SECRETOME OF PRIMARY HUMAN CORONARY ARTERY AND INTRNAL THORACIC ARTERY ENDOTHELIAL CELLS AT PHYSIOLOGICAL STATE AND AT ENDOTHELIAL DYSFUNCTION
https://doi.org/10.17802/2306-1278-2025-14-5-210-235
Abstract
Highlights
- Dysfunctional endothelial cells are characterized by the pathological shedding of endothelial receptors markers and reduced release of endothelial basement membrane components and subendothelial extracellular matrix proteins into the cell culture medium.
- Primary human coronary artery endothelial cells demonstrate an elevated shedding of integrins, an increased production of platelet aggregation and activation components, and reduced release of basement membrane components into the cell culture medium as compared to human internal thoracic artery endothelial cells.
- Primary human internal thoracic artery endothelial cells have higher resistance to endothelial dysfunction triggers in comparison with human coronary artery endothelial cells.
Abstract
Aim. To compare the secretome from intact and dysfunctional primary human coronary artery endothelial cells (HCAEC) and human internal thoracic artery endothelial cells (HITAEC).
Methods. Here we investigated the secretome of HCAEC and HITAEC treated with either PBS (intact ECs, n = 6 per EC line) or calciprotein particles (dysfunctional ECs, n = 6 per EC line) in the serum-free medium for 24 hours. To achieve this task, we performed acetone precipitation of proteins from the cell culture supernatant, tryptic digestion of proteins to peptides (15 µg per sample), protein identification by high-performance liquid chromatography-tandem mass-spectrometry, and bioinformatics analysis of endothelial phenotype markers, endothelial basement membrane components and subendothelial extracellular matrix proteins, angiogenesis pathways, platelet activation and aggregation pathways, and response to oxidative or endoplasmic reticulum stress. Concentration of pro-inflammatory cytokines in the cell culture supernatant was measured by multi-analyte profiling (xMAP).
Results. Cell culture supernatant from dysfunctional ECs had increased levels of endothelial cell receptor soluble forms and reduced quantities of endothelial basement membrane components and subendothelial extracellular matrix proteins. Cell culture supernatant from HCAEC contained increased levels of integrins (similar to dysfunctional ECs) and platelet activation and aggregation proteins, as well as reduced amount of basement membrane components. Treatment with primary calciprotein particles provoked the release of 12 and 5 pro-inflammatory cytokines, respectively. Treatment with secondary calciprotein particles induced production of 30 and 10 pro-inflammatory cytokines in HCAEC and HITAEC, respectively.
Conclusion. Secretome of HCAEC is more similar to dysfunctional ECs whilst HITAEC have higher resistance to pro-inflammatory endothelial activation.
About the Authors
Victoria E. MarkovaRussian Federation
Junior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Daria K. Shishkova
Russian Federation
PhD, Head of the Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Russian Federation
Alexander D. Stepanov
Russian Federation
Junior Researcher, Laboratory of Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Alexey V. Frolov
Russian Federation
MD, DSc, Senior Researcher, Laboratory for Endovascular and Reconstructive Cardiovascular Surgery, Department of Cardiovascular Surgery, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Yulia O. Yurieva
Russian Federation
Junior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Anastasia I. Lazebnaya
Russian Federation
Junior Researcher, Laboratory for Molecular, Translational, and Digital Medicine, Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation
Egor A., Repkin
Russian Federation
Specialist, Resource Centre Development of Molecular and Cellular Technologies, Research Park, Saint Petersburg State University, Saint Petersburg, Russian Federation
Anton G. Kutikhin
Russian Federation
MD, DSc, Head of the Department of Experimental Medicine, Federal State Budgetary Institution “Research Institute for Complex Issues of Cardiovascular Diseases”, Kemerovo, Russian Federation; Kemerovo, Russian Federation
References
1. Segers VFM, Bringmans T, De Keulenaer GW. Endothelial dysfunction at the cellular level in three dimensions: severity, acuteness, and distribution. Am J Physiol Heart Circ Physiol. 2023;325(2):H398-H413. doi: 10.1152/ajpheart.00256.2023.
2. Horton WB, Barrett EJ. Microvascular Dysfunction in Diabetes Mellitus and Cardiometabolic Disease. Endocr Rev. 2021;42(1):29-55. doi: 10.1210/endrev/bnaa025.
3. Özdemir VA, Nural N. Evaluation of risk factors for foot ulceration in individuals with chronic kidney disease. Wounds. 2023;35(10):E319-E328. doi: 10.25270/wnds/23053.
4. Samberg M, Stone R 2nd, Natesan S, Kowalczewski A, Becerra S, Wrice N, Cap A, Christy R. Platelet rich plasma hydrogels promote in vitro and in vivo angiogenic potential of adipose-derived stem cells. Acta Biomater. 2019;87:76-87. doi: 10.1016/j.actbio.2019.01.039.
5. Kleinbongard P, Heusch G. A fresh look at coronary microembolization. Nat Rev Cardiol. 2022;19(4):265-280. doi: 10.1038/s41569-021-00632-2.
6. Pi X, Xie L, Patterson C. Emerging Roles of Vascular Endothelium in Metabolic Homeostasis. Circ Res. 2018;123(4):477-494. doi: 10.1161/CIRCRESAHA.118.313237.
7. Koenen M, Hill MA, Cohen P, Sowers JR. Obesity, Adipose Tissue and Vascular Dysfunction. Circ Res. 2021;128(7):951-968. doi: 10.1161/CIRCRESAHA.121.318093.
8. Kaur G, Harris NR. Endothelial glycocalyx in retina, hyperglycemia, and diabetic retinopathy. Am J Physiol Cell Physiol. 2023;324(5):C1061-C1077. doi: 10.1152/ajpcell.00188.2022.
9. Cho ME, Brunt VE, Shiu YT, Bunsawat K. Endothelial dysfunction in chronic kidney disease: a clinical perspective. Am J Physiol Heart Circ Physiol. 2025;329(1):H135-H153. doi: 10.1152/ajpheart.00908.2024.
10. Borri M, Jacobs ME, Carmeliet P, Rabelink TJ, Dumas SJ. Endothelial dysfunction in the aging kidney. Am J Physiol Renal Physiol. 2025;328(4):F542-F562. doi: 10.1152/ajprenal.00287.2024.
11. Scialla JJ, Wolf M. Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease. Nat Rev Nephrol. 2014;10(5):268-78. doi: 10.1038/nrneph.2014.49.
12. Baaten CCFMJ, Vondenhoff S, Noels H. Endothelial Cell Dysfunction and Increased Cardiovascular Risk in Patients With Chronic Kidney Disease. Circ Res. 2023;132(8):970-992. doi: 10.1161/CIRCRESAHA.123.321752.
13. Zeng Y, Buonfiglio F, Li J, Pfeiffer N, Gericke A. Mechanisms Underlying Vascular Inflammaging: Current Insights and Potential Treatment Approaches. Aging Dis. 2024;16(4):1889-1917. doi: 10.14336/AD.2024.0922.
14. Singh A, Schurman SH, Bektas A, Kaileh M, Roy R, Wilson DM 3rd, Sen R, Ferrucci L. Aging and Inflammation. Cold Spring Harb Perspect Med. 2024;14(6):a041197. doi: 10.1101/cshperspect.a041197.
15. Giacca M, Shah AM. The pathological maelstrom of COVID-19 and cardiovascular disease. Nat Cardiovasc Res. 2022;1(3):200-210. doi: 10.1038/s44161-022-00029-5.
16. Rafii S, Butler JM, Ding BS. Angiocrine functions of organ-specific endothelial cells. Nature. 2016;529(7586):316-25. doi: 10.1038/nature17040.
17. Gomez-Salinero JM, Redmond D, Rafii S. Microenvironmental determinants of endothelial cell heterogeneity. Nat Rev Mol Cell Biol. 2025;26(6):476-495. doi: 10.1038/s41580-024-00825-w.
18. Bogdanov L, Shishkova D, Mukhamadiyarov R, Velikanova E, Tsepokina A, Terekhov A, Koshelev V, Kanonykina A, Shabaev A, Frolov A, Zagorodnikov N, Kutikhin A. Excessive Adventitial and Perivascular Vascularisation Correlates with Vascular Inflammation and Intimal Hyperplasia. Int J Mol Sci. 2022;23(20):12156. doi: 10.3390/ijms232012156.
19. Chi J, Wang Q, Wang Z, Zeng W, Gao Y, Li X, Wang W, Wang J, Qu M. S100 calcium-binding protein A8 exacerbates deep vein thrombosis in vascular endothelial cells. Sci Rep. 2025;15(1):831. doi: 10.1038/s41598-025-85322-6.
20. Göb V, Zimmermann L, Hemmen K, Haarmann A, Heinze KG, Schuhmann MK, Stegner D. Platelet-Derived PDGF-A Disrupts Blood-Brain Barrier Integrity in Ischemic Stroke-Brief Report. Arterioscler Thromb Vasc Biol. 2025;45(7):1166-1174. doi: 10.1161/ATVBAHA.125.321191.
21. Skou ST, Mair FS, Fortin M, Guthrie B, Nunes BP, Miranda JJ, Boyd CM, Pati S, Mtenga S, Smith SM. Multimorbidity. Nat Rev Dis Primers. 2022;8(1):48. doi: 10.1038/s41572-022-00376-4.
22. Frolov A, Lobov A, Kabilov M, Zainullina B, Tupikin A, Shishkova D, Markova V, Sinitskaya A, Grigoriev E, Markova Y, Kutikhin A. Multi-Omics Profiling of Human Endothelial Cells from the Coronary Artery and Internal Thoracic Artery Reveals Molecular but Not Functional Heterogeneity. Int J Mol Sci. 2023;24(19):15032. doi: 10.3390/ijms241915032.
23. Stepanov A, Shishkova D, Markova V, Markova Y, Frolov A, Lazebnaya A, Oshchepkova K, Perepletchikova D, Smirnova D, Basovich L, Repkin E, Kutikhin A. Proteomic Profiling of Endothelial Cell Secretomes After Exposure to Calciprotein Particles Reveals Downregulation of Basement Membrane Assembly and Increased Release of Soluble CD59. Int J Mol Sci. 2024;25(21):11382. doi: 10.3390/ijms252111382.
24. Lampsas S, Tsaplaris P, Pantelidis P, Oikonomou E, Marinos G, Charalambous G, Souvaliotis N, Mystakidi VC, Goliopoulou A, Katsianos E, Siasos G, Vavuranakis MA, Tsioufis C, Vavuranakis M, Tousoulis D. The Role of Endothelial Related Circulating Biomarkers in COVID-19. A Systematic Review and Meta-analysis. Curr Med Chem. 2022;29(21):3790-3805. doi: 10.2174/0929867328666211026124033.
25. Andrianto, Al-Farabi MJ, Nugraha RA, Marsudi BA, Azmi Y. Biomarkers of endothelial dysfunction and outcomes in coronavirus disease 2019 (COVID-19) patients: A systematic review and meta-analysis. Microvasc Res. 2021;138:104224. doi: 10.1016/j.mvr.2021.104224.
26. Wu Q, Cui J, Jiang Y, Li X, You C. Causal role of endothelial dysfunction in ischemic stroke and its subtypes: A two-stage analysis. SLAS Technol. 2025;33:100322. doi: 10.1016/j.slast.2025.100322.
27. Hansra GK, Jayasena T, Hosoki S, Poljak A, Lam BCP, Rust R, Sagare A, Zlokovic B, Thalamuthu A, Sachdev PS. Fluid biomarkers of the neurovascular unit in cerebrovascular disease and vascular cognitive disorders: A systematic review and meta-analysis. Cereb Circ Cogn Behav. 2024;6:100216. doi: 10.1016/j.cccb.2024.100216.
28. Qiu S, Cai X, Liu J, Yang B, Zügel M, Steinacker JM, Sun Z, Schumann U. Association between circulating cell adhesion molecules and risk of type 2 diabetes: A meta-analysis. Atherosclerosis. 2019;287:147-154. doi: 10.1016/j.atherosclerosis.2019.06.908.
29. Roca-Rodríguez MDM, Ramos-García P, López-Tinoco C, Aguilar-Diosdado M. Significance of cell adhesion molecules profile during pregnancy in gestational diabetes mellitus. A systematic review and meta-analysis. Diabetes Res Clin Pract. 2023;202:110740. doi: 10.1016/j.diabres.2023.110740.
30. Wang K, Lei L, Li G, Lan Y, Wang W, Zhu J, Liu Q, Ren L, Wu S. Association between Ambient Particulate Air Pollution and Soluble Biomarkers of Endothelial Function: A Meta-Analysis. Toxics. 2024;12(1):76. doi: 10.3390/toxics12010076.
31. Waclawovsky AJ, Dos Santos EB, de Oliveira AAR, Stubbs B, Schuch FB. Plasma biomarkers of endothelial function in people with depressive disorder: A systematic review and meta-analysis. J Affect Disord. 2025;375:297-305. doi: 10.1016/j.jad.2025.01.138.
32. Mangoni AA, Zinellu A. Circulating cell adhesion molecules in systemic sclerosis: a systematic review and meta-analysis. Front Immunol. 2024;15:1438302. doi: 10.3389/fimmu.2024.1438302.
33. Piotti A, Novelli D, Meessen JMTA, Ferlicca D, Coppolecchia S, Marino A, Salati G, Savioli M, Grasselli G, Bellani G, Pesenti A, Masson S, Caironi P, Gattinoni L, Gobbi M, Fracasso C, Latini R; ALBIOS Investigators. Endothelial damage in septic shock patients as evidenced by circulating syndecan-1, sphingosine-1-phosphate and soluble VE-cadherin: a substudy of ALBIOS. Crit Care. 2021;25(1):113. doi: 10.1186/s13054-021-03545-1.
34. Kutikhin AG, Shishkova DK, Velikanova EA, Sinitsky MY, Sinitskaya AV, Markova VE. Endothelial Dysfunction in the Context of Blood-Brain Barrier Modeling. J Evol Biochem Physiol. 2022;58(3):781-806. doi: 10.1134/S0022093022030139.
35. Shishkova D.K., Frolov A.V., Markova V.E., Markova Yu.O., Kanonykina A.Yu., Lazebnaya A.I., Matveeva V.G., Torgunakova E.A., Kutikhin A.G. Modeling of endothelial dysfunction and search for its circulating biomarkers. Complex Issues of Cardiovascular Diseases = Kompleksnye problemy serdečno-sosudistyh zabolevanij. 2024. Vol. 13. № S3. P. 173-190. doi: 10.17802/2306-1278-2024-13-3S-173-190.
36. Shishkova D.K., Markova V.E., Markova Y.O., Velikanova E.A., Sinitskaya A.V., Sinitsky M.Yu., Tyurina A.E., Stepanov A.D., Dyleva Yu.A., Matveeva V.G., Kutikhin A.G. Pathological effects of ionized calcium, calciprotein monomers and calciprotein particles on arterial endothelial cells. Complex Issues of Cardiovascular Diseases = Kompleksnye problemy serdečno-sosudistyh zabolevanij. 2024. Vol. 13. № 3. P. 167-181. doi: 10.17802/2306-1278-2024-13-3-167-181.
37. Yan F, Liu X, Ding H, Zhang W. Paracrine mechanisms of endothelial progenitor cells in vascular repair. Acta Histochem. 2022;124(1):151833. doi: 10.1016/j.acthis.2021.151833.
38. Chong MS, Ng WK, Chan JK. Concise Review: Endothelial Progenitor Cells in Regenerative Medicine: Applications and Challenges. Stem Cells Transl Med. 2016;5(4):530-8. doi: 10.5966/sctm.2015-0227.
39. Shishkova D.K., Frolov A.V., Markova V.E., Markova Y.O., Lazebnaya A.I., Kutikhin A.G. Improving methodology of endothelial cell research: synopsis and prospects. Complex Issues of Cardiovascular Diseases = Kompleksnye problemy serdečno-sosudistyh zabolevanij. 2024. Vol. 13. № 3. P. 118-129. doi: 10.17802/2306-1278-2024-13-3-118-129.
40. Deer E, Herrock O, Campbell N, Cornelius D, Fitzgerald S, Amaral LM, LaMarca B. The role of immune cells and mediators in preeclampsia. Nat Rev Nephrol. 2023;19(4):257-270. doi: 10.1038/s41581-022-00670-0.
41.
Review
For citations:
Markova V.E., Shishkova D.K., Stepanov A.D., Frolov A.V., Yurieva Yu.O., Lazebnaya A.I., Repkin E.A., Kutikhin A.G. SECRETOME OF PRIMARY HUMAN CORONARY ARTERY AND INTRNAL THORACIC ARTERY ENDOTHELIAL CELLS AT PHYSIOLOGICAL STATE AND AT ENDOTHELIAL DYSFUNCTION. Complex Issues of Cardiovascular Diseases. 2025;14(5):210-235. (In Russ.) https://doi.org/10.17802/2306-1278-2025-14-5-210-235

































