et al. Stromal cell-derived factor 1alpha (SDF-1alpha) induces gene-expression of early growth response- 1 (Egr-1) and VEGF in human arterial endothelial cells and enhances VEGF induced cell proliferation. Cell. Prolif. 2003; 36 (2): 75–86.

18. Ho T. K., Shiwen X., Abraham D., Tsui J., Baker D. Stromal-cell-derived factor-1 (SDF-1)/CXCL12 as potential target of therapeutic angiogenesis in critical leg ischaemia. Cardiology Research and Practice. 2012; 2012: 143209. DOI: 10.1155/2012/143209.

19. Севостьянова В. В., Антонова Л . В., Барбараш Л . С. Подходы к модификации искусственных матриксов биологически активными молекулами для применения в тканевой инженерии кровеносных сосудов. Фундаментальные исследования. 2014; 11: 1960–1970. Sevostyanova V. V., Antonova L. V., Barbarash L. S. Approaches to the modification of scaffolds with bioactive olecules for blood vessels tissue engineering. Fundamental research. 2014; 11: 1960–1970. [In Russ].

20. Hasan A., Memic A., Annabi N., Hossain M., Paul A., Dokmeci M. R. et al. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 2014, 10 (1): 11–25. DOI: 10.1016/j.actbio.2013.08.022.

21. Cursiefen C., Chen L., Borges L. P., Jackson D., Cao J., Radziejewski C. et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Invest. 2004; 113 (7): 1040–1050.

22. Севастьянов В. И ., Кирпичникова М. П. Биосовместимые материалы. М.; 2011. Sevastyanov V. I., Kirpichnikova M. P. Biosovmestimye materialy. Moscow; 2011.

23. Yun Y. R., Won J. E., Jeon E., Lee S., Kang W., Jo H. et al. Fibroblast growth factors: biology, function and application for tissue regeneration. J. Tissue Eng. 2010; 2010–218142. DOI: 10.4061/2010/218142.

24. Schantz J. T., Chim H., Whiteman M. Cell Guidance in Tissue Engineering: SDF-1 Mediates Site-Directed Homing of Mesenchymal Stem Cells within Three-Dimensional Polycaprolactone Scaffolds. Tissue eng. 2007; 13 (11): 2615–2624.

25. Cencioni C., Capogrossi M. C., Napolitano M. The SDF‑1/CXCR4 axis in stem cell preconditioning. Cardiovascular Research. 2012; 94 (3): 400–407. DOI: 10.1093/cvr/cvs132.


Review

For citations:


ANTONOVA L.V., KRIVKINA E.O., SERGEEVA E.A., SEVOSTYANOVA V.V., BURAGO A.Yu., BURKOV N.N., SHARIFULIN R.F., VELIKANOVA E.A., KUDRYAVTSEVA Yu.A., BARBARASH O.L., BARBARASH L.S. TISSUE ENGINEERED SCAFFOLD MODIFIED BY BIOACTIVE MOLECULES FOR DIRECTED TISSUE REGENERATION. Complex Issues of Cardiovascular Diseases. 2016;(1):18-25. (In Russ.) https://doi.org/10.17802/2306-1278-2016-1-18-25

Views: 766


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)