Preview

Complex Issues of Cardiovascular Diseases

Advanced search

PATHOMORPHOLOGICAL PATTERNS OF DYSFUNCTIONS OF XENOPERICARDIAL BIOPROSTHESES OF HEART VALVES OF THE “UNILINE” MODEL

https://doi.org/10.17802/2306-1278-2025-14-4-176-194

Abstract

Highlights

  • Prosthetic endocarditis (PE) was the main cause of dysfunctions of biological prosthetic heart valves of the UniLine model that occurred during the first 4 years of operation. The main factor in the development of PD insolvency in the later time period was structural valvular degeneration (SKD).
  • The key macroscopic signs of SCD included calcification and ruptures of the valve apparatus. At the microscopic level, PD with SCD was characterized by moderate cellular infiltration with a predominance of macrophages. In turn, for valves with PE, thickening of the valves and the formation of vegetation were noted, the development of which was accompanied by aggressive invasion of neutrophils.
  • The results of cluster analysis of data on 46 key clinical and pathomorphological features supported the division of the studied PD sample into 2 stable clusters corresponding to the patterns of CD and PE.

 

Abstract

Aim. This study aimed to comprehensively evaluate the pathomorphological changes in “Uniline” bioprosthetic heart valves (BHVs) explanted due to dysfunction.

Methods. A total of 44 “Uniline” BHVs, retrieved from an equal number of recipients during valve re-replacement procedures were examined. To determine cellular composition and assess biomaterial microstructure, valve leaflets were sectioned and stained using hematoxylin and eosin, Russell-Movat pentachrome, Oil Red O, and Alizarin Red S. Bacterial colonies were identified using Gram staining. Immunohistochemistry was performed with the NovoLink Polymer DS detection system and antibodies against the pan-leukocyte marker (CD45), T-lymphocytes (CD3), B-lymphocytes (CD19), macrophages (CD68), neutrophils (MPO), and platelets (CD62p). Stained sections were scanned on an MT5300L microscope, and the resulting histological slides were analyzed using QuPath and Fiji software. Cluster analysis was performed to identify pathomorphological patterns of BHV dysfunction.

Results. Clinical and pathomorphological data confirmed PE and SVD as the underlying causes of dysfunction within the cohort. Patients in the PE and SVD groups showed no significant clinical or demographic differences. The mean duration of BHV function was 30 months for PE and 74 months for SVD. Valves explanted due to SVD exhibited leaflet calcification and tears. Most BHVs with PE were characterized by the presence of vegetations on the leaflets. SVD-affected valves displayed moderate macrophage infiltration, whereas PE cases showed aggressive neutrophil invasion. Cluster analysis algorithms identified two stable patterns of dysfunction: the first was characterized by features typical of SVD, including chronic inflammation and calcification, while the second corresponded to persistent acute inflammation associated with PE.

Conclusion. PE and SVD are key pathomorphological patterns of dysfunction in “Uniline” BHVs, treated with ethyleneglycol diglycidyl ether. The identified patterns are the same as the main causes of degeneration in BHVs treated with glutaraldehyde. This underscores fundamental limitations in using chemically cross-linked xenopericardium for BHV manufacturing and, consequently, highlights the necessity for developing new materials and methods aimed at improving the durability of artificial heart valves.

About the Authors

Evgeny A. Ovcharenko
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Candidate of Technical Sciences, Head of the Laboratory of New Biomaterials of the Federal State Budgetary Scientific Institution "Scientific Research Institute of Complex Problems of Cardiovascular Diseases", Kemerovo, Russian Federation



Tatiana V. Glushkova
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Candidate of Biological Sciences, Senior Researcher at the Laboratory of New Biomaterials of the Federal State Budgetary Scientific Institution "Scientific Research Institute of Complex Problems of Cardiovascular Diseases", Kemerovo, Russian Federation



Alexander E. Kostyunin
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Senior Researcher at the Laboratory of New Biomaterials of the Federal State Budgetary Scientific Institution Scientific Research Institute of Complex Problems of Cardiovascular Diseases, Kemerovo, Russian Federation



Anastasia A. Klyueva
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Junior Researcher at the Laboratory of Genomic Medicine of the Federal State Budgetary Scientific Institution "Scientific Research Institute of Complex Problems of Cardiovascular Diseases", Kemerovo, Russian Federation



Tatiana N. Akentieva
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Junior Researcher at the Laboratory of New Biomaterials of the Federal State Budgetary Scientific Institution "Scientific Research Institute of Complex Problems of Cardiovascular Diseases", Kemerovo, Russian Federation



Alyona O. Poddubnyak
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Laboratory Researcher at the Laboratory of Genomic Medicine of the Federal State Budgetary Scientific Institution "Scientific Research Institute of Complex Problems of Cardiovascular Diseases", Kemerovo, Russian Federation



Marina P. Fokeeva
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Junior Researcher at the Laboratory of New Biomaterials of the Federal State Budgetary Scientific Institution Scientific Research Institute of Complex Problems of Cardiovascular Diseases, Kemerovo, Russian Federation



Kirill Yu. Klyshnikov
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Senior Researcher at the Laboratory of New Biomaterials of the Federal State Budgetary Scientific Institution Scientific Research Institute of Complex Problems of Cardiovascular Diseases, Kemerovo, Russian Federation



Alexander N. Stasev
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

PhD, Senior Researcher at the Laboratory of Heart Defects of the Federal State Budgetary Scientific Institution Scientific Research Institute of Complex Problems of Cardiovascular Diseases, Kemerovo, Russian Federation



Olga L.. Barbarash
Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”
Russian Federation

Academician of the Russian Academy of Sciences, Director of the Federal State Budgetary Scientific Institution "Scientific Research Institute of Complex Problems of Cardiovascular Diseases", Kemerovo, Russian Federation



References

1. Kudryavtseva Yu.A. Bioprosthetic heart valves. From idea to clinical use. Complex Issues of Cardiovascular Diseases. 2015; 4:6-16. (In Russian) doi:10.17802/2306-1278-2015-4-6-16

2. Barbarash L.S., Zhuravleva I.Yu. Bioprosthetic heart valve evolution: two decades of advances and challenges. Complex Issues of Cardiovascular Diseases. 2012; 1:4-11. (In Russian) doi:10.17802/2306-1278-2012-1-4-11

3. Karaskov A., Sharifulin R., Zheleznev S., Demin I., Lenko E., Bogachev-Prokophiev A. Results of the Ross procedure in adults: a single-Centre experience of 741 operations. Eur J Cardiothorac Surg. 2016; 49:e97-e104. doi:10.1093/ejcts/ezw047

4. Nichay N.R., Zhuravleva I.Y., Kulyabin Y.Y., Zubritskiy A.V., Voitov A.V., Soynov I.A., Gorbatykh A.V., Bogachev-Prokophiev A.V., Karaskov A.M. Diepoxy- versus glutaraldehyde-treated xenografts: outcomes of right ventricular outflow tract reconstruction in children. World J Pediatr Congenit Heart Surg. 2020; 11:56-64. doi:10.1177/2150135119885900

5. Zhuravleva I.Y., Karpova E.V., Dokuchaeva A.A., Titov A.T., Timchenko T.P., Vasilieva M.B. Calcification of various bioprosthetic materials in rats: is it really different? Int J Mol Sci. 2023; 24(8):7274. doi:10.3390/ijms24087274

6. Glushkova T.V., Ovcharenko E.A., Rogulina N.V., Klyshnikov K.Yu., Kudryavtseva Yu.A., Barbarash L.S. Dysfunction patterns of epoxy-treated tissue heart valves. Kardiologiia. 2019; 59(10):49-59. (In Russian) doi:10.18087/cardio.2019.10.n327

7. Karaskov A.M, Zheleznev S.I., Rogulina N.V., Sapegin A.V., Odarenko Yu.N., Levadin Yu.V., Rutkovskaya N.V., Barbarash L.S. Next generation russian biological prosthesis “UniLin” for mitral valve replacement: first experience. Russian Journal of Thoracic and Cardiovascular Surgery. 2017; 59(2):98-104. (In Russian) doi:10.24022/0236-2791-59-2-98-104

8. Kozlov B.N., Petlin K.A., Pryakhin A.S., Seredkina E.B., Panfilov D.S., Shipulin V.M. Immediate and long-term results of application of UniLine bioprostheses in the aortic position. Clinical and Experimental Surgery. Petrovsky journal. 2017; 4:37-42 (In Russian) doi:10.24411/2308-1198-2017-00005

9. Mukhamadiyarov R.A., Rutkovskaya N.V., Kokorin S.G., Odarenko Yu.N., Milto I.V., Barbarash L.S. Cell typing of biological heart valves prosthesis explanated due to the development of calcium-associated dysfunctions. Bulletin of Siberian Medicine. 2018; 17(4):94-102. (In Russian) doi:10.20538/1682-0363-2018-4-94-102

10. Mukhamadiyarov R.A., Rutkovskaya N.V., Sidorova O.D., Barbarash L.S. Cellular composition of calcified bioprosthetic heart valves. Annals of the Russian Academy of Medical Sciences. 2015; 70(6):662-668. (In Russian) doi:10.15690/vramn560

11. Barbarash L.S., Karaskov A.M., Semenovsky M.L., Zhuravleva I.Yu., Odarenko Yu.N., Vavilov P.A., Nokhrin A.V., Astapov D.A. Bioprostheses of heart valves in Russia: experience of three clinics. Pathology of Blood Circulation and Cardiac Surgery. 2011; (2):21-26. (In Russian)

12. Fowler V.G., Durack D.T., Selton-Suty C., Athan E., Bayer A.S., Chamis A.L., Dahl A., DiBernardo L., Durante-Mangoni E., Duval X., Fortes C.Q., Fosbøl E., Hannan M.M., Hasse B., Hoen B., Karchmer A.W., Mestres C.A., Petti C.A., Pizzi M.N., Preston S.D., Roque A., Vandenesch F., van der Meer J.T.M., van der Vaart T.W., Miro J.M. The 2023 Duke-international society for cardiovascular infectious diseases criteria for infective endocarditis: updating the modified Duke criteria. Clin Infect Dis. 2023; 77(4):518-526. doi:10.1093/cid/ciad271

13. Bankhead P., Loughrey M.B., Fernández J.A., Dombrowski Y., McArt D.G., Dunne P.D., McQuaid S., Gray R.T., Murray L.J., Coleman H.G., James J.A., Salto-Tellez M., Hamilton P.W. QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017; 7(1):16878. doi:10.1038/s41598-017-17204-5

14. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9(7):676-682. doi:10.1038/nmeth.2019

15. Healy J., McInnes L. Uniform manifold approximation and projection. Nat Rev Methods Primers. 2024; 4:82. doi:10.1038/s43586-024-00363-x

16. Rousseeuw P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics. 1987; 20: 53-65. doi:10.1016/0377-0427(87)90125-7

17. Caliński T., Harabasz J. A dendrite method for cluster analysis. Communications in Statistics. 1974; 3(1):1-27. doi:10.1080/03610927408827101

18. Davies D.L., Bouldin D.W. A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1979; PAMI-1(2):224-227. doi:10.1109/TPAMI.1979.4766909

19. Berrett T.B., Samworth R.J. USP: an independence test that improves on Pearson's chi-squared and the G-test. Proc Math Phys Eng Sci. 2021; 477(2256):20210549. doi:10.1098/rspa.2021.0549

20. Cote N., Pibarot P., Clavel M.A. Incidence, risk factors, clinical impact, and management of bioprosthesis structural valve degeneration. Curr Opin Cardiol. 2017; 32(2):123-129. doi:10.1097/HCO.0000000000000372

21. Nappi F. Advancements and challenges in the management of prosthetic valve endocarditis: a review. Pathogens. 2024; 13(12):1039. doi:10.3390/pathogens13121039

22. DeSimone D.C., Garrigos Z.E., Marx G.E., Tattevin P., Hasse B., McCormick D.W., Hannan M.M., Zuhlke L.J., Radke C.S., Baddour L.M. Blood culture-negative endocarditis: a scientific statement from the American Heart Association: endorsed by the International Society for Cardiovascular Infectious Diseases. J Am Heart Assoc. 2025; 14(8):e040218. doi:10.1161/JAHA.124.040218

23. Lepidi H., Casalta J.P., Fournier P.E., Habib G., Collart F., Raoult D. Quantitative histological examination of bioprosthetic heart valves. Clin Infect Dis. 2006; 42(5):590-596. doi:10.1086/500135

24. Anton C.I., Ștefan I., Duțulescu S., Stăniceanu F., Buzilă C.A., Ștefan A.T., Streinu-Cercel A. Histological findings in infective endocarditis-a retrospective cohort study conducted at "Dr. Carol Davila" Central Military Emergency University Hospital in Bucharest. Life (Basel). 2024; 14(12):1658. doi:10.3390/life14121658

25. Meyers S, Crescente M, Verhamme P, Martinod K. Staphylococcus aureus and neutrophil extracellular traps: the master manipulator meets its match in immunothrombosis. Arterioscler Thromb Vasc Biol. 2022 Mar;42(3):261-276. doi: 10.1161/ATVBAHA.121.316930

26. Christian A.J., Lin H., Alferiev I.S., Connolly J.M., Ferrari G., Hazen S.L., Ischiropoulos H., Levy R.J. The susceptibility of bioprosthetic heart valve leaflets to oxidation. Biomaterials. 2014; 35(7):2097-2102. doi:10.1016/j.biomaterials.2013.11.045

27. Kostyunin A.E., Glushkova T.V., Lobov A.A., Ovcharenko E.A., Zainullina B.R., Bogdanov L.A., Shishkova D.K., Markova V.E., Asanov M.A., Mukhamadiyarov R.A., Velikanova E.A., Akentyeva T.N., Rezvova M.A., Stasev A.N., Evtushenko A.V., Barbarash L.S., Kutikhin A.G. Proteolytic degradation is a major contributor to bioprosthetic heart valve failure. J Am Heart Assoc. 2023; 12(1):e028215. doi:10.1161/JAHA.122.028215

28. Liu Z., Wang Y., Xie F., Liu X., Li F., Dong N. Elimination of macrophages reduces glutaraldehyde-fixed porcine heart valve degeneration in mice subdermal model. Pharmacol Res Perspect. 2021; 9(1):e00716. doi:10.1002/prp2.716

29. Sakaue T., Koyama T., Nakamura Y., Okamoto K., Kawashima T., Umeno T., Nakayama Y., Miyamoto S., Shikata F., Hamaguchi M., Aono J., Kurata M., Namiguchi K., Uchita S., Masumoto J., Yamaguchi O., Higashiyama S., Izutani H. Bioprosthetic valve deterioration: accumulation of circulating proteins and macrophages in the valve interstitium. JACC Basic Transl Sci. 2023; 8(7):862-880. doi:10.1016/j.jacbts.2023.01.003

30. Shetty R., Pibarot P., Audet A., Janvier R., Dagenais F., Perron J., Couture C., Voisine P., Després J.P., Mathieu P. Lipid-mediated inflammation and degeneration of bioprosthetic heart valves. Eur J Clin Invest. 2009; 39(6):471-480. doi:10.1111/j.1365-2362.2009.02132.x

31. Werner P., Gritsch J., Scherzer S., Gross C., Russo M., Coti I., Kocher A., Laufer G., Andreas M. Structural valve deterioration after aortic valve replacement with the Trifecta valve. Interact Cardiovasc Thorac Surg. 2021; 32(1):39-46. doi:10.1093/icvts/ivaa236

32. Yang Y., Sun H., Zhang Y., Zhang T., Gong J., Wei Y., Duan Y.G., Shu M., Yang Y., Wu D., Yu D. Dimensionality reduction by UMAP reinforces sample heterogeneity analysis in bulk transcriptomic data. Cell Rep. 2021; 36(4):109442. doi:10.1016/j.celrep.2021.109442

33. Kostyunin A.E., Yuzhalin A.E., Rezvova M.A., Ovcharenko E.A., Glushkova T.V., Kutikhin A.G. Degeneration of bioprosthetic heart valves: update 2020. J Am Heart Assoc. 2020; 9(19):e018506. doi:10.1161/JAHA.120.018506

34. Delgado V., Ajmone Marsan N., de Waha S., Bonaros N., Brida M., Burri H., Caselli S., Doenst T., Ederhy S., Erba P.A., Foldager D., Fosbøl E.L., Kovac J., Mestres C.A., Miller O.I., Miro J.M., Pazdernik M., Pizzi M.N., Quintana E., Rasmussen T.B., Ristić A.D., Rodés-Cabau J., Sionis A., Zühlke L.J., Borger M.A. 2023 ESC Guidelines for the management of endocarditis. Eur Heart J. 2023; 44(39):3948-4042. doi:10.1093/eurheartj/ehad193

35. Ivanovic B., Trifunovic D., Matic S., Petrovic J., Sacic D., Tadic M. Prosthetic valve endocarditis – a trouble or a challenge? J Cardiol. 2019; 73(2):126-133. doi:10.1016/j.jjcc.2018.08.007

36. Pibarot P., Herrmann H.C., Wu C., Hahn R.T., Otto C.M., Abbas A.E., Chambers J., Dweck M.R., Leipsic J.A., Simonato M., Rogers T., Sathananthan J., Guerrero M., Ternacle J., Wijeysundera H.C., Sondergaard L., Barbanti M., Salaun E., Généreux P., Kaneko T., Landes U., Wood D.A., Deeb G.M., Sellers S.L., Lewis J., Madhavan M., Gillam L., Reardon M., Bleiziffer S., O'Gara P.T., Rodés-Cabau J., Grayburn P.A., Lancellotti P., Thourani V.H., Bax J.J., Mack M.J., Leon M.B. Standardized definitions for bioprosthetic valve dysfunction following aortic or mitral valve replacement: JACC state-of-the-art review. J Am Coll Cardiol. 2022; 80(5):545-561. doi:10.1016/j.jacc.2022.06.002

37. Poitier B., Rancic J., Richez U., Piquet J., El Batti S., Smadja D.M. Fibrin deposition on bovine pericardium tissue used for bioprosthetic heart valve drives its calcification. Front Cardiovasc Med. 2023; 10:1198020. doi:10.3389/fcvm.2023.1198020

38. Zakharchenko A., Xue Y., Keeney S., Rock C.A., Alferiev I.S., Stachelek S.J., Takano H., Thomas T., Nagaswami C., Krieger A.M., Chorny M., Ferrari G., Levy R.J. Poly-2-methyl-2-oxazoline-modified bioprosthetic heart valve leaflets have enhanced biocompatibility and resist structural degeneration. Proc Natl Acad Sci U S A. 2022; 119(6):e2120694119. doi:10.1073/pnas.2120694119


Supplementary files

Review

For citations:


Ovcharenko E.A., Glushkova T.V., Kostyunin A.E., Klyueva A.A., Akentieva T.N., Poddubnyak A.O., Fokeeva M.P., Klyshnikov K.Yu., Stasev A.N., Barbarash O.L. PATHOMORPHOLOGICAL PATTERNS OF DYSFUNCTIONS OF XENOPERICARDIAL BIOPROSTHESES OF HEART VALVES OF THE “UNILINE” MODEL. Complex Issues of Cardiovascular Diseases. 2025;14(4):176-194. (In Russ.) https://doi.org/10.17802/2306-1278-2025-14-4-176-194

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)