MICROCIRCULATION IN CRITICAL CARE: CURRENT PATHOPHYSIOLOGY AND PLACE IN THE STRATEGY OF MONITORING CRITICAL CONDITIONS AS A MONITORING TECHNOLOGY
Abstract
Highlights
- This literature review covers classical and modern concepts of the pathophysiology of microcirculation, the disorders of which underlie most critical conditions. Such complications can develop in patients after various surgical interventions and lead to the development of multiple organ failure, which still has many unresolved problems in its treatment.
- The development of a standard for monitoring microcirculatory and mitochondrial dysfunction will improve the outcomes of critical patients and prevent organ hypoperfusion in the perioperative period and during treatment in intensive care units.
Abstract
The most important problem of intensive care measures for patients in the intensive care unit/operating room with the development of a systemic inflammatory reaction (associated with both aggressive surgery and shock, ischemia and reperfusion) is the obvious lack of effective clinical and laboratory diagnostic tools for the deterioration of microcirculation in organs and tissues (peripheral hypoperfusion). It is worth noting that the diagnosis and therapy of macrohemodynamic disorders that have already occurred does not guarantee improved microcirculation and sufficient relief of organ hypoxia, which is confirmed by current trends in maintaining high mortality rates in critical patients with shock and multiple organ failure. Therefore, it is necessary to develop new tools and strategies adapted to clinical use for the direct diagnosis of microcirculatory disorders in order to predict the development of multiple organ failure and timely targeted therapy. This review reveals in detail the main aspects of the etiology and pathogenesis of microcirculation disorders in critical conditions, the pathophysiology of the mechanisms of microcirculatory dysfunction, as well as the possible role of promising instrumental technologies for direct monitoring of microcirculation changes at the patient’s bedside. Taking into account the versatility and interrelation of the processes occurring in violation of microcirculatory hemodynamics and organ perfusion, the urgent need for the introduction of a clinically effective method of diagnosis and prognosis of the development of multiple organ failure in patients at risk for early and informed correction of therapeutic actions is emphasized. The review examines the potential methods of vital video microscopy and optical coherence tomography angiography for clinical use, their advantages and disadvantages for solving the problems of bedside direct diagnosis of microcirculatory dysfunction.
About the Authors
Anton A. PlekhanovRussian Federation
Candidate of Medical Sciences, Junior Researcher at the Laboratory of Optical Coherence Tomography of the Scientific Research Institute of Experimental Oncology and Biomedical Technologies of the Federal State Budgetary Educational Institution of Higher Education "Volga Research Medical University" of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
Ivan A. Ryzhkov
Russian Federation
Candidate of Medical Sciences, Head of the Laboratory of Experimental Research, Leading Researcher, Anesthesiologist and Intensive Care Physician at the Federal State Budgetary Scientific Institution Federal Scientific and Clinical Center for Intensive Care and Rehabilitation, Moscow, Russian Federation
Elena B. Kiseleva
Russian Federation
Candidate of Biological Sciences, Senior Researcher at the Laboratory of Optical Coherence Tomography of the Federal State Budgetary Educational Institution of Higher Education "Volga Research Medical University" of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
Sergey V. Panfilov
Russian Federation
Intensive Care anesthesiologist at the Nizhny Novgorod Regional Clinical Oncology Dispensary, Intensive Care anesthesiologist at the Federal State Budgetary Educational Institution of Higher Education Volga Research Medical University of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
Alyona A. Mikhailova
Russian Federation
Intensive care anesthesiologist, Junior Researcher at the Laboratory of Anesthesiology, Intensive Care Medicine and Pathophysiology of Critical Conditions of the Federal State Budgetary Scientific Institution Scientific Research Institute of Complex Problems of Cardiovascular Diseases, Kemerovo, Russian Federation
Marina A. Sirotkina
Russian Federation
Candidate of Biological Sciences, Director of the Federal State Budgetary Educational Institution of Higher Education "Volga Research Medical University" of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
Natalia D. Gladkova
Russian Federation
MD, Professor, Head of the Laboratory of Optical Coherence Tomography of the Federal State Budgetary Educational Institution of Higher Education "Volga Research Medical University" of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
Evgeny V. Grigoriev
Russian Federation
Corresponding Member of the Russian Academy of Sciences, Deputy Director for Scientific and Therapeutic Work of the Federal State Budgetary Scientific Institution "Scientific Research Institute of Complex Problems of Cardiovascular Diseases", Kemerovo, Russian Federation
References
1. Gutierrez G, Lund N, Bryan-Brown CW. Cellular oxygen utilization during multiple organ failure. Crit Care Clin. 1989;5(2):271-287.
2. Bersten A, Sibbald WJ. Circulatory disturbances in multiple systems organ failure. Crit Care Clin. 1989;5(2):233-254.
3. Ryabov, G.A. Gipoksija kriticheskikh sostoyanij. Medicina. 1988 (In Russ)
4. Preau, S., Vodovar, D., Jung, B. Energetic dysfunction in sepsis: a narrative review. Ann. Intensive Care 11, 104 (2021). https://doi.org/10.1186/s13613-021-00893-7
5. Ostergaard L, Granfeldt A, Secher N, Tietze A, Iversen NK, Jensen MS, et al. Microcirculatory dysfunction and tissue oxygenation in critical illness. Acta Anaesthesiol Scand. 2015;59:1246–59
6. Ince C, Mik EG. Microcirculatory and mitochondrial hypoxia in sepsis, shock, and resuscitation. J Appl Physiol (1985). 2016;120:226–35
7. Andersen P, Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol. 1985 Sep;366:233-49. doi: 10.1113/jphysiol.1985.sp015794. PMID: 4057091; PMCID: PMC1193029.
8. Fry BC, Roy TK, Secomb TW. Capillary recruitment in a theoretical model for blood flow regulation in heterogeneous microvessel networks. Physiol Rep. 2013 Aug;1(3):e00050. doi: 10.1002/phy2.50.
9. Trzeciak S, Rivers EP. Clinical manifestations of disordered microcirculatory perfusion in severe sepsis. Crit Care. 2005;9 Suppl 4:S20–6
10. Koning NJ, Simon LE, Asfar P, Baufreton C, Boer C. Systemic microvascular shunting through hyperdynamic capillaries after acute physiological disturbances following cardiopulmonary bypass. Am J Physiol Heart Circ Physiol. 2014;307:H967–75
11. Segal SS. Regulation of blood flow in the microcirculation. Microcirculation. 2005;12(1):33-45. doi:10.1080/10739680590895028
12. Jacob, M., & Chappell, D. (2013). Reappraising Starling: the physiology of the microcirculation. Current opinion in critical care, 19(4), 282–289. https://doi.org/10.1097/MCC.0b013e3283632d5e
13. Hautefort, A., Pfenniger, A., & Kwak, B. R. (2019). Endothelial connexins in vascular function. Vascular biology (Bristol, England), 1(1), H117–H124. https://doi.org/10.1530/VB-19-0015
14. Levick, J. R., & Michel, C. C. (2010). Microvascular fluid exchange and the revised Starling principle. Cardiovascular research, 87(2), 198–210. https://doi.org/10.1093/cvr/cvq062
15. Pillinger, N. L., & Kam, P. (2017). Endothelial glycocalyx: basic science and clinical implications. Anaesthesia and intensive care, 45(3), 295–307. https://doi.org/10.1177/0310057X1704500305
16. Wang, X., Shen, Y., Shang, M., Liu, X., & Munn, L. L. (2023). Endothelial mechanobiology in atherosclerosis. Cardiovascular research, 119(8), 1656–1675. https://doi.org/10.1093/cvr/cvad076
17. Sukriti, S., Tauseef, M., Yazbeck, P., & Mehta, D. (2014). Mechanisms regulating endothelial permeability. Pulmonary circulation, 4(4), 535–551. https://doi.org/10.1086/677356
18. Claesson-Welsh L. (2015). Vascular permeability--the essentials. Upsala journal of medical sciences, 120(3), 135–143. https://doi.org/10.3109/03009734.2015.1064501
19. Baeyens, N., Bandyopadhyay, C., Coon, B. G., Yun, S., & Schwartz, M. A. (2016). Endothelial fluid shear stress sensing in vascular health and disease. The Journal of clinical investigation, 126(3), 821–828. https://doi.org/10.1172/JCI83083
20. Souilhol, C., Serbanovic-Canic, J., Fragiadaki, M., Chico, T. J., Ridger, V., Roddie, H., & Evans, P. C. (2020). Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nature reviews. Cardiology, 17(1), 52–63. https://doi.org/10.1038/s41569-019-0239-5
21. Goldenberg, N. M., Steinberg, B. E., Slutsky, A. S., & Lee, W. L. (2011). Broken barriers: a new take on sepsis pathogenesis. Science translational medicine, 3(88), 88ps25. https://doi.org/10.1126/scitranslmed.3002011
22. Seppä, A. M. J., Skrifvars, M. B., & Pekkarinen, P. T. (2023). Inflammatory response after out-of-hospital cardiac arrest-Impact on outcome and organ failure development. Acta anaesthesiologica Scandinavica, 67(9), 1273–1287. https://doi.org/10.1111/aas.14291
23. Hellenthal, K. E. M., Brabenec, L., & Wagner, N. M. (2022). Regulation and Dysregulation of Endothelial Permeability during Systemic Inflammation. Cells, 11(12), 1935. https://doi.org/10.3390/cells11121935
24. Vu, H. H., Moellmer, S. A., McCarty, O. J. T., & Puy, C. (2025). New mechanisms and therapeutic approaches to regulate vascular permeability in systemic inflammation. Current opinion in hematology, 32(3),130–137
25. Grundmann, S., Fink, K., Rabadzhieva, L., Bourgeois, N., Schwab, T., Moser, M., Bode, C., & Busch, H. J. (2012). Perturbation of the endothelial glycocalyx in post cardiac arrest syndrome. Resuscitation, 83(6), 715–720. https://doi.org/10.1016/j.resuscitation.2012.01.028
26. [Ostrowski, S. R., Haase, N., Müller, R. B., Møller, M. H., Pott, F. C., Perner, A., & Johansson, P. I. (2015). Association between biomarkers of endothelial injury and hypocoagulability in patients with severe sepsis: a prospective study. Critical care (London, England), 19(1), 191. https://doi.org/10.1186/s13054-015-0918-5
27. Ilyina YY, Fot EV, Kuzkov VV, Kirov MY. Sepsis-induced damage to endothelial glycocaly (literature review). Alexander Saltanov Intensive Care Herald. 2019;2:32-9.. doi:10.21320/1818-474X-2019-2-32-39. (In Russ)
28. Ryter, S. W., Kim, H. P., Hoetzel, A., Park, J. W., Nakahira, K., Wang, X., & Choi, A. M. (2007). Mechanisms of cell death in oxidative stress. Antioxidants & redox signaling, 9(1), 49–89. https://doi.org/10.1089/ars.2007.9.49
29. Huet, O., Dupic, L., Harrois, A., & Duranteau, J. (2011). Oxidative stress and endothelial dysfunction during sepsis. Frontiers in bioscience (Landmark edition), 16(5), 1986–1995. https://doi.org/10.2741/3835
30. Boisramé-Helms, J., Kremer, H., Schini-Kerth, V., & Meziani, F. (2013). Endothelial dysfunction in sepsis. Current vascular pharmacology, 11(2), 150–160.
31. Johansson, P. I., Stensballe, J., & Ostrowski, S. R. (2017). Shock induced endotheliopathy (SHINE) in acute critical illness - a unifying pathophysiologic mechanism. Critical care (London, England), 21(1), 25. https://doi.org/10.1186/s13054-017-1605-5
32. Welling, H., Henriksen, H. H., Gonzalez-Rodriguez, E. R., Stensballe, J., Huzar, T. F., Johansson, P. I., & Wade, C. E. (2020). Endothelial glycocalyx shedding in patients with burns. Burns : journal of the International Society for Burn Injuries, 46(2), 386–393. https://doi.org/10.1016/j.burns.2019.05.009
33. Welling, H., Henriksen, H. H., Gonzalez-Rodriguez, E. R., Stensballe, J., Huzar, T. F., Johansson, P. I., & Wade, C. E. (2020). Endothelial glycocalyx shedding in patients with burns. Burns : journal of the International Society for Burn Injuries, 46(2), 386–393. https://doi.org/10.1016/j.burns.2019.05.009
34. Naumann, D. N., Hazeldine, J., Davies, D. J., Bishop, J., Midwinter, M. J., Belli, A., Harrison, P., & Lord, J. M. (2018). Endotheliopathy of Trauma is an on-Scene Phenomenon, and is Associated with Multiple Organ Dysfunction Syndrome: A Prospective Observational Study. Shock (Augusta, Ga.), 49(4), 420–428. https://doi.org/10.1097/SHK.0000000000000999
35. Ladozhskaya-Gapeenko E.E. Microcirculation dysfunction in critical conditions (literature review). Messenger of ANESTHESIOLOGY AND RESUSCITATION. 2024;21(6):116-121. (In Russ.) https://doi.org/10.24884/2078-5658-2024-21-6-116-121
36. den Uil CA, Klijn E, Lagrand WK, Brugts JJ, Ince C, Spronk PE, Simoons ML. The microcirculation in health and critical disease. Prog Cardiovasc Dis. 2008 Sep-Oct;51(2):161-70. doi: 10.1016/j.pcad.2008.07.002. PMID: 18774014.
37. De Backer D, Ortiz JA, Salgado D. Coupling microcirculation to systemic hemodynamics. Curr Opin Crit Care. 2010 Jun;16(3):250-4. doi: 10.1097/MCC.0b013e3283383621. PMID: 20179590.
38. Ince C, Ashruf JF, Avontuur JA, Wieringa PA, Spaan JA, Bruining HA (1993) Heterogeneity of the hypoxic state in rat heart is determined at capillary level.Am J Physiol 264:H294–H301
39. Revelly JP, Ayuse T, Brienza N, Fessler HE, Robotham JL (1996) Endotoxic shock altersdistribution of blood flow within the intestinal wall. Crit Care Med 24:1345–1351
40. Schwartz DR, Malhotra A, Fink MP. Microcirculatory weak units--an alternative explanation. Crit Care Med. 2000 Aug;28(8):3127-9. doi: 10.1097/00003246-200008000-00103. PMID: 10966332.
41. Hilty MP, Jung C. Tissue oxygenation: how to measure, how much to target. Intensive Care Med Exp. 2023 Sep 23;11(1):64. doi: 10.1186/s40635-023-00551-1. PMID: 37740840; PMCID: PMC10517908.
42. van Genderen ME, Klijn E, Lima A, de Jonge J, Sleeswijk Visser S, Voorbeijtel J, Bakker J, van Bommel J. Microvascular perfusion as a target for fluid resuscitation in experimental circulatory shock. Crit Care Med. 2014 Feb;42(2):e96-e105. doi: 10.1097/CCM.0b013e3182a63fbf. PMID: 24158169.Spronk, P.E. Microcirculatory and Mitochondrial Distress Syndrome (MMDS): A New Look at Sepsis. in Functional Hemodynamic Monitoring: Update in Intensive Care and
43. Emergency Medicine. (ed. Pinsky, M.R., Payen, D.) 47–67 (Springer, 2005).
44. Brealey В, Brand M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M. Association between mitochondrial dysfunction and severity and outcome of septic shock. The Lancet,Volume 360, Issue 9328, 2002: 219-223, https://doi.org/10.1016/S0140-6736(02)09459-X.
45. Lang, C. H., Bagby, G. J., Ferguson, J. L. & Spritzer, J. J. Cardiac output and redistribution of organ blood flow in hypermetabolic sepsis. Am. J. Physiol. 246, 331–337 (1984).
46. Protti, A. & Singer, M. Bench-to-bedside review: Potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. Crit. Care. 10, 228. https://doi.org/10.1186/cc5014 (2006).
47. Donati, A. et al. From macrohemodynamic to the microcirculation. Crit. Care. Res. Pract. 2013, 892710. https://doi.org/10.1155/2013/892710 (2013).
48. Fink MP. Bench-to-bedside review: Cytopathic hypoxia. Crit Care. 2002 Dec;6(6):491-9. doi: 10.1186/cc1824. Epub 2002 Sep 12.
49. Porta F, Takala J, Weikert C, Bracht H, Kolarova A, Lauterburg BH, et al. Effects of prolonged endotoxemia on liver, skeletal muscle and kidney mitochondrial function. Crit Care. (2006) 10:R118. doi: 10.1186/cc5013
50. Taccone FS, Su F, De Deyne C, Abdellhai A, Pierrakos C, He X, et al. Sepsis is associated with altered cerebral microcirculation and tissue hypoxia in experimental peritonitis. Crit Care Med. (2014) 42:e114–22. doi: 10.1097/CCM.0b013e3182a641b8
51. Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 2014 Jan 1;5(1):66-72. doi: 10.4161/viru.26907. Epub 2013 Nov 1.
52. Carré JE, Orban JC, Re L, Felsmann K, Iffert W, Bauer M, Suliman HB, Piantadosi CA, Mayhew TM, Breen P, Stotz M, Singer M. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med. 2010 Sep 15;182(6):745-51. doi: 10.1164/rccm.201003-0326OC. Epub 2010 Jun 10.
53. Valeanu, L., Bubenek-Turconi, S.-I., Ginghina, C., & Balan, C. (2021). Hemodynamic Monitoring in Sepsis—A Conceptual Framework of Macro- and Microcirculatory Alterations. Diagnostics, 11(9), 1559. https://doi.org/10.3390/diagnostics11091559
54. Wang, H., Ding, H., Wang, Z.-Y., & Zhang, K. (2024). Research progress on microcirculatory disorders in septic shock: A narrative review. Medicine, 103(8), e37273. https://doi.org/10.1097/MD.0000000000037273
55. Bultinck J, Sips P, Vakaet L, et al. Systemic NO production during (septic) shock depends on parenchymal and not on hematopoietic cells: in vivo iNOS expression pattern in (septic) shock. FASEB J. 2006;20(13):2363–2365.
56. Zhang H, Wang Y, Qu M, et al. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med. 2023;13(1):e1170
57. Anand T, Reyes AA, Sjoquist MC, et al. Resuscitating the endothelial glycocalyx in trauma and hemorrhagic shock. Ann Surg Open. 2023;4(3):e298.
58. Maneta, E., Aivalioti, E., Tual-Chalot, S., Emini Veseli, B., Gatsiou, A., Stamatelopoulos, K., & Stellos, K. (2023). Endothelial dysfunction and immunothrombosis in sepsis. Frontiers in immunology, 14, 1144229. https://doi.org/10.3389/fimmu.2023.1144229
59. Jansson, D., Rustenhoven, J., Feng, S., Hurley, D., Oldfield, R. L., Bergin, P. S., Mee, E. W., Faull, R. L., & Dragunow, M. (2014). A role for human brain pericytes in neuroinflammation. Journal of neuroinflammation, 11, 104. https://doi.org/10.1186/1742-2094-11-104
60. McMullan, R.R., McAuley, D.F., O’Kane, C.M. et al. Vascular leak in sepsis: physiological basis and potential therapeutic advances. Crit Care 28, 97 (2024). https://doi.org/10.1186/s13054-024-04875-6
61. De Backer, D., Hajjar, L., & Monnet, X. (2024). Vasoconstriction in septic shock. Intensive care medicine, 50(3), 459–462. https://doi.org/10.1007/s00134-024-07332-8
62. Landry, D. W., & Oliver, J. A. (2001). The pathogenesis of vasodilatory shock. The New England journal of medicine, 345(8), 588–595. https://doi.org/10.1056/NEJMra002709
63. Burgdorff, A. M., Bucher, M., & Schumann, J. (2018). Vasoplegia in patients with sepsis and septic shock: pathways and mechanisms. The Journal of international medical research, 46(4), 1303–1310. https://doi.org/10.1177/0300060517743836
64. Bakker J, Ince C. Monitoring coherence between the macro and microcirculation in septic shock. Curr Opin Crit Care. 2020;26(3):267–272.
65. LeDoux, D., Astiz, M. E., Carpati, C. M., & Rackow, E. C. (2000). Effects of perfusion pressure on tissue perfusion in septic shock. Critical care medicine, 28(8), 2729–2732. https://doi.org/10.1097/00003246-200008000-00007
66. Dubin, A., Edul, V. S., Pozo, M. O., Murias, G., Canullán, C. M., Martins, E. F., Ferrara, G., Canales, H. S., Laporte, M., Estenssoro, E., & Ince, C. (2008). Persistent villi hypoperfusion explains intramucosal acidosis in sheep endotoxemia. Critical care medicine, 36(2), 535–542. https://doi.org/10.1097/01.CCM.0000300083.74726.43
67. Hernandez, G., Boerma, E. C., Dubin, A., Bruhn, A., Koopmans, M., Edul, V. K., Ruiz, C., Castro, R., Pozo, M. O., Pedreros, C., Veas, E., Fuentealba, A., Kattan, E., Rovegno, M., & Ince, C. (2013). Severe abnormalities in microvascular perfused vessel density are associated to organ dysfunctions and mortality and can be predicted by hyperlactatemia and norepinephrine requirements in septic shock patients. Journal of critical care, 28(4), 538.e9–538.e5.38E14. https://doi.org/10.1016/j.jcrc.2012.11.022
68. Trzeciak, S., Dellinger, R. P., Parrillo, J. E., Guglielmi, M., Bajaj, J., Abate, N. L., Arnold, R. C., Colilla, S., Zanotti, S., Hollenberg, S. M., & Microcirculatory Alterations in Resuscitation and Shock Investigators (2007). Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Annals of emergency medicine, 49(1), 88–98.e982. https://doi.org/10.1016/j.annemergmed.2006.08.021
69. Tachon, G., Harrois, A., Tanaka, S., Kato, H., Huet, O., Pottecher, J., Vicaut, E., & Duranteau, J. (2014). Microcirculatory alterations in traumatic hemorrhagic shock. Critical care medicine, 42(6), 1433–1441. https://doi.org/10.1097/CCM.0000000000000223
70. Sakr, Y., Dubois, M. J., De Backer, D., Creteur, J., & Vincent, J. L. (2004). Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Critical care medicine, 32(9), 1825–1831. https://doi.org/10.1097/01.ccm.0000138558.16257.3f
71. Stenberg, T. A., Kildal, A. B., Sanden, E., How, O. J., Hagve, M., Ytrehus, K., Larsen, T. S., & Myrmel, T. (2014). The acute phase of experimental cardiogenic shock is counteracted by microcirculatory and mitochondrial adaptations. PloS one, 9(9), e105213. https://doi.org/10.1371/journal.pone.0105213
72. Elbers, P. W., & Ince, C. (2006). Mechanisms of critical illness--classifying microcirculatory flow abnormalities in distributive shock. Critical care (London, England), 10(4), 221. https://doi.org/10.1186/cc4969
73. Ince, C., Boerma, E.C., Cecconi, M. et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med 44, 281–299 (2018). https://doi.org/10.1007/s00134-018-5070-7
74. Guay CS, Khebir M, Shiva Shahiri T, Szilagyi A, Cole EE, Simoneau G, Badawy M. Evaluation of automated microvascular flow analysis software AVA 4: a validation study. Intensive Care Med Exp. 2021 Apr 2;9(1):15. doi: 10.1186/s40635-021-00380-0. PMID: 33796954; PMCID: PMC8017044.
75. Massey MJ, Shapiro NI. A guide to human in vivo microcirculatory flow image analysis. Crit Care. 2016 Feb 10;20:35. doi: 10.1186/s13054-016-1213-9. PMID: 26861691; PMCID: PMC4748457.
76. Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, Nadeau RG. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med. 1999 Oct;5(10):1209-12. doi: 10.1038/13529. PMID: 10502828.
77. Bottino DA and Bouskela E (2023) Non-invasive techniques to access in vivo the skin microcirculation in patients. Front. Med. 9:1099107. doi: 10.3389/fmed.2022.1099107
78. Massey MJ, Shapiro NI. A guide to human in vivo microcirculatory flow image analysis. Crit Care. 2016 Feb 10;20:35. doi: 10.1186/s13054-016-1213-9. PMID: 26861691; PMCID: PMC4748457.
79. De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent JL. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med. 2010 Nov;36(11):1813-25. doi: 10.1007/s00134-010-2005-3. Epub 2010 Aug 6. PMID: 20689916.
80. Aykut G, Veenstra G, Scorcella C, Ince C, Boerma C. Cytocam-IDF (incident dark field illumination) imaging for bedside monitoring of the microcirculation. Intensive Care Med Exp. 2015 Dec;3(1):40. doi: 10.1186/s40635-015-0040-7. Epub 2015 Jan 31.
81. Kiseleva E., Ryabkov M., Baleev M., Bederina E., Shilyagin P., Moiseev A., Beschastnov V., Romanov I., Gelikonov G., Gladkova N. Prospects of Intraoperative Multimodal OCT Application in Patients with Acute Mesenteric Ischemia // Diagnostics (Basel). 2021. 11(4). 705. doi: 10.3390/diagnostics11040705.
82. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al. Optical coherence tomography. Science. 1991 Nov 22;254(5035):1178-81. doi: 10.1126/science.1957169. PMID: 1957169; PMCID: PMC4638169.
83. Fujimoto JG, Brezinski ME, Tearney GJ, Boppart SA, Bouma B, Hee MR, Southern JF, Swanson EA. Optical biopsy and imaging using optical coherence tomography. Nat Med. 1995 Sep;1(9):970-2. doi: 10.1038/nm0995-970. PMID: 7585229.
84. Nioka S, Chen Y. Optical tecnology developments in biomedicine: history, current and future. Transl Med UniSa. 2011 Oct 17;1:51-150. PMID: 23905030; PMCID: PMC3728850.
85. Park JR, Lee B, Lee MJ, Kim K, Oh WY. Visualization of three-dimensional microcirculation of rodents' retina and choroid for studies of critical illness using optical coherence tomography angiography. Sci Rep. 2021 Jul 12;11(1):14302. doi: 10.1038/s41598-021-93631-9. PMID: 34253747; PMCID: PMC8275781.
86. Lee B, Kang W, Oh SH, Cho S, Shin I, Oh EJ, Kim YJ, Ahn JS, Yook JM, Jung SJ, Lim JH, Kim YL, Cho JH, Oh WY. In vivo imaging of renal microvasculature in a murine ischemia-reperfusion injury model using optical coherence tomography angiography. Sci Rep. 2023 Apr 19;13(1):6396. doi: 10.1038/s41598-023-33295-9. PMID: 37076541; PMCID: PMC10115874.
87. Hessler, M., Nelis, P., Ertmer, C. et al. Optical coherence tomography angiography as a novel approach to contactless evaluation of sublingual microcirculation: A proof of principle study. Sci Rep 10, 5408 (2020). https://doi.org/10.1038/s41598-020-62128-2
88. Courtie E, Gilani A, Veenith T and Blanch RJ (2022) Optical coherence tomography angiography as a surrogate marker for end-organ resuscitation in sepsis: A review. Front. Med. 9:1023062. doi: 10.3389/fmed.2022.1023062
89. Hilty MP, Akin S, Boerma C, Donati A, Erdem Ö, Giaccaglia P, Guerci P, Milstein DM, Montomoli J, Toraman F, Uz Z, Veenstra G, Ince C. Automated Algorithm Analysis of Sublingual Microcirculation in an International Multicentral Database Identifies Alterations Associated With Disease and Mechanism of Resuscitation. Crit Care Med. 2020 Oct;48(10):e864-e875. doi: 10.1097/CCM.0000000000004491. PMID: 32931192.
90. Sigg AA, Zivkovic V, Bartussek J, Schuepbach RA, Ince C, Hilty MP. The physiological basis for individualized oxygenation targets in critically ill patients with circulatory shock. Intensive Care Med Exp. 2024 Aug 22;12(1):72. doi: 10.1186/s40635-024-00651-6. PMID: 39174691; PMCID: PMC11341514.
91. Jacquet-Lagrèze M, Magnin M, Allaouchiche B, Abrard S. Is handheld video microscopy really the future of microcirculation monitoring? Crit Care. 2023 Sep 12;27(1):352. doi: 10.1186/s13054-023-04642-z. PMID: 37700327; PMCID: PMC10498643.
92. Dubin A, Kanoore Edul VS, Caminos Eguillor JF, Ferrara G. Monitoring Microcirculation: Utility and Barriers - A Point-of-View Review. Vasc Health Risk Manag. 2020 Dec 31;16:577-589. doi: 10.2147/VHRM.S242635. PMID: 33408477; PMCID: PMC7780856.
93. De Backer, Daniel. Is microcirculatory assessment ready for regular use in clinical practice?. Current Opinion in Critical Care 25(3):p 280-284, June 2019. | DOI: 10.1097/MCC.0000000000000605
94. Magnin, M., Foulon, É., Lurier, T., Allaouchiche, B., Bonnet-Garin, J. M., & Junot, S. (2020). Evaluation of microcirculation by Sidestream Dark Field imaging: Impact of hemodynamic status on the occurrence of pressure artifacts - A pilot study. Microvascular research, 131, 104025. https://doi.org/10.1016/j.mvr.2020.104025
95. Massey, M. J., Larochelle, E., Najarro, G., Karmacharla, A., Arnold, R., Trzeciak, S., Angus, D. C., & Shapiro, N. I. (2013). The microcirculation image quality score: development and preliminary evaluation of a proposed approach to grading quality of image acquisition for bedside videomicroscopy. Journal of critical care, 28(6), 913–917. https://doi.org/10.1016/j.jcrc.2013.06.015
96. Massey, M.J., Shapiro, N.I. A guide to human in vivo microcirculatory flow image analysis. Crit Care 20, 35 (2015). https://doi.org/10.1186/s13054-016-1213-9
97. Dobbe, J. G., Streekstra, G. J., Atasever, B., van Zijderveld, R., & Ince, C. (2008). Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis. Medical & biological engineering & computing, 46(7), 659–670. https://doi.org/10.1007/s11517-008-0349-4
98. Ince C. (2008). The elusive microcirculation. Intensive care medicine, 34(10), 1755–1756. https://doi.org/10.1007/s00134-008-1131-7
99. Struijker-Boudier, H. A., Rosei, A. E., Bruneval, P., Camici, P. G., Christ, F., Henrion, D., Lévy, B. I., Pries, A., & Vanoverschelde, J. L. (2007). Evaluation of the microcirculation in hypertension and cardiovascular disease. European heart journal, 28(23), 2834–2840. https://doi.org/10.1093/eurheartj/ehm448
100. Dababneh, L., Cikach, F., Alkukhun, L., Dweik, R. A., & Tonelli, A. R. (2014). Sublingual microcirculation in pulmonary arterial hypertension. Annals of the American Thoracic Society, 11(4), 504–512. https://doi.org/10.1513/AnnalsATS.201308-277OC
101. Wadowski, P. P., Hülsmann, M., Schörgenhofer, C., Lang, I. M., Wurm, R., Gremmel, T., Koppensteiner, R., Steinlechner, B., Schwameis, M., & Jilma, B. (2018). Sublingual functional capillary rarefaction in chronic heart failure. European journal of clinical investigation, 48(2), 10.1111/eci.12869. https://doi.org/10.1111/eci.12869
102. Ruzek, L., Svobodova, K., Olson, L. J., Ludka, O., & Cundrle, I., Jr (2017). Increased microcirculatory heterogeneity in patients with obstructive sleep apnea. PloS one, 12(9), e0184291. https://doi.org/10.1371/journal.pone.0184291
103. Scorcella C, Damiani E, Domizi R, Pierantozzi S, Tondi S, Carsetti A, Ciucani S, Monaldi V, Rogani M, Marini B, Adrario E, Romano R, Ince C, Boerma EC, Donati A. MicroDAIMON study: Microcirculatory DAIly MONitoring in critically ill patients: a prospective observational study. Ann Intensive Care. 2018 May 15;8(1):64. doi: 10.1186/s13613-018-0411-9. PMID: 29766322; PMCID: PMC5953911.
104. Pranskunas A, Koopmans M, Koetsier PM, Pilvinis V, Boerma EC. Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy. Intensive Care Med. 2013 Apr;39(4):612-9. doi: 10.1007/s00134-012-2793-8. Epub 2012 Dec 20. PMID: 23263029; PMCID: PMC3607718.
105. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014 Dec;40(12):1795-815. doi: 10.1007/s00134-014-3525-z. Epub 2014 Nov 13. PMID: 25392034; PMCID: PMC4239778.
106.
Supplementary files
Review
For citations:
Plekhanov A.A., Ryzhkov I.A., Kiseleva E.B., Panfilov S.V., Mikhailova A.A., Sirotkina M.A., Gladkova N.D., Grigoriev E.V. MICROCIRCULATION IN CRITICAL CARE: CURRENT PATHOPHYSIOLOGY AND PLACE IN THE STRATEGY OF MONITORING CRITICAL CONDITIONS AS A MONITORING TECHNOLOGY. Complex Issues of Cardiovascular Diseases. 2025;14(5):139-159. (In Russ.)

































