Preview

Complex Issues of Cardiovascular Diseases

Advanced search

TOTAL ARTIFICIAL HEART. REVIEW

https://doi.org/10.17802/2306-1278-2025-14-4-241-255

Abstract

Highlights

  • Implantation of an artificial heart serves as a temporary solution for patients with end-stage heart failure.
  • The literature review presents the history of the completely artificial heart, its different models, and clinical applications.

 

Abstract

Cardiovascular disease is one of the leading causes of death worldwide. Many patients with end-stage heart failure die due to a shortage of donor hearts. A total artificial heart (TAH) is an implantable device that replaces the heart. To date, it has been successfully implanted in more than 2,000 patients as a bridge to heart transplantation. However, after several decades of research, a TAH suitable for targeted therapy has yet to be developed. High complication rates, bulky devices, poor durability, poor biocompatibility and poor quality of life for patients are some of the major drawbacks of existing TAH devices that need to be addressed before they can be used as targeted therapy. Rapidly emerging innovations in battery technology, wireless energy transfer, biocompatible materials, and soft robotics offer promising opportunities for TAH development and may help address the shortcomings of existing devices [1]. This review describes the major milestones in the history of TAH design and development. The differences in the mechanisms of operation of these devices are described, and current challenges and requirements for the next generation of TAHs are discussed. Thus, despite significant progress, modern TAHs remain predominantly a temporary solution. The key challenges for transitioning to long-term targeted therapy are improving device durability, addressing the need for pulsatile flow, and miniaturizing the systems for a broad patient population.

About the Authors

Dmitry A. Sirota
Federal State Budgetary Institution “Meshalkin National Medical Research Center” of the Ministry of Healthcare of Russian Federation; Federal State Budgetary Educational Institution of Higher Education “Novosibirsk State Medical University” Ministry of Healthcare of the Russian Federation Russian Federation
Russian Federation

MD, PhD, Head of the Center for Surgery of the Aorta, Coronary and Peripheral Arteries, Institute of Circulation Pathology, Federal State Budgetary Institution “Meshalkin National Medical Research Center” of the Ministry of Healthcare of Russian Federation, Novosibirsk, Russian Federation; Associate Professor, Department of Cardiovascular Surgery, Faculty of Advanced Training and Professional Retraining, Federal State Budgetary Educational Institution of Higher Education “Novosibirsk State Medical University” Ministry of Healthcare of the Russian Federation Russian Federation, Novosibirsk, Russian Federation



Maxim O. Zhulkov
Federal State Budgetary Institution “Meshalkin National Medical Research Center” of the Ministry of Healthcare of Russian Federation
Russian Federation

MD, PhD, Researcher, Center for Surgery of the Aorta, Coronary and Peripheral Arteries, Institute of Circulation Pathology, Federal State Budgetary Institution “Meshalkin National Medical Research Center” of the Ministry of Healthcare of Russian Federation, Novosibirsk, Russian Federation



Andrey V. Protopopov
Federal State Budgetary Institution “Meshalkin National Medical Research Center” of the Ministry of Healthcare of Russian Federation
Russian Federation

Postgraduate Student, Junior Researcher, Center for Surgery of the Aorta, Coronary and Peripheral Arteries, Institute of Circulation Pathology, Federal State Budgetary Institution “Meshalkin National Medical Research Center” of the Ministry of Healthcare of Russian Federation, Novosibirsk, Russian Federation



Maria A. Surovtseva
Federal State Budgetary Institution “Meshalkin National Medical Research Center” of the Ministry of Healthcare of Russian Federation
Russian Federation

MD, PhD, Laboratory Assistant, Laboratory of Experimental Surgery and Morphology, Institute of Experimental Biology and Medicine, Federal State Budgetary Institution “Meshalkin National Medical Research Center” of the Ministry of Healthcare of Russian Federation, Novosibirsk, Russian Federation



Yaroslav M. Smirnov
Federal State Budgetary Institution “Meshalkin National Medical Research Center” of the Ministry of Healthcare of Russian Federation
Russian Federation

Anesthesia Nurse, Department of Anesthesiology and Intensive Care for Adult Patients, Federal State Budgetary Institution “Meshalkin National Medical Research Center” of the Ministry of Healthcare of Russian Federation, Novosibirsk, Russian Federation; Medical Student, Faculty of Medicine, V. Zelman Institute of Medicine and Psychology, Federal State Autonomous Educational Institution of Higher Education “Novosibirsk National Research State University”, Novosibirsk, Russian Federation



References

1. Vis, A., Arfaee, M., Khambati, H., Slaughter, M. S., Gummert, J. F., Overvelde, J. T. B., & Kluin, J. (2022). The ongoing quest for the first total artificial heart as destination therapy. Nature Reviews Cardiology 2022 19:12, 19(12), 813–828. https://doi.org/10.1038/s41569-022-00723-8

2. Hette, A. N., & Sobral, M. L. P. (2022). Mechanical Circulatory Assist Devices: Which Is the Best Device as Bridge to Heart Transplantation? Brazilian Journal of Cardiovascular Surgery, 37(5), 737–743. https://doi.org/10.21470/1678-9741-2021-0562

3. Kuroda, T., Miyagi, C., Fukamachi, K., & Karimov, J. H. (2023). Biventricular assist devices and total artificial heart: Strategies and outcomes. Frontiers in Cardiovascular Medicine, 9(January), 1–6. https://doi.org/10.3389/fcvm.2022.972132

4. Reich, H., Czer, L., Bannykh, S., De Robertis, M., Wolin, E., Amersi, F., Moriguchi, J., Kobashigawa, J., & Arabia, F. (2015). Total Artificial Heart Bridge to Transplantation for a Patient with Occult Intracardiac Malignancy: Case Report. Transplantation Proceedings, 47(7), 2291–2294. https://doi.org/10.1016/j.transproceed.2015.04.083

5. Goerlich, C. E., Frazier, O. H., & Cohn, W. E. (2016). Previous challenges and current progress–the use of total artificial hearts in patients with end-stage heart failure. Expert Review of Cardiovascular Therapy, 14(10), 1095–1098. https://doi.org/10.1080/14779072.2016.1217154

6. Lima, B., Mack, M., & Gonzalez-Stawinski, G. V. (2015). Ventricular assist devices: The future is now. Trends in Cardiovascular Medicine, 25(4), 360–369. https://doi.org/10.1016/j.tcm.2014.11.008

7. Carrier, M., Moriguchi, J., Shah, K. B., Anyanwu, A. C., Mahr, C., Skipper, E., Cossette, M., & Noly, P.-E. (2021). Outcomes after heart transplantation and total artificial heart implantation: A multicenter study. The Journal of Heart and Lung Transplantation, 40(3), 220–228. https://doi.org/10.1016/j.healun.2020.11.012

8. Глянцев, С. П., & Вернер, А. (2022). ФЕНОМЕН ДЕМИХОВА . Рождение концепции вспомогательного кровообращения и ее реализация ( Демихов В . П ., 1937 – 1947 гг .) PHENOMENON OF DEMIKHOV . 14, 226–236.

9. Cooley, D. A., Liotta, D., Hallman, G. L., Bloodwell, R. D., Leachman, R. D., & Milam, J. D. (1969). Orthotopic cardiac prosthesis for two-staged cardiac replacement. The American Journal of Cardiology, 24(5), 723–730. https://doi.org/10.1016/0002-9149(69)90460-3

10. Frazier OH, T, A., & DA, C. (1982). Total artificial heart (TAH) utilization in man. ASAIO Journal, 28(1), 534–538.

11. Kolff WJ. (1983). Artificial organs-forty years and beyond. ASAIO Journal, 28(1), 534–538.

12. DeVries, W. C., Anderson, J. L., Joyce, L. D., Anderson, F. L., Hammond, E. H., Jarvik, R. K., & Kolff, W. J. (1984). Clinical Use of the Total Artificial Heart. New England Journal of Medicine, 310(5), 273–278. https://doi.org/10.1056/NEJM198402023100501,

13. Slepian, M. J. (2011). The SynCardia temporary total artificial heart-evolving clinical role and future status. US Cardiology, 8(1), 39–46. https://doi.org/10.15420/usc.2011.8.1.39

14. Itkin, G. P. (2014). Mechanical Circulatory Support: Problems, Solutions and New Directions. Russian Journal of Transplantology and Artificial Organs, 0(3), 76. https://doi.org/10.15825/1995-1191-2014-3-76-84

15. Heart, A. (1988). STATE OF ART PROBLEM OF ARTIFICIAL UNION * ORGANS IN THE SOVIET SHUMAKOV Director of the Research Institute of Transplantology and Artificial Organs , The USSR Ministry of Health , Moscow , USSR. 1469–1475.

16. Kung RTV, LS, Y., BD, O., SM, P., MP, M., & OH, F. (1995). Progress in the Development of the ABIOMED Total Artificial Heart. ASAIO Journal, 41(3), M245–8.

17. Dowling, R. D., Gray, L. A., Etoch, S. W., Laks, H., Marelli, D., Samuels, L., Entwistle, J., Couper, G., Vlahakes, G. J., Frazier, O. H., & Hetzer, R. (2004). Initial experience with the AbioCor Implantable Replacement Heart System. Journal of Thoracic and Cardiovascular Surgery, 127(1), 131–141. https://doi.org/10.1016/j.jtcvs.2003.07.023

18. Patients, H. Y., Longer, L., & Better, L. (n.d.). Consultation Guide for the SynCardia temporary Total Artificial Heart What is the SynCardia TAH ?

19. SYNCARDIA TOTAL ARTIFICIAL HEART (STAH). (n.d.). Retrieved June 20, 2025, from https://www.syncardia.com/syncardia-total-artificial-heart-stah.html

20. https://www.syncardia.com/syncardia-total-artificial-heart-stah.html. (n.d.).

21. Schroder, J. N., McCartney, S. L., Jansen, P., Plichta, R., Katz, J. N., Smadja, D. M., Dewan, K. C., & Milano, C. A. (2023). The First Autoregulated Total Artificial Heart Implant in the United States. Annals of Thoracic Surgery Short Reports, 1(1), 185–187. https://doi.org/10.1016/j.atssr.2022.09.007

22. Ahmed, A., Wang, X., & Yang, M. (2020). Biocompatible materials of pulsatile and rotary blood pumps: A brief review. Reviews on Advanced Materials Science, 59(1), 322–339. https://doi.org/10.1515/rams-2020-0009

23. Koerfer, R., Spiliopoulos, S., Finocchiaro, T., Guersoy, D., Tenderich, G., & Steinseifer, U. (2014). Paving the way for destination therapy of end-stage biventricular heart failure: The ReinHeart total artificial heart concept. European Journal of Cardio-Thoracic Surgery, 46(6), 935–936. https://doi.org/10.1093/ejcts/ezu317

24. Pelletier, B., Spiliopoulos, S., Finocchiaro, T., Graef, F., Kuipers, K., Laumen, M., Guersoy, D., Steinseifer, U., Koerfer, R., & Tenderich, G. (2015). System overview of the fully implantable destination therapy-ReinHeart-total artificial heart. European Journal of Cardio-Thoracic Surgery, 47(1), 80–86. https://doi.org/10.1093/ejcts/ezu321

25. ReinHeart | Institute of Applied Medical Engineering | RWTH Aachen University. (n.d.). Retrieved June 20, 2025, from https://www.ame.rwth-aachen.de/cms/ame/forschung/cve-kardiovaskulaere-technik/cve-projekte/abgeschlossene-projekte/~pbdm/cve-projekt-reinheart/?lidx=1

26. Tenderich, G., Spiliopoulos, S., & Koerfer, R. (2017). Mechanical Circulatory Support in End-Stage Heart Failure. Mechanical Circulatory Support in End-Stage Heart Failure, 589–592. https://doi.org/10.1007/978-3-319-43383-7

27. Szabo, Z., Holm, J., Najar, A., Hellers, G., Pieper, I. L., & Casimir Ahn, H. (2018). Scandinavian Real Heart (SRH) 11 Implantation as Total Artificial Heart (TAH)-Experimental Update. Journal of Clinical & Experimental Cardiology, 09(03), 9–12. https://doi.org/10.4172/2155-9880.1000578

28. Lindseth, R. O. (2002). The Next Wave of Mechanical Circulatory Support Devices. Cardiac Interventions Today, 9(12), 9–15.

29. Ng, B. C., Smith, P. A., Nestler, F., Timms, D., Cohn, W. E., & Lim, E. (2017). Application of Adaptive Starling-Like Controller to Total Artificial Heart Using Dual Rotary Blood Pumps. Annals of Biomedical Engineering, 45(3), 567–579. https://doi.org/10.1007/s10439-016-1706-3

30. Kleinheyer, M., Timms, D. L., Tansley, G. D., Nestler, F., Greatrex, N. A., Frazier, O. H., & Cohn, W. E. (2016). Rapid Speed Modulation of a Rotary Total Artificial Heart Impeller. Artificial Organs, 40(9), 824–833. https://doi.org/10.1111/aor.12827

31. Kleinheyer, M., Greatrex, N., Nestler, F., & Timms, D. L. (2023). BiVACOR Total Artificial Heart and Future Concepts. Mechanical Circulatory Support, 1–17. https://doi.org/10.1007/978-3-030-86172-8_14-1

32. BiVACOR, Inc. – Replacing Hearts. Restoring Lives. (n.d.). Retrieved June 20, 2025, from https://bivacor.com/

33. Squire, L. R. (2009). An innovative, sensorless, pulsatile, continuous- flow total artificial heart: device design and initial in vitro study. Neuron, 61(1), 1–7. https://doi.org/10.1016/j.healun.2009.05.034.AN

34. Wiesen, JonathaMoshe Ornstein2, Adriano R Tonelli1, Venu Menon3, and R. W., & Ashton. (2008). Speed Modulation of the Continuous-Flow Total Artificial Heart to Simulate a Physiologic Arterial Pressure Waveform. Bone, 23(1), 1–7. https://doi.org/10.1097/MAT.0b013e3181e650f8.Speed

35. Kuroda, T., Miyamoto, T., Miyagi, C., Polakowski, A. R., Flick, C. R., Kuban, B. D., Voros, G. B., Such, K., Fukamachi, K., & Karimov, J. H. (2022). Pulsatility hemodynamics during speed modulation of continuous-flow total artificial heart in a chronic in vivo model. Artificial Organs, 46(8), 1555–1563. https://doi.org/10.1111/aor.14237

36. Miyagi, C., Kuroda, T., Polakowski, A. R., Flick, C. R., Gao, S., Kuban, B. D., Karimov, J. H., & Fukamachi, K. (2024). Pediatric continuous-flow total artificial heart with rotor axial position tracking technology: First report of in vivo assessment. JHLT Open, 5, 100118. https://doi.org/10.1016/j.jhlto.2024.100118

37. Петухов, Д. С., Селищев, С. В., & Телышев, Д. В. (2015). Перспективы развития технологий полной замены функции сердца с помощью механических систем поддержки кровообращения. 5(293), 5–8.

38. Селищев, С. В., & Телышев, Д. В. (2016). Проектирование полностью искусственного сердца на основе роторных насосов крови. 3(297).

39. Fox, C., Chopski, S., Murad, N., Allaire, P., Mentzer, R., Rossano, J., Arabia, F., & Throckmorton, A. (2018). Hybrid Continuous-Flow Total Artificial Heart. Artificial Organs, 42(5), 500–509. https://doi.org/10.1111/aor.13080

40. Fox, C. S., Palazzolo, T., Hirschhorn, M., Stevens, R. M., Rossano, J., Day, S. W., Tchantchaleishvili, V., & Throckmorton, A. L. (2022). Development of the Centrifugal Blood Pump for a Hybrid Continuous Flow Pediatric Total Artificial Heart: Model, Make, Measure. Frontiers in Cardiovascular Medicine, 9(August), 1–13. https://doi.org/10.3389/fcvm.2022.886874

41.

42.


Supplementary files

Review

For citations:


Sirota D.A., Zhulkov M.O., Protopopov A.V., Surovtseva M.A., Smirnov Ya.M. TOTAL ARTIFICIAL HEART. REVIEW. Complex Issues of Cardiovascular Diseases. 2025;14(4):241-255. (In Russ.) https://doi.org/10.17802/2306-1278-2025-14-4-241-255

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)