Preview

Complex Issues of Cardiovascular Diseases

Advanced search

EVALUATION OF STENOTIC LEFT main coronary ARTERY AND LEFT ANTERIOR DESCENDING CORONARY ARTERY WITH A HELP OF TRANSTHORACIC ECHOCARDIOGRAPHY

https://doi.org/10.17802/2306-1278-2016-2-20-29

Abstract

Purpose. To detect the potential of different qualitative, semi-quantitative and quantitative transthoracic Doppler signs for successful evaluation of stenotic left main coronary artery (LMCA) and left anterior descending artery (LAD).

Materials and methods. 173 patients (52±10 years; 149 men) with chest pain, sinus rhythm and scheduled quantitative coronary
angiography (CAG) were evaluated at rest by non-contrast transthoracic echocardiography (TT E). LMCA and proximal (p), mid (m) and distal (d) parts of the LAD were examined. The Doppler signs of coronary stenosis >50 % were determined as follows: 1 – local Doppler aliasing with the Nyquist limit set at 60 cm/s; 2 – maximal peak diastolic velocity (Vpd) >60 cm/s; 3 – ratio of stenotic/prestenotic Vpd >2.0; 4 – stenosis >50 % according to flow continuous equation: stenosis, % = 100 × (1 – prestenotic VTId / stenotic VTId), where VTId – diastolic time velocity integral. CAG was performed within 1 week after TT E. Stenosis >50 % of diameter reduction was considered as significant.

Results. Sensitivity (Sens), specificity (Sp) and diagnostic accuracy (Ac) of different Doppler stenotic signs for stenotic LMCA and
LAD are presented in Table 1. Thus, TT E is a method for correct evaluation of stenotic LMCA and LAD. Quantitative ratio of stenotic to prestenotic coronary flow velocities is a more sensitive sign for detecting stenosis >50 %, than qualitative and semi-quantitative evaluation of maximal coronary flow velocity only.

About the Authors

A. A. BOSHCHENKO
Federal State Budgetary Scientifical Institution Research Institute for Cardiology. Tomsk, Russia
Russian Federation


A. V. VRUBLEVSKY
Federal State Budgetary Scientifical Institution Research Institute for Cardiology. Tomsk, Russia
Russian Federation


R. S. KARPOV
Federal State Budgetary Scientifical Institution Research Institute for Cardiology. Tomsk, Russia
Russian Federation


References

1. Kolh P., Windecker S., Alfonso F., Collet J.-P., Cremer J., Falk V. et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. J. Cardiothorac. Surg. 2014; 46 (4): 517–592.

2. Montalescot G., Sechtem U., Achenbach S., Andreotti F., Arden C., Budaj A. et al. 2013 ESC guidelines on the management of stable coronary artery disease: The Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur. Heart J. 2013; 34 (38): 2949–3003.

3. Hulten E., Villines T. C., Cheezum M. K., Berman D. S., Dunning A., Achenbach S. et al. Usefulness of coronary computed tomography angiography to predict mortality and myocardial infarction among Caucasian, African and East Asian ethnicities (from the CONFIRM [Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter] Registry). Am. J. Cardiol. 2013; 111 (4): 479–485.

4. Knuuti J., Bengel F., Bax J. J., Kaufmann P. A., Le Guludec D., Perrone Filardi P. et al. Risks and benefits of cardiac imaging: an analysis of risks related to imaging for coronary artery disease. Eur. Heart J. 2014; 35 (10): 633–638.

5. Ciampi Q., Rigo F., Grolla E., Picano E., Cortigiani L. Dual imaging stress echocardiography versus computed tomography coronary angiography for risk stratification of patients with chest pain of unknown origin. Cardiovascular Ultrasound. 2015; 13: 21. DOI: 10.1186/s12947-015-0013-8.

6. Joutsiniemi E., Saraste A., Pietila M., Ukkonen H., Kajander S., Mäki M. et al. Resting coronary flow velocity in the functional evaluation of coronary artery stenosis: study on sequential use of computed tomography angiography and transthoracic Doppler echocardiography. Eur. Heart J. – Cardiovasc. Imag. 2012; 13: 79–85. DOI:10.1093/ehjci/jer153.

7. Hozumi T., Yoshida K., Akasaka T., Asami Y., Kanzaki Y., Ueda Y. et al. Value of acceleration flow and the prestenotic to stenotic coronary flow velocity ratio by transthoracic color Doppler echocardiography in noninvasive diagnosis of restenosis after percutaneous transluminal coronary angioplasty. J. Am. Coll. Cardiol. 2000; 35: 164–168.

8. Krzanowski M., Bodzon W., Brzostek T., Nizankowski R., Szczeklik A. Value of transthoracic echocardiography for the detection of high-grade coronary artery stenosis: prospective evaluation in 50 consecutive patients scheduled for coronary angiography. J. Am. Soc. Echocardiogr. 2000; 13: 1091–1099.

9. Saraste M., Vesalainen R. K., Ylitalo A., Saraste A., Koskenvuo J. W., Toikka J. O. et al. Transthoracic Doppler echocardiography as a noninvasive tool to assess coronary artery stenoses – a comparison with quantitative coronary angiography. J. Am. Soc. Echocardiogr. 2005; 18 (6): 679–685.

10. Caiati C., Zedda N., Cadeddu M., Chen L., Montaldo C., Iliceto S. et al. Detection, location, and severity assessment of left anterior descending coronary artery stenoses by means of contrast-enhanced transthoracic harmonic echo Doppler. Eur. Heart. J. 2009; 30: 1797–1806.

11. Johnson E. L., Yock P. G., Hargrave V. K., Srebro J. P., Manubens S. M., Seitz W. et al. Assessment of severity of coronary stenoses using a Doppler catheter. Validation of a method based on the continuity equation. Circulation. 1989; 80: 625–635.

12. Isaaz K., Da Costa A., De Pasquale J. P., Cerisier A., Lamaud M. Use of the continuity equation for transesophageal Doppler assessment of severity of proximal left coronary artery stenosis: a quantitative coronary angiography validation study. J. Am. Coll. Cardiol. 1998; 32: 42–48.

13. Vrublevsky A. V., Boshchenko A. A., Karpov R. S. Simultaneous transesophageal Doppler assessment of coronary flow reserve in the left anterior descending artery and coronary sinus allows differentiation between proximal and non-proximal left anterior descending artery stenoses. Eur. J. Echocardiogr. 2004; 5 (1): 25–33.

14. Boshchenko A. A., Vrublevsky A. V., Karpov R. Transthoracic Doppler assessment of coronary artery stenosis using continuity equation. Eur. Heart. J. 2008; 29, suppl.: 875.

15. Anjaneyulu A., Raghu K., Chandramukhi S., Satyajit G. M., Arramraja S., Raghavaraju P. et al. Evaluation of left main coronary artery stenosis by transthoracic echocardiography. J. Am. Soc. Echocardiogr. 2008; 21 (7): 855–860.

16. Higashi H., Okayama H., Saito M., Morioka H., Aono J., Yoshii T. et al. Role of transthoracic doppler echocardiography in patients with a proximal left coronary artery lesion that cannot be diagnosed by computed tomography angiography. Am. J. Cardiol. 2013; 112 (7): 938–942. DOI: 10.1016/j.amjcard.2013.05.023.


Review

For citations:


BOSHCHENKO A.A., VRUBLEVSKY A.V., KARPOV R.S. EVALUATION OF STENOTIC LEFT main coronary ARTERY AND LEFT ANTERIOR DESCENDING CORONARY ARTERY WITH A HELP OF TRANSTHORACIC ECHOCARDIOGRAPHY. Complex Issues of Cardiovascular Diseases. 2016;(2):20-29. (In Russ.) https://doi.org/10.17802/2306-1278-2016-2-20-29

Views: 3360


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)