PATHOPHYSIOLOGY OF MYOCARDIAL INFARCTION: HISTORICAL ESSAYS AND NEW HORIZONS
https://doi.org/10.17802/2306-1278-2025-14-6-259-277
Abstract
Highlights
In the analytical review, the main pathophysiological mechanisms of myocardial infarction development are presented, including complex molecular processes that lead to ischemia and necrosis of the heart muscle. Historically, understanding of this condition has come a long way from its first descriptions to modern diagnostic and treatment methods, which have significantly improved the prognosis for patients with MI. Understanding the history and pathophysiology of myocardial infarction is key to medical practice, research, and patient education. This knowledge contributes to improved diagnosis, treatment, and prevention, which ultimately leads to improved quality of life for patients and a reduced burden of cardiovascular disease at the societal level.
Abstract
Understanding the historical aspects and pathophysiology of myocardial infarction is important for both medical professionals and patients. Knowledge of the mechanisms of myocardial infarction development allows physicians to more accurately assess the patient’s condition and choose optimal treatment methods, including drug therapy and interventional procedures. An analysis of scientific literature and articles published over the past decade was conducted using the resources of the PubMed and eLibrary search engines using the following keywords: atherosclerosis, history of myocardial infarction, pathophysiology of myocardial infarction, ischemic heart disease, pathogenesis of atherothrombosis, endothelium, inflammation. In the selection, preference was given to systematic reviews and meta-analyses as sources with the highest level of evidence, as well as randomized controlled trials (RCTs), large cohort studies and authoritative clinical guidelines.
About the Authors
Natalia Yu. ShimokhinaRussian Federation
PhD, Associate professor of Department of Polyclinic Therapy and Family medicine with Residency Course, Federal State Budgetary Educational Institution of Higher Education “Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University” of the Ministry of Healthcare of the Russian Federation, Krasnoyarsk, Russian Federation
Alexander A. Evsyukov
Russian Federation
PhD, Associate professor of Department of Polyclinic Therapy and Family medicine with Residency Course, Federal State Budgetary Educational Institution of Higher Education “Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University” of the Ministry of Healthcare of the Russian Federation, Krasnoyarsk, Russian Federation
Natalia A. Schneider
Russian Federation
PhD, MD, Professor, Leading Researcher, Molecular and Cellular Technologies Shared Use Center, Federal State Budgetary Educational Institution of Higher Education “Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University” of the Ministry of Healthcare of the Russian Federation, Krasnoyarsk, Russian Federation
Daria S. Kaskaeva
Russian Federation
PhD, Associate Professor of the Department of Polyclinic Therapy and Family Medicine with a Postgraduate Course, Federal State Budgetary Educational Institution of Higher Education “Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University” of the Ministry of Healthcare of the Russian Federation, Krasnoyarsk, Russian Federation
Sanjarkhon H. Kudratov
Russian Federation
the 6th-year undergraduate of General Medicine, Federal State Budgetary Educational Institution of Higher Education “Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University” of the Ministry of Healthcare of the Russian Federation, Krasnoyarsk, Russian Federation
References
1. References:
2. Savenko S.A., Polonetsky L.Z., Denisevich T.L. Evolution of pathogenetic treatment of myocardial infarction. Cardiology in Belarus. 2018;10(4):545-560.
3. Malach M, Imperato PJ. Acute myocardial infarction and acute coronary syndrome: then and now (1950-2005). Prev Cardiol. 2006;9(4):228-34. https://doi.org/ 10.1111/j.1520-037x.2006.05230.x
4. Shakhnovich R.M., Ruda M.Ya. Evolution of myocardial infarction treatment over the past decades. The significance of E.I. Chazov's works. Therapeutic archive. 2019; 91 (6): 25–33. DOI: 10.26442/00403660.2019.06.000291
5. Chuchalin AG, Bobkov EV. On the 95th anniversary of the first description of right ventricular myocardial infarction. Pulmonology. 2022;32(S2):30-34. https://doi.org/10.18093/0869-0189-2022-32-2S-30-34
6. Gonzalez-Gonzalez FJ, Ziccardi MR, McCauley MD. Virchow's Triad and the Role of Thrombosis in COVID-Related Stroke. Front Physiol. 2021;12:769254. https://doi.org/10.3389/fphys.2021.769254
7. Vabret N., Samstein R., Fernandez N., Merad M. Sinai Immunology Review Project; Trainees; Faculty. Advancing scientific knowledge in times of pandemics. Nat. Rev. Immunol. 2020;20:338. https://doi.org/10.1038/s41577-020-0319-0
8. Colmenero I., Santonja C., Alonso-Riaño M., Noguera-Morel L., Hernández-Martín A., Andina D., Wiesner T., Rodríguez-Peralto J.L., Requena L., Torrelo A. SARS-CoV-2 endothelial infection causes COVID-19 chilblains: Histopathological, immunohistochemical and ultrastructural study of seven pediatric cases. Br. J. Dermatol. 2020;183:729-737. https://doi.org/10.1111/bjd.19327
9. Chirsky V.S., Yuzvinkevich A.K., Andreeva E.A. Pathological anatomy: traditions and modernity (on the 160th anniversary of the Department of Pathological Anatomy of the Military Medical Academy). Bulletin of the Russian Military Medical Academy. 2019;38(2):41-46.
10. Barnett R. Acute myocardial infarction. Lancet. 2019;393(10191):2580. https://doi.org/10.1016/S0140-6736(19)31419-9
11. Aronov DM. History of the development of cardiac rehabilitation in Russia. Cardiology. 2018;58(S11):14-21. https://doi.org/10.18087/cardio.2604
12. Bril' AD, Boyarintsev VV, Ardashev VN Myocardial infarction. On the history of the doctrine. Treatment and prevention. 2024;14(1):34-39.
13. Arbolishvili GN, Lysenko MA, Tsarenko SV Cardiac resuscitation. History, evolution, modernity, new challenges. Moscow medicine. 2020;37(3):54-66.
14. Gordeev IG, Benevskaya MA, Ilyina EE Scientific school of academician P.E. Lukomsky. Methodology and technology of continuous professional education. 2024;18(2):90-106. https://doi.org/10.24075/MTCPE.2024.16.;
15. Sabatine MS, Braunwald E. Thrombolysis In Myocardial Infarction (TIMI) Study Group: JACC Focus Seminar 2/8. J Am Coll Cardiol. 2021;77(22):2822-2845. https://doi.org/10.1016/j.jacc.2021.01.060
16. Wininger KL. Percutaneous Transluminal Coronary Angioplasty: History, Current Techniques, And Future Directions. Radiol Technol. 2022;94(1):35-45.
17. Ozaki Y, Hara H, Onuma Y, Katagiri Y, Amano T, Kobayashi Y, Muramatsu T, Ishii H, Kozuma K, Tanaka N, Matsuo H, Uemura S, Kadota K, Hikichi Y, Tsujita K, Ako J, Nakagawa Y, Morino Y, Hamanaka I, Shiode N, Shite J, Honye J, Matsubara T, Kawai K, Igarashi Y, Okamura A, Ogawa T, Shibata Y, Tsuji. T, Yajima J, Iwabuchi K, Komatsu N, Sugano T, Yamaki M, Yamada S, Hirase H, Miyashita Y, Yoshimachi F, Kobayashi M, Aoki J, Oda H, Katahira Y, Ueda K, Nishino M, Nakao K, Michishita I, Ueno T, Inohara T, Kohsaka S, Ismail TF, Serruys PW, Nakamura M, Yokoi H, Ikari Y; Task Force on Primary Percutaneous Coronary Intervention (PCI) of the Japanese Cardiovascular Interventional Therapeutics (CVIT). CVIT expert consensus document on primary percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI) update 2022. Cardiovasc Interv Ther. 2022;37(1):1-34. https://doi.org/10.1007/s12928-021-00829-9
18. Canfield J, Totary-Jain H. 40 Years of Percutaneous Coronary Intervention: History and Future Directions. J Pers Med. 2018;8(4):33. https://doi.org/10.3390/jpm8040033
19. Mitsis A, Gragnano F. Myocardial Infarction with and without ST-segment Elevation: a Contemporary Reappraisal of Similarities and Differences. Curr Cardiol Rev. 2021;17(4):e230421189013. https://doi.org/10.2174/1573403X16999201210195702
20. Acute myocardial infarction with elevation of the ST segment of the electrocardiogram. Clinical guidelines 2020. Russian Cardiovascular Society, Association of Cardiovascular Surgeons of Russia. Russian cardiological journal. 2020;25(11):4103. https://doi.org/10.15829/1560-4071-2020-4103
21. Avdikos G, Michas G, Smith SW. From Q/Non-Q Myocardial Infarction to STEMI/NSTEMI: Why It's Time to Consider Another Simplified Dichotomy; a Narrative Literature Review. Arch Acad Emerg Med. 2022;10(1):e78. https://doi.org/10.22037/aaem.v10i1.1783
22. Hoang Ch.H., Lazarev P.V., Mayskov V.V., Merai I.A., Kobalava Zh.D. Myocardial infarction without coronary artery obstruction: modern approaches to diagnosis and treatment. Rational pharmacotherapy in cardiology. 2019;15(6):881-891. https://doi.org/10.20996/1819-6446-2019-15-6-881-891
23. Global Burden of Disease Collaborators Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1204-1242. https://doi.org/10.1016/S0140-6736(20)30925-9
24. Elendu C, Amaechi DC, Elendu TC, Omeludike EK, Alakwe-Ojimba CE, Obidigbo B, Akpovona OL, Oros Sucari YP, Saggi SK, Dang K, Chinedu CP. Comprehensive review of ST-segment elevation myocardial infarction: Understanding pathophysiology, diagnostic strategies, and current treatment approaches. Medicine (Baltimore). 2023;102(43):e35687. https://doi.org/10.1097/MD.0000000000035687
25. Mosevoll KA, Johansen S, Wendelbo Ø, Nepstad I, Bruserud Ø, Reikvam H. Cytokines, Adhesion Molecules, and Matrix Metalloproteases as Predisposing, Diagnostic, and Prognostic Factors in Venous Thrombosis. Front Med (Lausanne). 2018;5:147. https://doi.org/10.3389/fmed.2018.00147
26. Alkarithi G, Duval C, Shi Y, Macrae FL, Ariëns RAS. Thrombus Structural Composition in Cardiovascular Disease. Arterioscler Thromb Vasc Biol. 2021;41(9):2370-2383. https://doi.org/10.1161/ATVBAHA.120.315754
27. GK Mallory, PO White, J Salcedo-Salgar. The speed of healing of myocardial infarction: a study of the pathologic anatomy in 72 patients. Am Heart J. 1939;18:647-671.
28. Entman ML, Smith CW. Postreperfusion inflammation: a model for reaction to injury in cardiovascular disease. Cardiovasc Res. 1994;28(9):1301-11. https://doi.org/10.1093/cvr/28.9.1301
29. Mehta JL, Saldeen TG, Rand K. Interactive role of infection, inflammation and traditional risk factors in atherosclerosis and coronary artery disease. J Am Coll Cardiol. 1998;31(6):1217-25. https://doi.org/10.1016/s0735-1097(98)00093-x
30. Hvas CL, Larsen JB. The Fibrinolytic System and Its Measurement: History, Current Uses and Future Directions for Diagnosis and Treatment. Int J Mol Sci. 2023;24(18):14179. https://doi.org/10.3390/ijms241814179
31. Gliozzi M, Scicchitano M, Bosco F, Musolino V, Carresi C, Scarano F, Maiuolo J, Nucera S, Maretta A, Paone S, Mollace R, Ruga S, Zito MC, Macrì R, Oppedisano F, Palma E, Salvemini D, Muscoli C, Mollace V. Modulation of Nitric Oxide Synthases by Oxidized LDLs: Role in Vascular Inflammation and Atherosclerosis Development. Int J Mol Sci. 2019;20(13):3294. https://doi.org/10.3390/ijms20133294
32. Alieva AM, Baykova IE, Reznik EV, Teplova NV, Valiev RK, Gyzyeva MH, Sultangalieva AB, Kotikova IA, Novikova NA, Korvyakov SA, Nikitin IG. LOX-1 as a biological marker and therapeutic target in cardiovascular pathology (literature review). Consilium Medicum. 2024;26(10):666-673. https://doi.org/10.26442/20751753.2024.10.202945
33. Gherasie FA, Popescu MR, Bartos D. Acute Coronary Syndrome: Disparities of Pathophysiology and Mortality with and without Peripheral Artery Disease. J Pers Med. 2023;13(6):944. https://doi.org/10.3390/jpm13060944
34. Jin M, Fang J, Wang JJ, Shao X, Xu SW, Liu PQ, Ye WC, Liu ZP. Regulation of toll-like receptor (TLR) signaling pathways in atherosclerosis: from mechanisms to targeted therapeutics. Acta Pharmacol Sin. 2023;44(12):2358-2375. https://doi.org/10.1038/s41401-023-01123-5
35. Tsioufis P., Theofilis P., Tsioufis K., Tousoulis D. The Impact of Cytokines in Coronary Atherosclerotic Plaque: Current Therapeutic Approaches. Int. J. Mol. Sci. 2022;23:15937. https://doi.org/10.3390/ijms232415937
36. Marchini T., Miter L.S., Wolf D. Inflammatory Cell Recruitment in Cardiovascular Disease. Front. Cell Dev. Biol. 2021;9:207. https://doi.org/10.3389/fcell.2021.635527
37. Buckler A.J., Gotto A.M., Rajeev A., Nicolaou A., Sakamoto A., Pierre S.S., Phillips M., Virmani R., Villines T.C. Atherosclerosis Risk Classification with Computed Tomography Angiography: A Radiologic-Pathologic Validation Study. Atherosclerosis. 2023;366:42-48. https://doi.org/10.1016/j.atherosclerosis.2022.11.013
38. Jebari-Benslaiman S., Galicia-García U., Larrea-Sebal A., Olaetxea J.R., Alloza I., Vandenbroeck K., Benito-Vicente A., Martín C. Pathophysiology of Atherosclerosis. Int. J. Mol. Sci. 2022;23:3346. https://doi.org/10.3390/ijms23063346
39. Ząbczyk M, Ariëns RAS, Undas A. Fibrin clot properties in cardiovascular disease: from basic mechanisms to clinical practice. Cardiovascular Res. 2023;119(1):94-111. https://doi.org/10.1093/cvr/cvad017
40. Morrison AM, Sullivan AE, Aday AW. Atherosclerotic Disease: Pathogenesis and Approaches to Management. Med Clin North Am. 2023;107(5):793-805. https://doi.org/10.1016/j.mcna.2023.04.004
41. Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int J Mol Sci. 2023;24(9):7910. https://doi.org/10.3390/ijms24097910
42. Henein MY, Vancheri S, Longo G, Vancheri F. The Role of Inflammation in Cardiovascular Disease. Int J Mol Sci. 2022;23(21):12906. https://doi.org/10.3390/ijms232112906
43. Severino P, D'Amato A, Pucci M, Infusino F, Adamo F, Birtolo LI, Netti L, Montefusco G, Chimenti C, Lavalle C, Maestrini V, Mancone M, Chilian WM, Fedele F. Ischemic Heart Disease Pathophysiology Paradigms Overview: From Plaque Activation to Microvascular Dysfunction. Int J Mol Sci. 2020;21(21):8118. https://doi.org/10.3390/ijms21218118
44. Liu J, Liu F, Liang T, Zhou Y, Su X, Li X, Zeng J, Qu P, Wang Y, Chen F, Lei Q, Li G, Cheng P. The roles of Th cells in myocardial infarction. Cell Death Disc. 2024;10(1):287. https://doi.org/10.1038/s41420-024-02064-6
45. Raggi P, Genest J, Giles JT, Rayner KJ, Dwivedi G, Beanlands RS, Gupta M. Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis. 2018;276:98-108. https://doi.org/10.1016/j.atherosclerosis.2018.07.014
46. Oprescu N, Micheu MM, Scafa-Udriste A, Popa-Fotea NM, Dorobantu M. Inflammatory markers in acute myocardial infarction and the correlation with the severity of coronary heart disease. Ann Med. 2021;53(1):1041-1047. https://doi.org/10.1080/07853890.2021.1916070
47. Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 2022;7(1):131. https://doi.org/10.1038/s41392-022-00955-7
48. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ; CANTOS Trial Group. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017;377(12):1119-1131. https://doi.org/10.1056/NEJMoa1707914
49. Soppert J, Lehrke M, Marx N, Jankowski J, Noels H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv Drug Deliv Rev. 2020;159:4-33. https://doi.org/10.1016/j.addr.2020.07.019
50. Clare J, Ganly J, Bursill CA, Sumer H, Kingshott P, de Haan JB. The Mechanisms of Restenosis and Relevance to Next Generation Stent Design. Biomolecules. 2022;12(3):430. https://doi.org/10.3390/biom12030430
51. Mahtta D, Sudhakar D, Koneru S, Silva GV, Alam M, Virani SS, Jneid H. Targeting Inflammation After Myocardial Infarction. Curr Cardiol Rep. 2020 Aug 8;22(10):110. https://doi.org/10.1007/s11886-020-01358-2
52. Welt FGP, Batchelor W, Spears JR, Penna C, Pagliaro P, Ibanez B, Drakos SG, Dangas G, Kapur NK. Reperfusion Injury in Patients With Acute Myocardial Infarction: JACC Scientific Statement. J Am Coll Cardiol. 2024;83(22):2196-2213. https://doi.org/10.1016/j.jacc.2024.02.056
53. Algoet M, Janssens S, Himmelreich U, Gsell W, Pusovnik M, Van den Eynde J, Oosterlinck W. Myocardial ischemia-reperfusion injury and the influence of inflammation. Trends Cardiovasc Med. 2023;33(6):357-366. https://doi.org/10.1016/j.tcm.2022.02.005
54. Lavalle C., Mariani M.V., Piro A., Straito M., Severino P., Della Rocca D.G., Forleo G.B., Romero J., Di Biase L., Fedele F. Electrocardiographic features, mapping and ablation of idiopathic outflow tract ventricular arrhythmias. J. Interv. Card. Electrophysiol. 2020;57:207–218. https://doi.org/10.1007/s10840-019-00617-9
55. Del Buono MG, Montone RA, Camilli M, Carbone S, Narula J, Lavie CJ, Niccoli G, Crea F. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases: JACC State-of-the-Art Review. J Am Coll Cardiol. 2021;78(13):1352-1371. https://doi.org/10.1016/j.jacc.2021.07.042
56. Thygesen K., Alpert J.S., Jaffe A.S., Chaitman B.R., Bax J.J., Morrow D.A., White H.D. Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018) J. Am. Coll. Cardiol. 2018;72:2231–2264. https://doi.org/10.1016/j.jacc.2018.08.1038
57. Konijnenberg LSF, Damman P, Duncker DJ, Kloner RA, Nijveldt R, van Geuns RM, Berry C, Riksen NP, Escaned J, van Royen N. Pathophysiology and diagnosis of coronary microvascular dysfunction in ST-elevation myocardial infarction. Cardiovasc Res. 2020;116(4):787-805. https://doi.org/10.1093/cvr/cvz301
58. Vancheri F, Longo G, Vancheri S, Henein M. Coronary Microvascular Dysfunction. J Clin Med. 2020;9(9):2880. https://doi.org/10.3390/jcm9092880
59. Mariani M.V., Magnocavallo M., Straito M., Piro A., Severino P., Iannucci G., Chimenti C., Mancone M., Rocca D.G.D., Forleo G.B., et al. Direct oral anticoagulants versus vitamin K antagonists in patients with atrial fibrillation and cancer a meta-analysis. J. Thromb. Thrombolysis. 2021;51(2):419-429. https://doi.org/10.1007/s11239-020-02304-3
60. Ndrepepa G, Kastrati A. Coronary No-Reflow after Primary Percutaneous Coronary Intervention-Current Knowledge on Pathophysiology, Diagnosis, Clinical Impact and Therapy. J Clin Med. 2023;12(17):5592. https://doi.org/10.3390/jcm12175592
61. Liu T, Wang C, Wang L, Shi X, Li X, Chen J, Xuan H, Li D, Xu T. Development and Validation of a Clinical and Laboratory-Based Nomogram for Predicting Coronary Microvascular Obstruction in NSTEMI Patients After Primary PCI. Ther Clin Risk Manag. 2022;18:155-169. https://doi.org/10.2147/TCRM.S353199
62. Annibali G, Scrocca I, Aranzulla TC, Meliga E, Maiellaro F, Musumeci G. "No-Reflow" Phenomenon: A Contemporary Review. J Clin Med. 2022;11(8):2233. https://doi.org/10.3390/jcm11082233
63. Padro T., Manfrini O., Bugiardini R., Canty J., Cenko E., De Luca G., Duncker D.J., Eringa E.C., Koller A., Tousoulis D., et al. ESC Working Group on Coronary Pathophysiology and Microcirculation position paper on ‘coronary microvascular dysfunction in cardiovascular disease’. Cardiovasc. Res. 2020;116:741–755. https://doi.org/10.1093/cvr/cvaa003
64. Kloner R.A., King K.S., Harrington M.G. No-reflow phenomenon in the heart and brain. Am. J. Physiol. Heart Circ. Physiol. 2018;315:H550–H562. doi: 10.1152/ajpheart.00183.2018.;
65. Heusch G. Coronary microvascular obstruction: The new frontier in cardioprotection. Basic Res. Cardiol. 2019;114:45. https://doi.org/10.1007/s00395-019-0756-8
66. Friedrich MG. Understanding the Tides of Myocardial Infarction. JACC Cardiovasc Imaging. 2019;12(4):704-706. https://doi.org/10.1016/j.jcmg.2018.03.031
67. Sánchez-Hernández CD, Torres-Alarcón LA, González-Cortés A, Peón AN. Ischemia/Reperfusion Injury: Pathophysiology, Current Clinical Management, and Potential Preventive Approaches. Mediators Inflamm. 2020;2020:8405370. https://doi.org/10.1155/2020/8405370
68. Zhao Z, Sun W, Guo Z, Liu B, Yu H, Zhang J. Long Noncoding RNAs in Myocardial Ischemia-Reperfusion Injury. Oxid Med Cell Longev. 2021;2021:8889123. https://doi.org/10.1155/2021/8889123
69. Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, Xu H, Asemi Z. Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract. 2023;248:154669. https://doi.org/10.1016/j.prp.2023.154669
70. Yu H., Kalogeris T., Korthuis R.J. Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic. Biol. Med. 2019;135:182–197. https://doi.org/10.1016/j.freeradbiomed.2019.02.031
71. Kelm N.Q., Beare J.E., LeBlanc A.J. Evaluation of Coronary Flow Reserve After Myocardial Ischemia Reperfusion in Rats. J. Vis. Exp. 2019;148:10.3791/59406. https://doi.org/10.3791/59406
72. Fan M, Yang K, Wang X, Wang Y, Tu F, Ha T, Liu L, Williams DL, Li C. Endothelial cell HSPA12B and yes-associated protein cooperatively regulate angiogenesis following myocardial infarction. JCI Insight. 2020;5(18):e139640. https://doi.org/10.1172/jci.insight.139640
73. Carnevale R., Sciarretta S., Valenti V., Di Nonno F., Calvieri C., Nocella C., Frati G., Forte M., d’Amati G., Pignataro M.G., et al. Low-grade endotoxemia enhances artery thrombus growth via Toll-like receptor 4: Implication for myocardial infarction. Eur. Heart J. 2020;41:3156–3165. https://doi.org/10.1093/eurheartj/ehz893
74. Libby P, Loscalzo J, Ridker PM, Farkouh ME, Hsue PY, Fuster V, Hasan AA, Amar S. Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week. J Am Coll Cardiol. 2018;72(17):2071-2081. https://doi.org/10.1016/j.jacc.2018.08.1043
75. Beltrame JF. Assessing patients with myocardial infarction and nonobstructed coronary arteries (MINOCA). J Intern Med. 2013;273(2):182-5. https://doi.org/10.1111/j.1365-2796.2012.02591.x
76. Takahashi J, Onuma S, Hao K, Godo S, Shiroto T, Yasuda S. Pathophysiology and diagnostic pathway of myocardial infarction with non-obstructive coronary arteries. J Cardiol. 2024;83(1):17-24. https://doi.org/10.1016/j.jjcc.2023.07.014
77. Shibata T, Kawakami S, Noguchi T, Tanaka T, Asaumi Y, Kanaya T, Nagai T, Nakao K, Fujino M, Nagatsuka K, Ishibashi-Ueda H, Nishimura K, Miyamoto Y, Kusano K, Anzai T, Goto Y, Ogawa H, Yasuda S. Prevalence, Clinical Features, and Prognosis of Acute Myocardial Infarction Attributable to Coronary Artery Embolism. Circulation. 2015;132(4):241-50. https://doi.org/10.1161/CIRCULATIONAHA.114.015134
78. Ceasovschih A, Mantzouranis E, Dimitriadis K, Sorodoc V, Vlachakis PK, Karanikola AE, Theofilis P, Koutsopoulos G, Drogkaris S, Andrikou I, Valatsou A, Lazaros G, Sorodoc L, Tsioufis K. Coronary artery thromboembolism as a cause of myocardial infarction with non-obstructive coronary arteries (MINOCA). Hellenic J Cardiol. 2024;79:70-83. https://doi.org/10.1016/j.hjc.2024.05.001
79. Stepien K, Nowak K, Wypasek E, Zalewski J, Undas A. High prevalence of inherited thrombophilia and antiphospholipid syndrome in myocardial infarction with non-obstructive coronary arteries: Comparison with cryptogenic stroke. Int J Cardiol. 2019;290:1-6. https://doi.org/10.1016/j.ijcard.2019.05.037
80. Yaker ZS, Lincoff AM, Cho L, Ellis SG, Ziada KM, Zieminski JJ, Gulati R, Gersh BJ, Holmes D Jr, Raphael CE. Coronary spasm and vasomotor dysfunction as a cause of MINOCA. EuroIntervention. 2024;20(2):e123-e134. https://doi.org/10.4244/EIJ-D-23-00448
81. Pirozzolo G, Seitz A, Athanasiadis A, Bekeredjian R, Sechtem U, Ong P. Microvascular spasm in non-ST-segment elevation myocardial infarction without culprit lesion (MINOCA). Clin Res Cardiol. 2020;109(2):246-254. https://doi.org/10.1007/s00392-019-01507-w
82. Eniseeva E.S., Protasov K.V. Spontaneous dissection of coronary arteries: diagnostics and modern approaches to treatment. Siberian Medical Review. 2023;143(5):12-22. https://doi.org/10.20333/25000136-2023-5-12-22
83. Hayes SN, Kim ESH, Saw J, Adlam D, Arslanian-Engoren C, Economy KE, Ganesh SK, Gulati R, Lindsay ME, Mieres JH, Naderi S, Shah S, Thaler DE, Tweet MS, Wood MJ; American Heart Association Council on Peripheral Vascular Disease; Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; Council on Genomic and Precision Medicine; and Stroke Council. Spontaneous Coronary Artery Dissection: Current State of the Science: A Scientific Statement From the American Heart Association. Circulation. 2018;137(19):e523-e557. https://doi.org/10.1161/CIR.0000000000000564
84. Nam P, Choi BG, Choi SY, Byun JK, Mashaly A, Park Y, Jang WY, Kim W, Choi JY, Park EJ, Na JO, Choi CU, Lim HE, Kim EJ, Park CG, Seo HS, Oh DJ, Rha SW. The impact of myocardial bridge on coronary artery spasm and long-term clinical outcomes in patients without significant atherosclerotic stenosis. Atherosclerosis. 2018;270:8-12. https://doi.org/10.1016/j.atherosclerosis.2018.01.026
85. Matta A, Nader V, Canitrot R, Delmas C, Bouisset F, Lhermusier T, Blanco S, Campelo-Parada F, Elbaz M, Carrie D, Galinier M, Roncalli J. Myocardial bridging is significantly associated to myocardial infarction with non-obstructive coronary arteries. Eur Heart J Acute Cardiovasc Care. 2022;11(6):501-507. https://doi.org/10.1093/ehjacc/zuac047
86. Montone RA, Gurgoglione FL, Del Buono MG, Rinaldi R, Meucci MC, Iannaccone G, La Vecchia G, Camilli M, D'Amario D, Leone AM, Vergallo R, Aurigemma C, Buffon A, Romagnoli E, Burzotta F, Trani C, Crea F, Niccoli G. Interplay Between Myocardial Bridging and Coronary Spasm in Patients With Myocardial Ischemia and Non-Obstructive Coronary Arteries: Pathogenic and Prognostic Implications. J Am Heart Assoc. 2021;10(14):e020535. https://doi.org/10.1161/JAHA.120.020535
87. Evans PC, Rainger GE, Mason JC, Guzik TJ, Osto E, Stamataki Z, Neil D, Hoefer IE, Fragiadaki M, Waltenberger J, Weber C, Bochaton-Piallat ML, Bäck M. Endothelial dysfunction in COVID-19: A position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc. Res. 2020;116(14):2177-2184. https://doi.org/10.1093/cvr/cvaa230
88. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, Li WW, Li VW, Mentzer SJ, Jonigk D. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020;383:120–128. https://doi.org/10.1056/NEJMoa2015432
89. Lee WJ, Cheng H, Whitney BM, Nance RM, Britton SR, Jordahl K, Lindstrom S, Ruderman SA, Kitahata MM, Saag MS, Willig AL, Burkholder G, Eron JJ, Kovacic JC, Björkegren JLM, Mathews WC, Cachay E, Feinstein MJ, Budoff M, Hunt PW, Moore RD, Keruly J, McCaul ME, Chander G, Webel A, Mayer KH, Delaney JA, Crane PK, Martinez C, Crane HM, Hao K, Peter I. Polygenic risk scores point toward potential genetic mechanisms of type 2 myocardial infarction in people with HIV. Int J Cardiol. 2023;383:15-23. https://doi.org/10.1016/j.ijcard.2023.04.058
90. Ghasemzadeh N, Kim N, Amlani S, Madan M, Shavadia JS, Chong AY, Bagherli A, Bagai A, Saw J, Singh J, Dehghani P. A Review of ST-Elevation Myocardial Infarction in Patients with COVID-19. Heart Fail Clin. 2023;19(2):197-204. https://doi.org/10.1016/j.hfc.2022.08.007
Supplementary files
Review
For citations:
Shimokhina N.Yu., Evsyukov A.A., Schneider N.A., Kaskaeva D.S., Kudratov S.H. PATHOPHYSIOLOGY OF MYOCARDIAL INFARCTION: HISTORICAL ESSAYS AND NEW HORIZONS. Complex Issues of Cardiovascular Diseases. 2025;14(6):259-277. (In Russ.) https://doi.org/10.17802/2306-1278-2025-14-6-259-277

































