Preview

Complex Issues of Cardiovascular Diseases

Advanced search

INFLUENCE OF COMPOSITION AND CONCENTRATION OF BIODEGRADABLE POLYMERS ON STRUCTURE AND PHYSICO-MECHANICAL PROPERTIES OF ELECTROSPUN SCAFFOLDS

https://doi.org/10.17802/2306-1278-2016-2-30-38

Abstract

Purpose. To investigate the composition and concentration of the polymer solutions on structure and physico-mechanical properties of the electrospun scaffolds.

Materials and methods. We prepared electrospun scaffolds from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polycaprolactone (PCL), and poly(D,L-lactide) (PLA) in concentrations of 6, 8, and 10 %. We investigated mechanical properties of the scaffolds, fiber diameter, and pore size.

Results. Concentration of the polymer solution significantly affected fiber diameter but not pore size. The optimal concentrations of PHBV, PLA, and PCL were 8–10 %. Use of PHBV/PLA composition lowered fiber diameter and pore size whilst PHBV/PCL composition increased elasticity of the scaffolds.

Conclusion. Composition and concentration of the polymer solutions significantly affects pore size, structure, and diameter of electrospun scaffolds, that influences physico-mechanical properties of the scaffolds.

About the Authors

D. K. Shishkova
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases. Kemerovo, Russia
Russian Federation


M. V. Nasonova
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases. Kemerovo, Russia
Russian Federation


Yu. I. Khodyrevskaya
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases. Kemerovo, Russia
Russian Federation


A. L. Nemoykina
Federal State Budgetary Educational Institution of Higher Professional Education National Research Tomsk State University. Tomsk, Russia
Russian Federation


N. V. Doronina
Federal State Institution of Science Institute of Biochemistry and Physiology of Microorganisms. Puschino, Russia
Russian Federation


T. V. Glushkova
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases. Kemerovo, Russia
Russian Federation


Yu. A. Kudryavtseva
Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases. Kemerovo, Russia
Russian Federation

Address: 6, Sosnoviy blvd., Kemerovo, 650002, Russian Federation Tel. +7 (3842) 64-42-38



References

1. Астапов Д. А., Журавлева И. Ю., Клышников К. Ю., Щеглова Н. А., Демидов Д. П., Овчаренко Е. А. и др. Экспериментальное и клиническое обоснование эффективности имплантации в аортальную позицию биопротеза «Тиара» на каркасе из нитинола. Комплексные проблемы сердечно-сосудистых заболеваний. 2013; 4: 17–21. DOI: http://dx.doi.org/10.17802/2306-1278-2013-4-17-21. Astapov D. A., Zhuravleva I. Ju., Klyshnikov K. Ju., Shheglova N. A., Demidov D. P., Ovcharenko E. A. i dr. Eksperimental’noe i klinicheskoe obosnovanie effektivnosti implantacii v aortal’nuju poziciju bioproteza «TIARA» na karkase iz nitinola. Kompleksnye problemy serdechnososudistyh zabolevanij. 2013; 4: 17–21. DOI: http://dx.doi.org/10.17802/2306-1278-2013-4-17-21.

2. Круль Л. П., Белов Д. А., Бутовская Г. В. Структура и физико-химические свойства биодеградируемых материалов на основе полилактидов. Вестник БГУ. 2011; 2: 5–11. Krul’ L. P., Belov D. A., Butovskaya G. V. Struktura i fizikokhimicheskie svoystva biodegradiruemykh materialov na osnove polilaktidov. Vestnik BGU. 2011; 2: 5–11.

3. Bölgen N., Menceloğlu Y. Z., Acatay K., Vargel İ., Pişkin E. In vitro and in vivo degradation of non-wonen materials made of poly(e-caprolactone) nanofibers prepared by electrospinning under different conditions. Journal of biomaterials science. Polymer Еdition. 2005; 16 (12): 1537–1555. DOI: 10.1163/156856205774576655.

4. Dai Z. W., Zou X. H., Chen G. Q. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoa-te) as an injectable implant system for prevention of post-surgical tissue adhesion. Biomaterials. 2009; 30 (17): 3075–3083. DOI: 10.1016/j.biomaterials. 2009.02.015.

5. de Valence S., Tille J., Mugnai D. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials. 2012; 33 (1): 38–47. DOI: 10.1016/j.biomaterials.2011.09.024.

6. Domb A. J., Kumar N., Ezra A. Biodegradable polymers in clinical use and clinical development. 2011; 734.

7. Heidemann W., Jeschkeit-Schubbert S., Ruffieux K., Fischer J. H., Jung H., Krueger G. et al. pH-stabilization of predegraded PDLLA by an admixture of water-soluble sodiumhydrogenphosphate – results of an in vitro- and in vivostudy. Biomaterials. 2002; 23 (17): 3567–3574.

8. Kuppan P., Vasanthan K. S., Sundaramurthi D., Krishnan U. M., Sethuraman S. Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical and chemical stimuli. Biomacromolecules. 2011; 2 (9): 3156–3165. DOI: 10.1021/bm200618w.

9. Lim J., Chong M. S., Teo E. Y., Chen G. Q., Chan J. K., Teoh S. H. Biocompatibility studies and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/polycaprolactone blends. J. Biomed. Mater. Res. Part B Appl Biomater. 2013; 101 (5): 752–761. DOI: 10.1002/jbm.b.3287.

10. Lee B. L. P., Tang Z., Wang A., Huang F., Yan Z., Wang D. et al. Synovial stem cells and their responses to the porosity of microfibrous scaffold. Acta Biomater. 2013; 9 (7): 7264–7275. DOI: 10.1016/j.actbio.2013.03.009.

11. Memic A., Annabi N., Hossain M., Paul A., Dokmeci M. R., Dehghani F. et al. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 2014; 10 (1): 11–25. DOI: 10.1016/j.actbio.2013.08.022.

12. Nezarati R. M., Eifert M. B., Cosgriff-Hernandez E. Effects of humidity and solution viscosity on electrospun fiber morphology. Tissue Eng. Part C Methods. 2013; 19 (10): 810–819. DOI: 10.1089/ten.tec.2012.067112.

13. Santos A. R. J., Ferreira B. M., Duek E. A., Dolder H., Wada M. L. Use of blends of bioabsorbable poly(L-lactic acid)/poly(hydroxybutyrate-co-hydroxyvalerate) as surfaces for Vero cell culture. Braz. J. Med. Biol. Res. 2005; 38: 1623– 1632.

14. Shinoka T. Tissue engineered heart valves: autologous cell seeding on biodegradable polymer scaffold. Artif. Organs. 2002; 26 (5): 402–406.

15. Shin S.-H., Purevdorj O., Castano O., Planell J. A., Kim H.-W. A short review: Recent advances in electrospinning for bone tissue regeneration. J. Tissue Eng. 2012; 3 (1): 2041731412443530. DOI: 10.1177/2041731412443530.

16. Sill T. J., von Recum H. A. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008; 29 (13): 1989–2006. DOI: 10.1016/j.biomaterials.2008.01.011.

17. Soliman S., Sant S., Nichol J. W., Khabiry M., Traversa E., Khademhosseini A. Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. J. Biomed. Mater. Res A. 2011; 96 (3): 566–574. DOI: 10.1002/jbm.a.33010.

18. Vats A., Tolley N. S., Polak J. M., Gough J. E. Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clin. Otolaryngol. Allied Sci. 2003; 28 (3): 165–172.

19. Venugopal J., Zhang Y. Z., Ramakrishna S. Fabrication of modified and functionalized polycaprolactone nanofibre scaffolds for vascular tissue engineering. Nanotechnology. 2005; 16 (10): 2138–2142. DOI: 10.1088/0957-4484/16/10/028.

20. Webb A. R., Yang J., Ameer G. A. Biodegradable polyester elastomers in tissue engineering. Expert Opin. Biol. Ther. 2004; 4 (6): 801–812.

21. Ying T. H., Ishii D., Mahara A., Murakami S., Yamaoka T., Sudesh K. et al. Scaffolds from electrospun polyhydroxyalkanoate copolymers: fabrication, characterization, bioabsorption and tissue response. Biomaterials. 2008; 29 (10): 1307–1317.

22. Zhong S., Zhang Y., Lim C. T. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review. Tissue Eng. Part B Rev. 2012; 18 (2): 77–87.


Review

For citations:


Shishkova D.K., Nasonova M.V., Khodyrevskaya Yu.I., Nemoykina A.L., Doronina N.V., Glushkova T.V., Kudryavtseva Yu.A. INFLUENCE OF COMPOSITION AND CONCENTRATION OF BIODEGRADABLE POLYMERS ON STRUCTURE AND PHYSICO-MECHANICAL PROPERTIES OF ELECTROSPUN SCAFFOLDS. Complex Issues of Cardiovascular Diseases. 2016;(2):30-38. (In Russ.) https://doi.org/10.17802/2306-1278-2016-2-30-38

Views: 777


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2306-1278 (Print)
ISSN 2587-9537 (Online)