SYNTHESIS OF PRO-INFLAMMATORY CYTOKINES BY HUMAN AORTIC VALVE, INTERNAL THORACIC ARTERY, SAPHENOUS VEIN, AND ADIPOSE TISSUE-DERIVED MICROVASCULAR ENDOTHELIAL CELLS
https://doi.org/10.17802/2306-1278-2025-14-4-196-215
Abstract
Highlights
- The list of cytokines produced by the primary human valvular, arterial, venous, and microvascular endothelial cells (ECs) is restricted to MIF, IL-6, IL-8/CXCL8, MCP-1/CCL2, RANTES/CCL5, MIP-3α/CCL20, GM-CSF, G-CSF, GRO-α/CXCL1, ENA-78/CXCL5, IP-10/CXCL10, and PTX3.
- These cytokines can be classified into those with a high (MCP-1/CCL2, IL-8/CXCL8, GROα/CXCL1, MIF, and pentraxin-3), moderate (IL-6), and low expression (GM-CSF, G-CSF, RANTES/CCL5, MIP-3α/CCL20, ENA-78/CXCL5, and IP-10/CXCL10).
- Human internal thoracic artery endothelial cells show the highest inflammatory activity in comparison with saphenous vein endothelial cells, adipose tissue-derived microvascular endothelial cells, and aortic valve endothelial cells.
Abstract
Aim. To define pro-inflammatory cytokines secreted by distinct primary endothelial cells (ECs) into the cell culture medium.
Methods. Primary human aortic valve endothelial cells (HAVEC) were obtained from the patients with aortic stenosis (n = 3). Primary human saphenous vein endothelial cells (HSaVEC, n = 3), internal thoracic artery endothelial cells (HITAEC, n = 3), and subcutaneous adipose tissue-derived microvascular endothelial cells (HMVEC, n = 3) were isolated from the patients with coronary artery disease. Expression of MIF, IL6, CXCL8, CCL2, CCL5, CCL20, CSF2, CSF3, CXCL1, CXCL5, CXCL10, PTX3, SERPINE1, VCAM1, ICAM1, SELE, and SELP genes was performed by reverse transcription-quantitative polymerase chain reaction. The levels of 109 pro-inflammatory cytokines in the serum-free cell culture medium were measured by the semi-quantitative dot blot profiling with the chemiluminescent detection and densitometry. Statistical analysis was carried out using Kruskal-Wallis test with the further Dunn’s multiple comparisons test.
Results. MIF, IL-6, IL-8/CXCL8, MCP-1/CCL2, RANTES/CCL5, GM-CSF, GROα/CXCL1, ENA-78/CXCL5, and PTX3 were detected in the cell culture supernatant from all EC lines, whilst G-CSF, MIP-3α/CCL20, and IP-10/CXCL10 were exclusively observed in the cell culture supernatant from HITAEC. As compared with other cell lines, HITAEC had significantly elevated expression of CCL2, CCL20, CSF2, CSF3, and CXCL10 genes and showed a trend to the increased expression of CXCL5 and SERPINE1 genes. In contrast, HSaVEC and HMVEC did not demonstrate significant increase in the expression of any of the genes encoding pro-inflammatory cytokines. CCL2, CXCL8, CXCL1, MIF, PTX3, and IL6 genes had higher expression in comparison to other cytokine-encoding genes regardless of the EC line. Count of the expression ranks per each of these pro-inflammatory cytokines showed a significant relative distance between HITAEC and other EC lines.
Conclusion. We defined a list of endothelial pro-inflammatory cytokines (MIF, IL-6, IL-8/CXCL8, MCP-1/CCL2, RANTES/CCL5, MIP-3α/CCL20, GM-CSF, G-CSF, GRO-α/CXCL1, ENA-78/CXCL5, IP-10/CXCL10, and PTX3) and suggested a higher pro-inflammatory status of HITAEC as compared with HAVEC, HSaVEC, and HMVEC.
About the Authors
Victoria E. MarkovaRussian Federation
MSc, Junior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Daria K. Shishkova
Russian Federation
PhD, Head of the Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Alexey V. Frolov
Russian Federation
MD, DSc, Senior Researcher, Laboratory for Endovascular and Reconstructive Cardiovascular Surgery, Department of Cardiovascular Surgery, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Lyubov S. Basovich
Russian Federation
MSc, Junior Researcher, Laboratory for Regenerative Biomedicine, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg, Russian Federation
Maxim Yu. Sinitsky
Russian Federation
PhD, Head of the Laboratory for Genomic Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Anna V. Sinitskaya
Russian Federation
PhD, Senior Researcher, Laboratory for Genomic Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Yulia O. Yurieva
Russian Federation
Junior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Anastasia I. Lazebnaya
Russian Federation
Junior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Anton G. Kutikhin
Russian Federation
MD, DSc, Head of the Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
References
1. Cahill PA, Redmond EM. Vascular endothelium - Gatekeeper of vessel health. Atherosclerosis. 2016;248:97-109. doi: 10.1016/j.atherosclerosis.2016.03.007.
2. Gimbrone MA Jr, García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016;118(4):620-36. doi: 10.1161/CIRCRESAHA.115.306301.
3. Segers VFM, Bringmans T, De Keulenaer GW. Endothelial dysfunction at the cellular level in three dimensions: severity, acuteness, and distribution. Am J Physiol Heart Circ Physiol. 2023;325(2):H398-H413. doi: 10.1152/ajpheart.00256.2023.
4. Baaten CCFMJ, Vondenhoff S, Noels H. Endothelial Cell Dysfunction and Increased Cardiovascular Risk in Patients With Chronic Kidney Disease. Circ Res. 2023;132(8):970-992. doi: 10.1161/CIRCRESAHA.123.321752.
5. Liberale L, Montecucco F, Tardif JC, Libby P, Camici GG. Inflamm-ageing: the role of inflammation in age-dependent cardiovascular disease. Eur Heart J. 2020;41(31):2974-2982. doi: 10.1093/eurheartj/ehz961.
6. Müller L, Di Benedetto S. Inflammaging, immunosenescence, and cardiovascular aging: insights into long COVID implications. Front Cardiovasc Med. 2024;11:1384996. doi: 10.3389/fcvm.2024.1384996.
7. Greenspan LJ, Weinstein BM. To be or not to be: endothelial cell plasticity in development, repair, and disease. Angiogenesis. 2021;24(2):251-269. doi: 10.1007/s10456-020-09761-7.
8. Trimm E, Red-Horse K. Vascular endothelial cell development and diversity. Nat Rev Cardiol. 2023;20(3):197-210. doi: 10.1038/s41569-022-00770-1.
9. Becker LM, Chen SH, Rodor J, de Rooij LPMH, Baker AH, Carmeliet P. Deciphering endothelial heterogeneity in health and disease at single-cell resolution: progress and perspectives. Cardiovasc Res. 2023;119(1):6-27. doi: 10.1093/cvr/cvac018.
10. Rafii S, Butler JM, Ding BS. Angiocrine functions of organ-specific endothelial cells. Nature. 2016;529(7586):316-25. doi: 10.1038/nature17040.
11. Peng Z, Shu B, Zhang Y, Wang M. Endothelial Response to Pathophysiological Stress. Arterioscler Thromb Vasc Biol. 2019;39(11):e233-e243. doi: 10.1161/ATVBAHA.119.312580.
12. Shishkova D.K., Frolov A.V., Markova V.E., Markova Yu.O., Kanonykina A.Yu., Lazebnaya A.I., Matveeva V.G., Torgunakova E.A., Kutikhin A.G. Modeling of endothelial dysfunction and search for its circulating biomarkers. Kompleksnye problemy serdečno-sosudistyh zabolevanij = Complex Issues of Cardiovascular Diseases. 2024. Vol. 13. No. S3. P. 173-190. doi: 10.17802/2306-1278-2024-13-3S-173-190.
13. Shishkova D.K., Frolov A.V., Markova V.E., Markova Y.O., Lazebnaya A.I., Kutikhin A.G. Improving methodology of endothelial cell research: synopsis and prospects. Kompleksnye problemy serdečno-sosudistyh zabolevanij = Complex Issues of Cardiovascular Diseases. 2024. Vol. 13. No. 3. P. 118-129. doi: 10.17802/2306-1278-2024-13-3-118-129.
14. Bogdanov L.A., Koshelev V.A., Mukhamadiyarov R.A., Kanonykina A.Yu., Lazebnaya A.I., Kondratiev E.A., Stepanov A.D., Kutikhin A.G. Сurrent approaches to the identification of cellular markers of endothelial dysfunction. Kompleksnye problemy serdečno-sosudistyh zabolevanij = Complex Issues of Cardiovascular Diseases. 2024. Vol. 13. No. S3. P. 191-207. doi: 10.17802/2306-1278-2024-13-3S-191-207.
15. Shishkova D, Markova V, Sinitsky M, Tsepokina A, Frolov A, Zagorodnikov N, Bogdanov L, Kutikhin A. Co-Culture of Primary Human Coronary Artery and Internal Thoracic Artery Endothelial Cells Results in Mutually Beneficial Paracrine Interactions. Int J Mol Sci. 2020;21(21):8032. doi: 10.3390/ijms21218032.
16. Frolov A, Lobov A, Kabilov M, Zainullina B, Tupikin A, Shishkova D, Markova V, Sinitskaya A, Grigoriev E, Markova Y, Kutikhin A. Multi-Omics Profiling of Human Endothelial Cells from the Coronary Artery and Internal Thoracic Artery Reveals Molecular but Not Functional Heterogeneity. Int J Mol Sci. 2023;24(19):15032. doi: 10.3390/ijms241915032.
17. Kutikhin AG, Tupikin AE, Matveeva VG, Shishkova DK, Antonova LV, Kabilov MR, Velikanova EA. Human Peripheral Blood-Derived Endothelial Colony-Forming Cells Are Highly Similar to Mature Vascular Endothelial Cells yet Demonstrate a Transitional Transcriptomic Signature. Cells. 2020;9(4):876. doi: 10.3390/cells9040876.
18. Lindman BR, Clavel MA, Mathieu P, Iung B, Lancellotti P, Otto CM, Pibarot P. Calcific aortic stenosis. Nat Rev Dis Primers. 2016;2:16006. doi: 10.1038/nrdp.2016.6.
19. Vogel B, Claessen BE, Arnold SV, Chan D, Cohen DJ, Giannitsis E, Gibson CM, Goto S, Katus HA, Kerneis M, Kimura T, Kunadian V, Pinto DS, Shiomi H, Spertus JA, Steg PG, Mehran R. ST-segment elevation myocardial infarction. Nat Rev Dis Primers. 2019;5(1):39. doi: 10.1038/s41572-019-0090-3.
20. Kutikhin AG, Shishkova DK, Velikanova EA, Sinitsky MY, Sinitskaya AV, Markova VE. Endothelial Dysfunction in the Context of Blood-Brain Barrier Modeling. J Evol Biochem Physiol. 2022;58(3):781-806. doi: 10.1134/S0022093022030139.
21. Jerka D, Bonowicz K, Piekarska K, Gokyer S, Derici US, Hindy OA, Altunay BB, Yazgan I, Steinbrink K, Kleszczyński K, Yilgor P, Gagat M. Unraveling Endothelial Cell Migration: Insights into Fundamental Forces, Inflammation, Biomaterial Applications, and Tissue Regeneration Strategies. ACS Appl Bio Mater. 2024;7(4):2054-2069. doi: 10.1021/acsabm.3c01227.
22. Lee HW, Shin JH, Simons M. Flow goes forward and cells step backward: endothelial migration. Exp Mol Med. 2022;54(6):711-719. doi: 10.1038/s12276-022-00785-1.
23. Kraler S, Libby P, Evans PC, Akhmedov A, Schmiady MO, Reinehr M, Camici GG, Lüscher TF. Resilience of the Internal Mammary Artery to Atherogenesis: Shifting From Risk to Resistance to Address Unmet Needs. Arterioscler Thromb Vasc Biol. 2021;41(8):2237-2251. doi: 10.1161/ATVBAHA.121.316256.
24. Otsuka F, Yahagi K, Sakakura K, Virmani R. Why is the mammary artery so special and what protects it from atherosclerosis? Ann Cardiothorac Surg. 2013;2(4):519-26. doi: 10.3978/j.issn.2225-319X.2013.07.06.
25. Yan F, Liu X, Ding H, Zhang W. Paracrine mechanisms of endothelial progenitor cells in vascular repair. Acta Histochem. 2022;124(1):151833. doi: 10.1016/j.acthis.2021.151833.
26. Chong MS, Ng WK, Chan JK. Concise Review: Endothelial Progenitor Cells in Regenerative Medicine: Applications and Challenges. Stem Cells Transl Med. 2016;5(4):530-8. doi: 10.5966/sctm.2015-0227.
Supplementary files
Review
For citations:
Markova V.E., Shishkova D.K., Frolov A.V., Basovich L.S., Sinitsky M.Yu., Sinitskaya A.V., Yurieva Yu.O., Lazebnaya A.I., Kutikhin A.G. SYNTHESIS OF PRO-INFLAMMATORY CYTOKINES BY HUMAN AORTIC VALVE, INTERNAL THORACIC ARTERY, SAPHENOUS VEIN, AND ADIPOSE TISSUE-DERIVED MICROVASCULAR ENDOTHELIAL CELLS. Complex Issues of Cardiovascular Diseases. 2025;14(4):196-215. (In Russ.) https://doi.org/10.17802/2306-1278-2025-14-4-196-215